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Preface

Asiacrypt, the annual conference of cryptology sponsored by IACR is now 11
years old. Asiacrypt 2005 was held during December 4–8, 2005, at Hotel Taj
Coromandel, Chennai, India. This conference was organized by the International
Association for Cryptologic Research (IACR) in cooperation with the Indian
Institute of Technology (IIT), Chennai.

This year a total of 237 papers were submitted to Asiacrypt 2005. The submis-
sions covered all areas of cryptographic research representing the current state of
work in the crypto community worldwide. Each paper was blind reviewed by at
least three members of the Program Committee and papers co-authored by the
PC members were reviewed by at least six members. This first phase of review
by the PC members was followed by a detailed discussion on the papers. At the
end of the reviewing process 37 papers were accepted and were presented at the
conference. The proceedings contain the revised versions of the accepted papers.
In addition we were fortunate to have Prof. Andrew Yao and Prof. Bart Preneel
as invited speakers.

Based on a discussion and subsequent voting among the PC members, the
Best Paper Award for this year’s Asiacrypt was conferred to Pascal Paillier and
Damien Vergnaud for the paper entitled “Discrete-Log-Based Signatures May
Not Be Equivalent to Discrete Log.”

I would like to thank the following people. First, the General Chair, Prof.
Pandu Rangan. Next, Springer for publishing the proceedings in the Lecture
Notes in Computer Science series. I would also like to thank the submitting
authors, the Program Committee members, the external reviewers, and the local
Organizing Committee consisting of Mr. Veeraraghavan and Mr. E. Boopal. I
acknowledge the partial financial support provided by Microsoft Research Labs,
India. I thank Dr. Debrup Chakraborty for his help in managing the submissions
and the final preparation of the proceedings. Thanks also goes to Mr. Sanjit
Chatterjee for his assistance in the process.

December 2005 Bimal Roy
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Discrete-Log-Based Signatures May Not Be
Equivalent to Discrete Log

Pascal Paillier1 and Damien Vergnaud2

1 Gemplus Card International, Advanced Cryptographic Services,
34, rue Guynemer, 92447 Issy-les-Moulineaux Cedex, France

pascal.paillier@gemplus.com
2 Laboratoire de Mathématiques Nicolas Oresme,

Université de Caen, Campus II, B.P. 5186,
14032 Caen Cedex, France
vergnaud@math.unicaen.fr

Abstract. We provide evidence that the unforgeability of several dis-
crete-log based signatures like Schnorr signatures cannot be equivalent
to the discrete log problem in the standard model. This contradicts in
nature well-known proofs standing in weakened proof methodologies, in
particular proofs employing various formulations of the Forking Lemma
in the random oracle Model. Our impossibility proofs apply to many
discrete-log-based signatures like ElGamal signatures and their exten-
sions, DSA, ECDSA and KCDSA as well as standard generalizations
of these, and even RSA-based signatures like GQ. We stress that our
work sheds more light on the provable (in)security of popular signature
schemes but does not explicitly lead to actual attacks on these.

1 Introduction

It is striking to observe that after more that two decades of active research
on the matter, the standard-model security of discrete-log based signatures like
Schnorr, ElGamal or DSA remains mysteriously unknown. Although dedicated
proof techniques do exist in weakened models (e.g. the random oracle model
(ROM) [19,4,8] or the generic group model (GGM) [7]), none of them provides
intuition about the actual security of discrete-log signatures. Even though they
have withstood concerted cryptanalytic effort fairly well, we suspect that the
real-life security of many of these signature schemes is actually weaker than
expected. We provide evidence that most discrete-log-based signatures defined
over some prime-order group G cannot be equivalent to extracting discrete logs
over G in the standard model. Our results are partial in the sense that we
disprove equivalence via algebraic reductions. In brief, algebraic reductions can
only apply group operations on group elements. This restriction is not overly
restrictive as we do not know any example of a cryptographic reduction which is
not algebraic. Our results suggest that most discrete-log based signature schemes
just cannot reach a maximal security level i.e. equivalence towards their primitive
problem, or that if some of them do, it is through non-algebraic reductions
exploiting intricate and subtle relations within the group G.

B. Roy (Ed.): ASIACRYPT 2005, LNCS 3788, pp. 1–20, 2005.
c© International Association for Cryptologic Research 2005



2 P. Paillier and D. Vergnaud

Most interestingly, our work highlights a possible separation between the
standard model and the random oracle model in which it is well-known that
forging Schnorr signatures (for instance) is equivalent to extracting discrete logs.
An interpretation is that random-oracle-based proofs leave unfair advantage to
security reductions by probing and modifying the adversary’s internal computa-
tions and thereby letting the random oracle play a crucial role that cannot be
justified in real life. Previous works have observed similar separations in specific
contexts [2,18].

The Fiat-Shamir paradigm of transforming identification schemes into digital
signature schemes [13] is popular because it yields efficient protocols. However
all known results for the security of Fiat-Shamir-transformed signature schemes
like Schnorr take place in the ROM1. Even worse, they impose the loss of a factor
nearly qH (the number of queries the forger makes to the random oracle) in either
execution time or success probability of reductions that convert a forger into an
algorithm that extracts discrete logarithms. While no proof exists that the loss of
this factor is necessary, the problem seems inherent to the way signature schemes
are constructed from identification protocols.

We prove in this paper that any random-oracle-based reduction from com-
puting discrete logarithms to forging Schnorr signatures must lose a factor at
least

√
qH . This shows that a proof of equivalence in the ROM, if algebraic, will

never be tight. We believe our work gives a new perspective as to why no efficient
proof of equivalence to the discrete log problem has ever been found for Schnorr
signatures despite considerable research efforts.

We emphasize that although our work disproves that Schnorr, ElGamal,
DSA, GQ, etc. are maximally secure, no actual attack or weakness of either
of these signature schemes arises from our impossibility results. Nothing stated
here refutes that forging signatures is likely to be intractable in practice.

1.1 Our Contributions

Our results are manyfold. Introducing a simple way to simulate forgeries, we are
able to relate security properties of many signature schemes (Schnorr, (Meta)
ElGamal, DSA2, ECDSA, KCDSA, GQ) to one-more computational problems,
in a positive or negative sense. In the positive sense, we prove the unbreaka-
bility of these signatures (meaning that the signing key cannot be recovered)
under chosen-message attacks, thereby identifying security properties that have
remained unknown for these schemes.

Starting from the same simulation technique, we show that no algebraic re-
duction can exist that would relate the unforgeability (under any kind of attacks)
of these signatures to their primitive problem. This result is extendable to the

1 It is known that the Fiat-Shamir transform provides a separation between the ROM
and the standard model, see [14].

2 Note that this work constitutes the first proper security analysis of DSA and ECDSA
in the standard model. Previous to this work the only known security result on DSA
schemes was that of Brown on ECDSA which assumed a generic group [7].
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one-more setting, meaning that there cannot exist a similar reduction to a weak-
ened, one-more version of the primitive problem. Our impossibility proofs rely
on the construction of an efficient meta-reduction relating such a reduction to
the one-more problem itself. Thus, under the assumption that this problem is in-
tractable, the fact that a polynomial meta-reduction exists forbids the existence
of algebraic reductions. We note that our meta-reductions are perfect meaning
that they preserve success probabilities perfectly. This emphasizes the strength
of our impossibility results.

1.2 Roadmap

We start by providing definitional facts about discrete-log-based signature sche-
mes, security notions for signatures, the discrete log and one-more discrete log as-
sumptions over a group G, reductionist security proofs and algebraic reductions.
Section 3 proves that Schnorr signatures are unbreakable under a chosen-message
attack. Section 4 then proves that if the one-more discrete log assumption holds,
then Schnorr signatures cannot be proven equivalent to the discrete log prob-
lem and Section 5 further extends this impossibility to the one-more discrete log
problem. Section 6 then applies our proof technique to other signatures schemes,
slightly adapting the proof to the underlying computational problem when nec-
essary. Lastly, Section 7 explores the case of random-oracle-based reductions and
shows that any reduction of that type, if algebraic, must loose a factor close to√
qH . We conclude with a series of open questions in Section 8.

2 Preliminaries

2.1 Schnorr Signatures

Schnorr’s identification protocol was introduced in the late eighties [21,20] as a
means to prove knowledge of the discrete logarithm of a publicly known group
element. Let G = 〈g〉 be a group of prime order q and P and V denote a prover
and a verifier. By engaging in the protocol, P proves to V that he knows the
discrete log x of a public group element y = gx. The protocol has three simple
moves. (Commitment) P selects a random k

$← Zq, computes r = gk and sends
r to V . (Challenge) V picks a random c

$← Zq and sends c to P . (Response) P
computes and sends s = k + cx mod q to V . Lastly, V verifies that gs · y−c = r
and recognizes that P knows x if the equality holds.

Schnorr signatures derive from Schnorr’s identification protocol by applying
the Fiat-Shamir transform [13] with respect to a hash function H : {0, 1}� �→ Zq.
The Fiat-Shamir-transformed protocol is changed into a signature scheme by
making it non-interactive. In this respect, the signer acts like P and simulates a
verifier V by computing the challenge c himself as c = H (m, r). For concreteness,
we detail Schnorr’s signature scheme ΣH as a tuple of probabilistic algorithms
ΣH = (Gen,Sign,Ver) defined as follows.
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Key Generation. Gen selects a random x
$← Zq. The secret key is x while

the public key is y = gx ∈ G.

Signing Procedure. Given a message m ∈ {0, 1}�, Sign(m) picks a random
k

$← Zq, computes r = gk, c = H (m, r) and s = k + cx mod q. The output
signature is (s, c).

Verification Procedure. Ver(m, (s, c)) returns 1 if H (m, gsy−c) = c and 0
otherwise.

Schnorr signatures constitute one of the most important ingredients in the
design of cryptographic protocols, cryptosystems and proofs of knowledge.

2.2 Security Notions

Security notions for signature schemes are defined with respect to several types
of adversaries or equivalently, as the conjunction of an adversarial goal and
an attack scenario. An adversary is modeled as a probabilistic Turing machine
attempting to fulfill the goal while given access to certain resources when inter-
acting with the signature scheme.

Adversarial Goals. We make use of three separate goals in this paper al-
though others may also be of interest (e.g. signature malleability [19]). We say
that a signature scheme is breakable (BK) when an adversary extracts the se-
cret key matching a prescribed public key. The scheme is said to be universally
forgeable (UF) when there exists an adversary A that returns a valid signature
on a message given as input to A. The notion of existential forgeability (EF) is
similar but allows the adversary to choose freely the value of the signed message.

Attack Models. We consider two attack scenarios in this paper. In a key-only
attack (KOA), the adversary is given nothing else than a public key as input3.
In a chosen-message attack (CMA), the adversary is given adaptive access to
signatures on messages of his choice while attempting to achieve his goal.

Security notions are obtained by coupling an adversarial goal with an attack
model. We distinguish between several notions of reference for which general
results are immediate, as shown on Figure 1. We refer the reader to the extensive
cryptographic literature for a more formal definition of these security notions.

2.3 Discrete Logarithm Problems

DL. Solving the discrete log problem DL[g, r] in a group G = 〈g〉 of prime or-
der q consists in computing k ∈ Zq given r = gk ∈ G. Because of its random
self-reducibility [19], the hardness of the discrete log problem is essentially in-
dependent from the choice of its inputs (g, r) and rather depends on the inner
structure of the group G itself. We denote DL the problem of computing discrete

3 The term no-message attacks is also frequently used to designate such attacks.
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Existential forgeries EF-KOA [S ] ⇒ EF-CMA [S ]

⇑ ⇑
Universal forgeries UF-KOA [S ] ⇒ UF-CMA [S ]

⇑ ⇑
Breakability BK-KOA [S ] ⇒ BK-CMA [S ]

Goal vs. Attack Key only Chosen message

Fig. 1. Major security notions for signature schemes. S denotes an arbitrary signa-
ture scheme and P1 ⇐ P2 means that P1 is polynomially reducible to P2. Security
notions are defined by their underlying problem e.g. UF-KOA [S ] denotes the problem
of computing a universal forgery under a key-only attack.

logs over G = 〈g〉 with respect to a fixed base g. A probabilistic algorithm A
that (ε, τ)-solves DL is such that

Pr
k

$←Zq

[
A(gk) = k

]
≥ ε

where the probability is taken over the random tape of A and A stops after time
at most τ . The (ε, τ)-discrete-log assumption tells that DL cannot be (ε, τ)-
solved over G. The (asymptotic) discrete log assumption tells that if DL can be
(ε, τ)-solved for τ = poly (log q) then ε is negligible before 1/poly (log q).
The One-More DL. The computational problem n-DL is defined as a natural
extension of DL. A probabilistic algorithm A solving n-DL is given n+ 1 group
elements r0, r1, . . . , rn as well as a limited access to a discrete log oracle DLOM. A
is allowed to access DLOM at most n times, thus obtaining the discrete logarithm
of n group elements of his choice with respect to a fixed base g.Amust eventually
output the n + 1 discrete logs k0 = dlg (r0) , . . . , kn = dlg (rn). An algorithm A
is said to (ε, τ)-solve n-DL when

Pr
k0,...,kn

$←Zq

[
ADLOM(gk0 , . . . , gkn) = (k0, . . . , kn)

]
≥ ε

where the probability is taken over the random tape of A, A stops after time at
most τ and A calls DLOM at most n times. The one-more discrete log assumption
tells that no probabilistic algorithm can solve n-DL with non-negligible success
probability over G for any integer n ≥ 1. It is easily seen that DL is contained
as the special case DL ≡ 0-DL and that n1-DL ⇐ n2-DL whenever n1 ≥ n2.

2.4 Reduction-Based Security Proofs

Reductions. Cryptographers use reductionist proofs to convince others that
their schemes are computationally secure. An algorithm R is said to reduce a
problem P1 to a problem P2, which we then denote by P1 ⇐R P2, if R solves P1
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with the help of an algorithm solving P2. Algorithm R is then called a reduction
from P1 to P2. We write P1 ⇐ P2 when there exists a polynomial time reduction
from P1 to P2, and P1 ≡ P2 when one has simultaneously P1 ⇐ P2 and P2 ⇐ P1.

Algebraic Algorithms. Our method of converting a reduction R such that
DL ⇐R UF-KOA [ΣH] into an algorithm solving the one-more discrete log prob-
lem applies whenever R belongs to a certain “natural” class of reductions. We
refer to these as algebraic reductions.

In brief, a reduction algorithm R is algebraic with respect to a group G if R
is limited to perform group operations on group elements. Adding 1G to g ∈ G is
thus not permitted, even if this operation is well-defined and meaningful (if G is
the multiplicative subgroup of a ring, for instance). R is free to apply arbitrary
operations on other data types, but when it comes to elements of G, the only
available operations are among the (redundant) limited set

S = {(g1, g2) �→ g1
?= g2, (g1, g2) �→ g1 · g2, (g1, λ) �→ gλ1 , g1 �→ g−1

1 } .

For instance a reduction placed into the generic group model (GGM) or more
precisely in the non-programmable GGM is an algebraic reduction4. However,
the class of algebraic reductions encompasses much more algorithms and in par-
ticular may be relevant on groups where there do exist algorithms exploiting the
encoding of elements. This class of reductions is not overly restrictive (in fact, we
do not know any example of a cryptographic reduction which is not algebraic).
The restriction of our results to algebraic reductions is far much weaker than the
one made in [11] which considers only reductions supplying the adversary with
a public key which is always the same as its own challenge. It is worth noting
that our results extend readily to such reductions.

Algebraic algorithms were originally defined by Boneh and Venkatesan [5] in
the context of rings of integers modulo n = pq under the form of straight-line
programs computing polynomials over the ring structure Zn. Here, we stick to
a (somewhat more natural) definition of algebraicity towards a group structure.
A formal definition of this property is that an algebraic algorithm R admits a
polynomial time extractor Extract enabling one, givenR’s inputs (s, g1, . . . , gk) ∈
{0, 1}∗ × Gk and random tape �, to recover for any variable h ∈ G output by
R after τ elementary steps, the coefficients αi such that h = gα1

1 . . . gαk

k . Extract
possibly has non black-box access to R and in particular may be given the code
of R. We require that Extract runs in time poly (τ, |R|) where |R| denotes the
code size of R.

In the sequel, we adopt the notation P1 ⇐alg P2 whenever there exists an
algebraic algorithm R such that P1 ⇐R P2 and P1 ≡alg P2 when P1 ⇐R1

P2 and P2 ⇐R2 P1 for algebraic reductions R1,R2. Conversely, the notation
P1�algP2 says that there exists no algebraic algorithm R such that P1 ⇐R P2.
We define P1 �≡algP2 in a similar way.

4 It should be mentioned that the GGM suffers from the same separation problems as
the ROM, see [10].
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3 Schnorr is Unbreakable Under the One-More Discrete
Log Assumption

We start by showing that Schnorr’s signature scheme ΣH defined over some
group G is at least as hard to break that the one-more discrete log problem is
hard to solve over G. This is a positive security result standing in the standard
model.

Theorem 1 (qs-DL ⇐ BK-CMA [ΣH]). Assume there exists an adversary A
against ΣH that breaks the secret key under a chosen-message attack with qs
signature queries and success probability ε. Then there exists an algorithm R
that solves qs-DL with probability ε′ = ε in similar time.

Proof. The description of G = 〈g〉 is implicitly given to all parties (this will be
the case for all reductions and meta-reductions considered in this paper). Assume
there exists a probabilistic algorithm A that takes as input y = gx, requests the
signature of qs messages, and outputs the secret key x with probability ε after
τ steps. We construct a reduction algorithm R which makes use of A to solve a
qs-DL instance over G. Algorithm R works as follows.
R receives qs + 1 group elements r0, . . . , rqs , defines y = r0 and launches

A(y,�) over some random tape �. Now whenever A requests the Schnorr sig-
nature of a message mi, R uses ri to compute ci = H (mi, ri). R then queries
the discrete log oracle to get si ← DLOM (ri · yci) and returns the signature
σi = (si, ci). It is easily seen that this simulation is perfect.

After at most qs signature queries, A returns k0 such that r0 = gk0 with
probability ε in which case R uses k0 to retrieve the discrete logarithm ki =
si − k0ci mod q of ri for i = 1, . . . , qs. R then returns (k0, k1, . . . , kqs) and
therefore succeeds in solving qs-DL with probability ε′ = ε after at most τ ′ =
τ + poly (qs,Time (H) , log q) steps. �

4 Schnorr Signatures are Not Unforgeable Under the
Discrete Log Assumption

We now show that Schnorr signatures cannot be proven universally unforgeable
under the discrete log assumption in the standard model with respect to an
algebraic reduction. We actually show that if such a reduction existed then the
one-more discrete log assumption would not hold over G.

Theorem 2. Assume that the one-more discrete log assumption holds. Then
DL �alg UF-KOA [ΣH].

We give a more precise formulation of Theorem 2 in the following lemma.

Lemma 1. Assume there exists an algebraic reduction algorithm R that con-
verts an (ε, τ)-universal forger A under a key-only attack into an (ε′, τ ′)-solver
for the discrete logarithm and assume that R executes A at most n times. Then
there exists a meta-reduction algorithm M that solves n-DL with success proba-
bility ε′′ = ε′ within time τ ′′ = τ ′ + poly (τ ′, |R|, n,Time (H) , log q).
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Proof. The rest of the section is dedicated to proving Lemma 1 and we start by
giving an overview of how the proof works. Assuming the existence of an algebraic
reduction R as above, we construct a meta-reduction M that solves n-DL with
success probability identical to the one of R. Algorithm M works as follows.
Given n + 1 group elements r0, . . . , rn ∈ G, M launches R over r0 and some
arbitrary random tape. M then perfectly simulates at most n executions of the
adversary A by using r1, . . . , rn and by making requests of discrete logarithms
to oracle DLOM. If R outputs k0, M uses its transcript information to retrieve
the discrete logs kj of the rj ’s.
Tracing R’s Internal Group Operations. The reduction algorithm R
takes as input a challenge discrete log instance r0 = gk0 and is allowed to invoke
n times the universal forger A with freely chosen public keys yi = gxi , messages
mi and random tapes �i where i = 1, . . . , n. For our meta-reductionM to work,
however, we must dispose of a constructive way to recover the value of the xi’s
from the one of k0 = dlg (r0). This is where an additional mechanism is needed.
We may either choose to dive R into the generic model to have access to its
internal computations involving group elements, or more generally consider R
to be algebraic and let M dispose of the code of R if necessary, i.e. have non
black-box access to R. In the sequel, we impose that R is algebraic, and pro-
vided that the code of R is polynomial in length, M is assumed to dispose of a
polynomial time extraction procedure Extract(k0, Transcript) = (x1, . . . , xn).
Simulation of A. The simulation of a universal forger A(y,m,�) under a
key-only attack is described as follows. Transcript and j are viewed as global
variables initialized before A is executed for the first time.

1. Receive (y,m,�) ∈ G× {0, 1}� × {0, 1}�

2. Select δ $← [0, 1] uniformly at random
3. If δ > ε stop and output ⊥
4. Else if (y,m,�) �→ (s, c) ∈ Transcript for some signature (s, c), stop and

output (s, c)
5. Else

(a) Define r = rj and increment j by 1
(b) Compute c = H (m, r)
(c) Request the discrete log s← DLOM(ryc)
(d) Append (y,m,�) �→ (s, c) to Transcript

(e) Output σ = (s, c)

Description of M. M takes the first group element r0 ∈ G, initializes j =
1 and Transcript = ∅, and invokes R with input r0 and arbitrary random
tape. M then simulates the universal forger A as above, resulting in a perfect
simulation. During simulation, M sends 
 requests to oracle DLOM for some

 ∈ [1, n] (therefore 
 is the value of j after the n successive simulations of A).
Now assume R outputs k0 = dlg (r0). M then uses its transcript information to
extract

(x1, . . . , xn) = Extract(k0, Transcript) .
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There are 
 records of type (y,m,�) �→ (s, c) in Transcript. Then for j ∈ [1, 
],
if the j-th record is of the form (gxi , ∗, ∗) �→ (s, c) for some i ∈ [1, n] then M
computes kj = dlg (rj) = s− cxi mod q. At this point, M knows (k0, k1, . . . , k�).
Now for j = 
+1 to n,M directly requests kj = dlg (rj) to DLOM.M then returns
(k0, . . . , k�, k�+1, . . . , kn), thereby succeeding in solving n-DL. This occurs with
probability ε′′ = ε′ and time τ ′′ = τ ′ + poly (τ ′, |R|, n,Time (H) , log q). �

5 Extension to the One-More Discrete Log Assumption

Theorem 2 shows that under the one-more discrete log assumption, no algebraic
reduction exists that would reduce the discrete log problem to forging Schnorr
signatures. This is a big step towards proving that coming up with forgeries
is strictly easier than extracting discrete logs. One may ask whether a similar
impossibility result extends to computational problems weaker than DL. We
provide a positive answer to this question too by showing that if the one-more
discrete log assumption holds, there can be no algebraic reduction from solving
any one-more discrete log problem to forging signatures. In other words

Theorem 3. Assume that the one-more discrete log assumption holds. Then

t-DL �alg UF-KOA [ΣH]

for any integer t ≥ 0.

Note that Theorem 3 contains Theorem 2 in the special case where t = 0. This
shows that Schnorr signatures cannot be proven universally unforgeable under
the one-more discrete log assumption with respect to an algebraic reduction,
or that if they can, the one-more discrete log assumption does not hold over G,
thus rendering such a reduction useless. The following lemma captures this more
precisely.

Lemma 2. Assume there exists an algebraic reduction algorithm R that con-
verts an (ε, τ)-universal forger A under a key-only attack into an (ε′, τ ′)-solver
for t-DL and assume that R executes A at most n times. Then there exists
a meta-reduction algorithm M that solves (t + n)-DL with success probability
ε′′ = ε′ within time τ ′′ = τ ′ + poly (τ ′, |R|, t, n,Time (H) , log q).

Proof (of Lemma 2). The proof is very similar to the one of Lemma 1. We
therefore avoid details and focus on the changes we apply to extend to the
general case t-DL, t ≥ 0. Again, from an algebraic reduction R as above, we
construct M that solves (t+n)-DL with success probability identical to the one
of R.
Extraction of Secret Keys. The reduction algorithm R now takes as input
a t-DL instance (

r0 = gk0 , r1 = gk1 , . . . , rt = gkt
)
∈ Gt+1 ,
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calls DLOM up to t times and invokes at most n times the universal forger A with
freely chosen public keys yi = gxi, messages mi and random tapes �i where
i = 1, . . . , n. Since R is algebraic and of polynomially bounded size, we dispose
of a polynomial time extraction procedure Extract(k0, k1, . . . , kt, Transcript) =
(x1, . . . , xn).
Simulation of A. The simulation of the universal forger A is identical to the
one given in the previous section.
Simulation of DLOM. Since R attempts to solve t-DL, we must allow R to
send up to t requests to the discrete logarithm oracle DLOM. The meta-reduction
M individually collects these requests, forwards them to DLOM and sends the
corresponding outputs back to R. We may assume that R makes exactly t oracle
calls since in the case when R sends strictly less than t requests during the game,
M sends additional requests of discrete logs for randomly chosen group elements
to DLOM on behalf of R. This simulation is obviously perfect.
Overall Description ofM.M takes its first t+1 group elements (r0, . . . , rt)
among (r0, . . . , rt+n), initializes Transcript = ∅ and j = 1, and invokes R with
input (r0, . . . , rt) and arbitrary random tape. M then simulates the universal
forger A and discrete log oracle DLOM as above, resulting in a perfect simulation.
During simulation, M sends t + 
 requests to DLOM for some 
 ∈ [1, n]. Now
assume R succeeds and outputs

k0 = dlg (r0) , k1 = dlg (r1) , . . . , kt = dlg (rt) .

M then uses its transcript information to extract

(x1, . . . , xn) = Extract(k0, . . . , kt, Transcript) .

There are 
 records of type (y,m,�) �→ (s, c) in Transcript. Then for j ∈ [1, 
],
if the j-th record is of the form (gxi , ∗, ∗) �→ (s, c) for some i ∈ [1, n] then M
computes kt+j = dlg (rt+j) = s − cxi mod q. Thus M recovers (kt+1, . . . , kt+�).
Now for j = t+ 
+ 1 to n, M directly requests kj = dlg (rj) to DLOM. Then M
returns

(k0, k1, . . . , kt)︸ ︷︷ ︸
ouput by R

∪ (kt+1, . . . , kt+�)︸ ︷︷ ︸
extracted by M

∪ (kt+�+1, . . . , kt+n)︸ ︷︷ ︸
requested to DLOM

= (k0, . . . , kt+n) ,

thereby succeeding in solving (t + n)-DL. This occurs with probability ε′′ = ε′

and execution time τ ′′ = τ ′ + poly (τ ′, |R|, t, n,Time (H) , log q). �

Summary. Because of the relations

EF-CMA [ΣH]⇐ { EF-KOA [ΣH] ,UF-CMA [ΣH] } ⇐ UF-KOA [ΣH] ,

our impossibility results readily extend to forgeries of any kind, under any attack
model. We summarize our results (also displayed on Figure 2), stating our pos-
itive and negative security proofs for Schnorr signatures assuming the one-more
discrete log assumption holds:
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Forgeries �≡algDL and even �≡algt-DL for t > 0

Breakability ≡ DL ⇒ qs-DL

Goal vs. Atk Key-Only Attacks Chosen-Message Attacks

Fig. 2. Our results for Schnorr’s signature scheme ΣH are shown in boxes. In particular,
universal and existential forgeries under any kind of attack cannot be proven equivalent
to the discrete log problem via an algebraic reduction.

Theorem 1: Schnorr’s scheme is unbreakable under chosen-message attacks.

Theorems 2 and 3: Universal and existential forgeries under any kind of at-
tack cannot be proven secure under the discrete log assumption or even the
one-more discrete log assumption with respect to an algebraic reduction.

6 Applications to Other Signature Schemes

We extend our results to various signature schemes, adapting our meta-reduction-
based proof technique to comply with the schemes’ inner design.

6.1 Guillou-Quisquater

GQ signatures were suggested by Guillou and Quisquater in [15]. Among other
properties, GQ is a Fiat-Shamir-transformed signature scheme based on RSA
and supports identity-based public keys.
Scheme Parameters and Key Generation. Let p, q be two large primes, set
n = pq and choose randomly v such that gcd(v, φ(n)) = 1. The public parameters
are (n, v) as well as a hash function H : {0, 1}� �→ Zv. Now the signer chooses a
secret key x $← Zn. The related public key is y = x−v mod n.
Signature Generation and Verification. Given a messagem, the signer se-
lects k $← Zn, computes r = kv mod n, c = H (m, r) and s = kxc mod n. The sig-
nature is σ = (s, c). To verify the signature, check whetherH (m, svyc mod n) = c

Because of their similarity with Schnorr, GQ signatures fit our impossibility
proofs quite well. However the primitive computational problem here is not DL
but rather extracting v-th roots modulo n, which we denote of course by RSA.
The one-more version of RSA is easily defined with the help of an oracle RSAOM

extracting the v-th root of its argument [3]. Solving n-RSA thus consists in
finding the v-th root of n+ 1 elements of Zn given no more than n invocations
of RSAOM. The one-more RSA assumption says that n-RSA is intractable for
n ≥ 1.

Theorem 4. Assume the one-more RSA assumption holds. Then (i) GQ is un-
breakable under chosen-message attacks. (ii) Universal and existential forgeries
under any attack cannot be proven secure under the RSA assumption or the
one-more RSA assumption with respect to an algebraic reduction.
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Proof (Sketch). We rely on the same proof technique as in the proofs of Theo-
rems 1, 2 and 3. Here, however, the simulation of the UF-KOA adversary A must
be slightly reformulated. An overall description of our meta-reduction M is as
follows. The reduction algorithm R takes as input a t-RSA instance

(r0 = kv0 mod n, r1 = kv1 mod n, . . . , rt = kvt mod n) ∈ Zt+1
n ,

calls RSAOM up to t times and calls the forgerA at most n times with public keys
yi = xi

−v mod n, messages mi and random tapes �i where i = 1, . . . , n. Since
R is algebraic, M is assumed to dispose of a polynomial time extraction pro-
cedure Extract(k0, k1, . . . , kt, Transcript) = (x1, . . . , xn). Now when simulating
A(y,m,�) for new inputs (y,m,�), if M must compute a forgery thenM takes
r = rj , computes c = H (m, r) and requests the v-th root s← RSAOM(ry−c mod
n). The simulation is perfect. After recovering (x1, . . . , xn) from (k0, . . . , kt),
M consults its transcript and if the j-th entry is (x−vi mod n, ∗, ∗) �→ (s, c)
for some i then M computes kt+j = sxci = v

√
rt+j mod n. The unused inputs

rt+�+1, . . . , rt+n are sent by M to RSAOM to retrieve their v-th root directly.
Following this slightly modified description of M, one gets as before ε′′ = ε′ and
τ ′′ = τ ′ + poly (τ ′, |R|, t, n,Time (H) , log q). �

6.2 DSA, ECDSA and Generic DSA

DSA is a signature scheme standardized by the NIST in 1991 [9]. The original
version of DSA is based on the discrete log problem over the subgroup of Z∗p of
prime order q|p−1. ECDSA, standardized as well [1], presents the same structure
but is defined over a prime-order subgroup of an elliptic curve. We consider here
their generalization to arbitrary prime-order groups as suggested by Brown in [7].
Scheme Parameters and Key Generation. Again, G = 〈g〉 denotes a group
of prime order q. The public parameters are (G, g), a function G : G �→ Zq and
a hash function H : {0, 1}� �→ Zq. The signer chooses a secret key x $← Zq. The
related public key is y = gx ∈ G.
Signature Generation and Verification. Given a message m, the signer
selects k $← Z∗q , computes r = gk, ρ = G(r), u = H (m) and s = k−1(u +
ρx) mod q. The signature is σ = (ρ, s). To verify the signature, check whether
G
(
gH(m)/s · yρ/s

)
= ρ.

Note that the original DSA corresponds to the case where G =
(
Z∗p
)(p−1)/q,

|q| = 160,H = SHA-1 and G(r) = r mod q. Let E be an elliptic curve group over
a finite field admitting an element P of prime order q with |q| = 160. ECDSA
is obtained with g = P , G = 〈g〉, H = SHA-1 and G(r) = xr mod q where xr is
an integer representation of the x-coordinate of point r.

Before stating our security results, we define a variant of the one-more dis-
crete log problem n-DL as follows. n-DL� consists in computing the discrete
logs with respect to a fixed base g of n + 1 group elements with bounded
(to n) access to a discrete log oracle DL�OM. Unlike DLOM which was limited
to the fixed base g, DL�OM provides discrete logarithms with respect to any
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base h ∈ G meaning that DL�OM(hα, h) returns α for any h ∈ G. Although
0-DL� ≡ DL ≡ 0-DL, one only has in the general5 case n-DL� ⇐ n-DL for n ≥ 1.
The one-more free-base discrete log assumption says that n-DL� is intractable
for n ≥ 1.

Theorem 5. Assume the one-more free-base discrete log assumption holds.
Then (i) Generic DSA is unbreakable under chosen-message attacks. (ii) Uni-
versal and existential forgeries under any attack cannot be proven secure under
the discrete log assumption or the one-more free-base discrete log assumption
with respect to an algebraic reduction.

Proof (Sketch). We use the same proof technique as for Theorem 1 and Lemmas 1
and 2. What we are after is a reduction qs-DL� ⇐ BK-CMA [Generic-DSA] as well
as a means to simulate an UF-KOA adversary A leading to a meta-reduction M
such that if t-DL� ⇐R UF-KOA [Generic-DSA] whereR is limited to n executions
of UF-KOA [Generic-DSA], then n-DL� ⇐M R. We first have to show how to
simulate a signing oracle without knowing the secret key. Remembering that the
simulator is given group elements {rj} for j ∈ [1, qs] or [t+1, t+n], the signature
simulation is as follows. For a given public key y = gx ∈ G and a message m, we
define r = rj and compute ρ = G(r) and u = H (m). We then invoke DL�OM to
get

s = DL�OM (gu · yρ, r) .
It is easy to see that if we write r = gk then s conforms to the equation
s = k−1(u + ρx) mod q. The simulator then outputs σ = (ρ, s). The simulation
is obviously perfect. We now have to show how to recover kj = dlg (rj) from a)
either the list of secret keys {xi} given to simulation number i ∈ [1, qs] or [1, n] b)
or from the outputs k0, . . . , kt of R. Since R is algebraic, the key extraction pro-
cedure using Transcript leads case b) to case a). Therefore, we are left with the
task of recovering kj from xi and the transcript of our simulations. This is easily
done by inverting the signature formula to recover kj = s−1(u+ ρxi) mod q. �

6.3 KCDSA and Trusted ElGamal Signatures Type I

DSA and DSA-like signature schemes have been extended in many ways. We
focus on a generalization called TEGTSS-I put forward by Brickell et al. in [6].
This extension contains the korean standard KCDSA [17] as a particular case.
Scheme Parameters and Key Generation. Let G = 〈g〉 be a group of
prime order q. Now define three functions f1 : Z4

q �→ Zq, f2 : Z3
q �→ Zq and

f3 : Z3
q �→ Zq such that for any integers k, x, u, ρ ∈ Zq,

if s = f1(k, x, u, ρ) then f2 (s, u, ρ) + xf3 (s, u, ρ) ≡ k mod q .

The public parameters are (G, g, f1, f2, f3), a function G : G �→ Zq and a hash
function H : {0, 1}� �→ Zq. The signer chooses a secret key x $← Zq. The related
public key is y = gx ∈ G.
5 The converse is unknown.
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Signature Generation and Verification. Given a message m, the signer
selects k $← Z∗q , computes r = gk, ρ = G(r), u = H (m) and s = f1(k, x, u, ρ).
The signature is σ = (ρ, s). To verify the signature, compute u = H (m), α =
f2(s, u, ρ), β = f3(s, u, ρ) and check whether G

(
gα · yβ

)
= ρ.

KCDSA fulfils this description where G =
(
Z∗p
)(p−1)/q = 〈g〉, H and G are

hash functions mapping Zp to Zq, and functions f1, f2, f3 are defined by

f1(k, x, u, ρ) = (k − u⊕ ρ)/x mod q ,
f2(s, u, ρ) = u⊕ ρ ,
f3(s, u, ρ) = s .

Before stating any security property of TEGTSS-I signatures, we leave as an
exercise to the reader to prove the following property.

Claim. Let f1, f2, f3 be functions as above. Then there exist efficiently com-
putable functions δ1, δ2, δ3, δ4 and εmapping Z2

q to Zq and such that δ1(u, ρ) �= 0,
δ3(u, ρ) · δ4(u, ρ) �= 0, ε(u, ρ) �= 0 for any u, ρ ∈ Zq and

f1(k, x, u, ρ) =
(
δ1(u, ρ)k + δ2(u, ρ)
δ3(u, ρ)x+ δ4(u, ρ)

) 1
ε(u,ρ)

, (1)

f2(s, u, ρ) =
δ4(u, ρ)sε(u,ρ) − δ2(u, ρ)

δ1(u, ρ)
, (2)

f3(s, u, ρ) =
δ3(u, ρ)sε(u,ρ)

δ1(u, ρ)
, (3)

where all evaluations are modulo q.

As an illustration, KCDSA yields δ1(u, ρ) = 1, δ2(u, ρ) = −u⊕ρ, δ3(u, ρ) = 1,
δ4(u, ρ) = 0 and ε(u, ρ) = 1. Note that DSA is also a particular case if we set
δ1(u, ρ) = 1, δ2(u, ρ) = 0, δ3(u, ρ) = ρ, δ4(u, ρ) = u and ε(u, ρ) = −1. We
now state our security results. As for Generic DSA, we rely on n-DL� and the
one-more free-base discrete log assumption:

Theorem 6. Let Σ be a signature scheme of type TEGTSS-I. Assume the one-
more free-base discrete log assumption holds. Then (i) Σ is unbreakable under
chosen-message attacks. (ii) Universal and existential forgeries under any attack
cannot be proven secure under the discrete log assumption or the one-more free-
base discrete log assumption with respect to an algebraic reduction.

Proof (Sketch). Here again, we make use of the proofs of Theorem 1, Lemmas 1
and 2. As discussed earlier, it is necessary to show how to simulate a signing ora-
cle without knowing the secret key. Recall the simulator is given group elements
{rj} for j ∈ [1, qs] or [t+1, t+n]. Now the signature simulation is as follows. For
a given public key y = gx ∈ G and a message m, we define r = rj and compute
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ρ = G(r) and u = H (m). Using our claim above, we compute δi = δi(u, ρ) for
i ∈ [1, 4] and then invoke DL�OM to get

s =
(
DL�OM

(
gδ4(u,ρ) · yδ3(u,ρ), rδ1(u,ρ) · gδ2(u,ρ)

)) 1
ε(u,ρ)

.

Now writing r = gk, we easily see that s conforms to the signature equation s =
f1(k, x, u, ρ) mod q. The simulator then outputs σ = (ρ, s) and the simulation
is perfect. Following the same argument as in the proof of Theorem 5, we now
have to show how to recover kj from xi and the transcript of our simulations.
This directly follows from the definition of TEGTSS-I since kj = f2(s, u, ρ) +
xi · f3(s, u, ρ) mod q. �

6.4 Trusted ElGamal Signatures Type II

Trusted ElGamal signatures of type II form another family of discrete-log-
based signatures and were also suggested by Brickell et al. in [6]. TEGTSS-
II are similar to TEGTSS-I in that functions f1, f2, f3 are defined along the
same lines and the generation of the public parameters and user keys is
identical.

Signature Generation and Verification. Given a message m, the signer
selects k $← Z∗q , computes r = gk, ρ = G(r), u = H (m, ρ) and s = f1(k, x, u, ρ).
The signature is σ = (ρ, s). To verify the signature, compute u = H (m, ρ),
α = f2(s, u, ρ), β = f3(s, u, ρ) and check whether G

(
gα · yβ

)
= ρ.

Therefore, TEGTSS-II signatures define u = H (m, ρ) instead of u = H (m)
while generating or verifying the signature. It is straightforward that Theorem 6
still applies in this case. The proof is identical except that the signature simulator
now defines r = rj and computes ρ = G(r) and u = H (m, ρ).

6.5 ElGamal and Meta-ElGamal Signatures

ElGamal signatures were suggested in 1984 [12] and generalized later by Horster,
Michels and Petersen [16]. We consider here a similar generalization to arbitrary
prime-order groups.

Scheme Parameters and Key Generation. Let G = 〈g〉 be a group of
prime order q. Define three functions F1, F2, F3 : G × {0, 1}∗ × Zq such that
Fi(r,m, s) is linear in s for i ∈ [1, 3]. F1, F2 and F3 may involve arbitrarily many
hash functions. The public parameters are (G, g, F1, F2, F3). The signer selects
a secret key x $← Zq. The public key is y = gx ∈ G.

Signature Generation and Verification. Given a message m, the signer
selects k $← Z∗q , computes r = gk and solves the linear equation

F1(r,m, s) ≡ x · F2(r,m, s) + k · F3(r,m, s) mod q (4)
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which solution is some s ∈ Zq. The signature is then σ = (r, s) ∈ G × Zq. To
verify the signature, check whether

gF1(r,m,s) = yF2(r,m,s) · rF3(r,m,s) .

Original ElGamal signatures define G as the subgroup of order q|p − 1 of
Z∗p, F1(r,m, s) = m or for long messages F1(r,m, s) = H (m) where H is a
hash function mapping strings to Zq, F2(r,m, s) = r mod q and F3(r,m, s) = s.
We now give our results for any Meta-ElGamal scheme i.e. for any choice of
F1, F2, F3 as above. We still rely on n-DL� and the one-more free-base discrete
log assumption.

Theorem 7. Let Σ be a Meta-ElGamal signature scheme. Assume the one-more
free-base discrete log assumption holds. Then (i) Σ is unbreakable under chosen-
message attacks. (ii) Universal and existential forgeries under any attack cannot
be proven secure under the discrete log assumption or the one-more free-base
discrete log assumption with respect to an algebraic reduction.

Proof (Sketch). As discussed above, it is enough to show how to simulate a
signing oracle without knowing the secret key and recover kj from x afterwards.
Recalling that the simulator is given group elements {rj} for j ∈ [1, qs] or [t +
1, t+n], the signature simulation is as follows. For a given public key y = gx ∈ G
and a message m, we define r = rj and compute (as functions of m and r) the
coefficients a1, b1, a2, b2, a3 and b3 such that Fi(r,m, s) = ais + bi for i ∈ [1, 3].
We then call DL�OM to get

s = DL�OM

(
ga1y−a2r−a3 , g−b1yb2rb3

)
.

Obviously, s conforms to the verification equation. The simulator then outputs
σ = (r, s) and the simulation is perfect. Now when R or M knows all the
values of x, the transcript of the simulation involving rj leads to specific values
for (r,m, s). Then kj is recovered as the unique solution in k of the signature
equation Eq. 4. �

7 Impossibility Results in the Random Oracle Model

All known reductions attesting the unforgeability of Fiat-Shamir-transformed
signatures in the random oracle model lead to a loss factor close to qH in terms
of execution time or success probability [19]. Since a reasonable bound on the
number of possible hash queries is around qH = 280, this loss definitely makes
these reductions loose, and subsequently imply larger keys and lowered perfor-
mances. There exists no proof that this loss factor is necessary. The following
theorem states however, that if the one-more discrete logarithm assumption holds
then each and every algebraic reduction from computing the discrete logarithm
to forging Schnorr signatures must lose at least a factor

√
qH .

We note that a similar result can be extended to the one-more discrete log
problems. Also, although we do not extend our work further in this direction,
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it is easily seen that this result applies to the random-oracle security of other
signature schemes as well. We start by stating a few statistical facts.

Lemma 3 (Birthday paradox). We consider an experiment in which n ob-
jects are drawn uniformly at random from a set of m elements. Then,

1. the probability of selecting the same element twice is

P (m,n) = 1− m(m− 1) . . . (m− n+ 1)
mn

.

2. when n = O(
√
m) and as m→∞, one gets

P (m,n)→ 1− exp
(
−n(n− 1)

2m
+O

(
1√
m

))
� 1− exp

(
− n2

2m

)
.

Lemma 4. Let q be a rational prime number, then

|GLn(Fq)| = (qn − 1)(qn − q)(qn − q2) . . . (qn − qn−1) .

Therefore, the probability z(n, q) that an n× n matrix picked at random is non-
invertible is

z(n, q) = 1− (qn − 1)(qn − q)(qn − q2) . . . (qn − qn−1)
qn2 ≤ n

q
.

Theorem 8. Assume there exists an algebraic reduction algorithm R that con-
verts an (ε, τ, qH)-universal forger A under a key-only attack in the random
oracle into an (ε′, τ ′)-solver for the discrete logarithm and assume that R ex-
ecutes A at most n times. Then there exists a probabilistic algorithm M that
solves n-DL with success probability ε′′ ≥ ε′ · exp

(
− n2

2qH

)
·
(
1− n

q

)
within time

τ ′′ = τ ′ + poly (τ ′, |R|, n, qH , log q).

Proof. Assuming the existence of an algebraic reduction R as above, we con-
struct a meta-reduction M that solves n-DL. R takes as input a challenge dis-
crete log instance r0 = gk0 and is allowed to invoke n times the universal forger
A with freely chosen public keys yi = gxi, messages mi and random tapes �i

where i = 1, . . . , n. Without loss of generality, we may assume that the n invo-
cations of R, are pairwise distinct i.e. that two distinct executions of A differ in
the value of the public key and/or the random tape, and/or at least one value
returned by the random oracle H of R.
Simulation of A. M attempts to simulate at most n executions of the adver-
sary A by using the vector of group elements r = (r1, . . . , rn) and by making
requests to the discrete-log oracle DLOM. More specifically, the i-th invocation
of A is simulated as follows:

1. Receive (yi,mi, �i) ∈ G× {0, 1}� × {0, 1}�
2. For h ∈ [1, qH ]
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(a) Randomly select αh
$← (Zq)

n

(b) Query H to get ch = H (mi, r
αh)

3. Randomly select 
i
$← [1, qH ]

(a) Set ci ← c�i and βi ← α�i

(b) Request si ← DLOM

(
rβi · yci

i

)
(c) Append (yi,mi, �i) �→ (si, ci) and (
i,βi) to Transcript

4. Pick at random δ ∈ [0, 1]
5. If δ > ε return ⊥
6. Else return σi = (si, ci)

Here, if a = (a1, . . . , aw) and b = (b1, . . . , bw) then ab stands for
∏w
κ=1 a

bκ
κ . Note

that all random selections made by A are in fact pseudo-random in �i and all
hash values ch defined by H when the selection takes place.

Extraction of Discrete Logs. Again, we assume thatM disposes of a poly-
nomial time extraction procedure Extract(k0, Transcript) = (x1, . . . , xn) i.e. we
consider R to be algebraic. Therefore, if R outputs k0, M uses its transcript
information to retrieve the discrete logs xi of the yi’s. Now M attempts to solve
over Zq the linear system⎧⎪⎨⎪⎩

β1 · k ≡ s1 − c1 · x1 mod q
...

βn · k ≡ sn − cn · xn mod q ,

where the unknowns are k = (k1, . . . , kn) and a · b denotes the dot product of
vectors. The solution k is easily found using linear algebra as soon as vectors
β1, . . . ,βn are linearly independent. Two mutually exclusive cases may occur.

1. ∀ i, j ∈ [1, n] with i �= j, one has 
i �= 
j . Then by Lemma 4, we get

Pr [det(β1, . . . ,βn) = 0] = z(n, q) .

Then with probability 1 − z(n, q), M recovers k and succeeds in solving
n-DL.

2. ∃ i, j ∈ [1, n] with i �= j such that 
i = 
j. Then the reduction M may
fail because it might be the case that βi = βj while si − cixi �≡ sj −
cjxj mod q resulting in that the system above is not solvable. The probability
of this event is unknown and depends on how R modified its simulation of H
between two executions of A. Since distinct executions of A are not identical
and the values of the 
i’s are picked pseudo-randomly after all H queries
have been made, we invoke Lemma 3 to see that a collision 
i = 
j occurs
with probability

Pr [∃ i, j ∈ [1, n], 
i = 
j ] = P (qH , n) .
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Since Pr [M fails] ≤ Pr [∃ i, j ∈ [1, n], 
i = 
j ], noting ε′′ the success probability
of M, we finally get

ε′′ ≥ ε′ · (1− P (qH , n)) · (1− z(n, q)) ≈ ε′ · exp
(
− n2

2qH

)
·
(

1− n

q

)
.

The execution time of M is upper-bounded by τ ′+poly (τ ′, |R|, n, qH , log q). �

Our result can be interpreted as follows. When n is smaller than
√
qH , the

ratio ε′′/ε′ remains negligibly close to 1 and the algebraic reduction algorithm
R cannot exist if n-DL is intractable over G. However when n� √

qH , the ratio
ε′′/ε′ becomes rapidly negligibly close to 0 as n increases, allowing R to exist
in the sense that having a substantial ε′ does not lead us to solve n-DL with
substantial success probability anymore.

8 Conclusion

We believe that our results pose new challenging questions about the standard-
model security of common signature schemes. Focusing specifically on Schnorr’s
scheme, one might wonder what security level is actually reached in real life,
as DL cannot be at reach of a humanly conceivable reduction. Could Schnorr
signatures be proven secure under the CDH or DDH assumption? Can one prove
a similar separation with these assumptions? What can be said in this regard
about other signature schemes like ElGamal, DSA, GQ, etc. ?

Concerning the random oracle model, we leave it as an open problem to find
a more efficient meta-reduction M that is, to come up with a proof that a factor
close to qH must be lost in any random-oracle-based algebraic reduction R.
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Abstract. The aim of this paper is to justify the common cryptographic
practice of selecting elliptic curves using their order as the primary cri-
terion. We can formalize this issue by asking whether the discrete log
problem (dlog) has the same difficulty for all curves over a given fi-
nite field with the same order. We prove that this is essentially true
by showing polynomial time random reducibility of dlog among such
curves, assuming the Generalized Riemann Hypothesis (GRH). We do so
by constructing certain expander graphs, similar to Ramanujan graphs,
with elliptic curves as nodes and low degree isogenies as edges. The re-
sult is obtained from the rapid mixing of random walks on this graph.
Our proof works only for curves with (nearly) the same endomorphism
rings. Without this technical restriction such a dlog equivalence might
be false; however, in practice the restriction may be moot, because all
known polynomial time techniques for constructing equal order curves
produce only curves with nearly equal endomorphism rings.

Keywords: random reducibility, discrete log, elliptic curves, isogenies,
modular forms, L-functions, generalized Riemann hypothesis, Ramanu-
jan graphs, expanders, rapid mixing.

1 Introduction

Public key cryptosystems based on the elliptic curve discrete logarithm (dlog)
problem [22,34] have received considerable attention because they are currently
the most widely used systems whose underlying mathematical problem has yet to
admit subexponential attacks (see [3, 31, 46]). Hence it is important to formally
understand how the choice of elliptic curve affects the difficulty of the result-
ing dlog problem. This turns out to be more intricate than the corresponding
problem of dlog over finite fields and their selection.
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To motivate the questions in this paper, we begin with two observations.
First, we note that one typically picks an elliptic curve at random, and examines
its group order (e.g. to check if it is smooth) to decide whether to keep it, or
discard it and pick another one. It is therefore a natural question whether or
not dlog is of the same difficulty on curves over the same field with the same
number of points. Indeed, it is a theorem of Tate that curves E1 and E2 defined
over the same finite field Fq have the same number of points if and only if
they are isogenous, i.e., there exists a nontrivial algebraic group homomorphism
φ : E1 → E2 between them. If this φ is efficiently computable and has a small
kernel over Fq, we can solve dlog on E1, given a dlog oracle for E2.

Secondly, we recall the observation that dlog on (Z/pZ)∗ has random self-
reducibility: given any efficient algorithm A(gx) = x that solves dlog on a
polynomial fraction of inputs, one can solve any instance y = gx by an expected
polynomial number of calls to A with random inputs of the form A(gry). Thus,
if dlog on (Z/pZ)∗ is hard in a sense suitable for cryptography at all (e.g., has
no polynomial on average attack), then all but a negligible fraction of instances
of dlog on (Z/pZ)∗ must necessarily be hard. This result is comforting since
for cryptographic use we need the dlog problem to be hard with overwhelming
probability when we pick inputs at random. The same random self-reduction
statement also holds true for dlog on any abelian group, and in particular
for dlog on a fixed elliptic curve. We consider instead the following question:
given a polynomial time algorithm to solve dlog on some positive (or non-
negligible) fraction of isogenous elliptic curves over Fq, can we solve dlog for
all curves in the same isogeny class in polynomial time? In this paper we show
that the answer to this question is essentially yes, by proving (assuming GRH)
the mixing properties of random walks of isogenies on elliptic curves. It follows
that if dlog is hard at all in an isogeny class, then dlog is hard for all but a
negligible fraction of elliptic curves in that isogeny class. This result therefore
justifies, in an average case sense, the cryptographic practice of selecting curves
at random within an isogeny class.

1.1 Summary of Our results

The conventional wisdom is that if two elliptic curves over the same finite field
have the same order, then their discrete logarithm problems are equally hard.
Indeed, this philosophy is embodied in the way one picks curves in practice. How-
ever, such a widely relied upon assertion merits formal justification. Our work
shows that this simplified belief is essentially true for all elliptic curves which
are constructible using present techniques, but with an important qualification
which we shall now describe.

Specifically, let SN,q denote the set of elliptic curves defined over a given finite
field Fq, up to F̄q-isomorphism, that have the same order N over Fq. We split
SN,q into levels (as in Kohel [23]), where each level represents all elliptic curves
having a particular endomorphism ring over F̄q. The curves in each level form
the vertices of an isogeny graph [10, 11, 33], whose edges represent prime degree
isogenies between curves of degree less than some specified bound m.
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Theorem 1.1. (Assuming GRH) There exists a polynomial p(x), independent
of N and q, such that for m = p(log q) the isogeny graph G on each level is
an expander graph, in the sense that any random walk on G will reach a subset
of size h with probability at least h

2|G| after polylog(q) steps (where the implicit
polynomial is again independent of N and q).

Corollary 1.2. (Assuming GRH) The dlog problem on elliptic curves is ran-
dom reducible in the following sense: given any algorithm A that solves dlog
on some fixed positive proportion of curves in fixed level, one can probabilisti-
cally solve dlog on any given curve in that same level with polylog(q) expected
queries to A with random inputs.

The proofs are given at the end of Section 4. These results constitute the
first formulation of a polynomial time random reducibility result for the elliptic
curve dlog problem which is general enough to apply to typical curves that
one ordinarily encounters in practice. An essential tool in our proof is the nearly
Ramanujan property of Section 3, which we use to prove the expansion properties
of our isogeny graphs. The expansion property in turn allows us to prove the
rapid mixing of random walks given by compositions of small degree isogenies
within a fixed level. Our method uses GRH to prove eigenvalue separation for
these graphs, and provides a new technique for constructing expander graphs.

The results stated above concern a fixed level. One might therefore object
that our work does not adequately address the issue of dlog reduction in the
case where two isogenous elliptic curves belong to different levels. If an attack
is balanced, i.e., successful on each level on a polynomial fraction of curves, then
our results apply. However, if only unbalanced attacks exist, then a more general
equivalence may be false for more fundamental reasons. Nevertheless, at present
this omission is not of much practical importance. First of all, most random
curves over Fq belong to sets SN,q consisting of only one level (see Section 6); for
example, in Figure 1, we find that 10 out of the 11 randomly generated curves
appearing in international standards documents have only one level. Second,
if the endomorphism rings corresponding to two levels have conductors whose
prime factorizations differ by quantities which are polynomially smooth, then
one can use the algorithms of [11, 23] to navigate to a common level in polyno-
mial time, and then apply Corollary 1.2 within that level to conclude that dlog
is polynomial-time random reducible between the two levels. This situation al-
ways arises in practice, because no polynomial time algorithm is known which
even produces a pair of curves lying on levels whose conductor difference is not
polynomially smooth. It is an open problem if such an algorithm exists.

Our use of random walks to reach large subsets of the isogeny graph is crucial,
since constructing an isogeny between two specific curves1 is believed to be
inherently hard, whereas constructing an isogeny from a fixed curve to a subset
1 If one uses polynomial size circuits (i.e., polynomial time algorithms with exponential

time pre-processing) for reductions, then one can relate dlog on two given curves.
This claim follows using the smallness of diameter of our graphs and the smoothness
of the degrees of isogenies involved. We omit the details.
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Curve cπ (maximal conductor gap in isogeny class) P(cπ) = largest prime factor of cπ
NIST P-192 1 1
NIST P-256 3 3
NIST P-384 1 1
NIST P-521 1 1
NIST K-163 45641·82153·56498081·P (cπ) 86110311
NIST K-233 5610641·85310626991·P (cπ) 150532234816721999
NIST K-283 1697·162254089·P (cπ) 1779143207551652584836995286271
NIST K-409 21262439877311·22431439539154506863·P (cπ) 57030553306655053533734286593

9021184135396238924389891(contd)
NIST K-571 3952463·P (cπ) 9451926768145189936450898(contd)

07769277009849103733654828039
NIST B-163 1 1
NIST B-233 1 1
NIST B-283 1 1
NIST B-409 1 1
NIST B-571 1 1

IPSec 3rdOG,F2155 1 1

IPSec 4thOG, F2185 1 1

Fig. 1. A table of curves recommended as international standards [16, 36]. Note that
the value of cπ for each of the standards curves is small (at most 3), except for the
curves in the NIST K (Koblitz curve) family. These phenomena are to be expected and
are explained in Section 6. Any curve with cπ = 1 has the property that its isogeny
class consists of only one level. It follows from the results of Section 1.1 that randomly
generated elliptic curves with cπ = 1 (or, more generally, with smooth cπ) will have
discrete logarithm problems of typical difficulty amongst all elliptic curves in their
isogeny class.

constituting a positive (or polynomial) fraction of the isogeny graph is proved
in this paper to be easy. Kohel [23] and Galbraith [11] present exponential time
algorithms (and thus exponential time reductions) for navigating between two
nodes in the isogeny graph, some of which are based on random walk heuristics
which we prove here rigorously. Subsequent papers on Weil descent attacks [12,
32] and elliptic curve trapdoor systems [45] also use isogeny random walks in
order to extend the GHS Weil descent attack [13] to elliptic curves which are
not themselves directly vulnerable to the GHS attack. Our work does not imply
any changes to the deductions of these papers, since they also rely on the above
heuristic assumptions involving exponentially long random walks. In our case, we
achieve polynomial time instead of exponential time reductions; this is possible
since we keep one curve fixed, and random reducibility requires only that the
other curve be randomly distributed.

2 Preliminaries

Let E1 and E2 be elliptic curves defined over a finite field Fq of characteristic p.
An isogeny φ : E1 → E2 defined over Fq is a non-constant rational map defined
over Fq which is also a group homomorphism from E1(Fq) to E2(Fq) [42, §III.4].
The degree of an isogeny is its degree as a rational map. For any elliptic curve
E : y2 + a1xy + a3y = x3 + a2x

2 + a4x + a6 defined over Fq, the Frobenius
endomorphism is the isogeny π : E → E of degree q given by the equation
π(x, y) = (xq , yq). It satisfies the equation

π2 − Trace(E)π + q = 0,
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where Trace(E) = q + 1−#E(Fq) is the trace of the Frobenius endomorphism
of E over Fq. The polynomial p(X) := X2 − Trace(E)X + q is called the char-
acteristic polynomial of E.

An endomorphism of E is an isogeny E → E defined over the algebraic closure
F̄q of Fq. The set of endomorphisms of E together with the zero map forms
a ring under the operations of pointwise addition and composition; this ring
is called the endomorphism ring of E and denoted End(E). The ring End(E)
is isomorphic either to an order in a quaternion algebra or to an order in an
imaginary quadratic field [42, V.3.1]; in the first case we say E is supersingular
and in the second case we say E is ordinary. In the latter situation, the Frobenius
endomorphism π can be regarded as an algebraic integer which is a root of the
characteristic polynomial.

Two elliptic curves E1 and E2 defined over Fq are said to be isogenous over
Fq if there exists an isogeny φ : E1 → E2 defined over Fq. A theorem of Tate
states that two curves E1 and E2 are isogenous over Fq if and only if #E1(Fq) =
#E2(Fq) [43, §3]. Since every isogeny has a dual isogeny [42, III.6.1], the property
of being isogenous over Fq is an equivalence relation on the finite set of F̄q-
isomorphism classes of elliptic curves defined over Fq. We define an isogeny class
to be an equivalence class of elliptic curves, up to F̄q-isomorphism, under this
equivalence relation; the set SN,q of Section 1.1 is thus equal to the isogeny class
of elliptic curves over Fq having cardinality N .

Curves in the same isogeny class are either all supersingular or all ordinary.
We assume for the remainder of this paper that we are in the ordinary case,
which is the more interesting case from the point of view of cryptography in light
of the MOV attack [30]. Theorem 1.1 in the supersingular case was essentially
known earlier by results of Pizer [37, 38], and a proof has been included for
completeness in Appendix A.

The following theorem describes the structure of elliptic curves within an
isogeny class from the point of view of their endomorphism rings.

Theorem 2.1. Let E and E′ be ordinary elliptic curves defined over Fq which
are isogenous over Fq. Let K denote the imaginary quadratic field containing
End(E), and write OK for the maximal order (i.e., ring of integers) of K.

1. The order End(E) satisfies the property Z[π] ⊆ End(E) ⊆ OK .
2. The order End(E′) also satisfies End(E′) ⊂ K and Z[π] ⊆ End(E′) ⊆ OK .
3. The following are equivalent:

(a) End(E) = End(E′).
(b) There exist two isogenies φ : E → E′ and ψ : E → E′ of relatively prime

degree, both defined over Fq.
(c) [OK : End(E)] = [OK : End(E′)].
(d) [End(E) : Z[π]] = [End(E′) : Z[π]].

4. Let φ : E → E′ be an isogeny from E to E′ of prime degree �, defined over
Fq. Then either End(E) contains End(E′) or End(E′) contains End(E), and
the index of the smaller in the larger divides �.
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5. Suppose � is a prime that divides one of [OK : End(E)] and [OK : End(E′)],
but not the other. Then every isogeny φ : E → E′ defined over Fq has degree
equal to a multiple of �.

Proof. [23, §4.2].

For any order O ⊆ OK , the conductor of O is defined to be the integer [OK : O].
The field K is called the CM field of E. We write cE for the conductor of
End(E) and cπ for the conductor of Z[π]. Note that this is not the same thing
as the arithmetic conductor of an elliptic curve [42, §C.16], nor is it related
to the conductance of an expander graph [21]. It follows from [4, (7.2) and
(7.3)] that End(E) = Z + cEOK and D = c2

EdK , where D (respectively, dK)
is the discriminant of the order End(E) (respectively, OK). Furthermore, the
characteristic polynomial p(X) has discriminant dπ = disc(p(X)) = Trace(E)2−
4q = disc(Z[π]) = c2

πdK , with cπ = cE · [End(E) : Z[π]].
Following [10] and [11], we say that an isogeny φ : E → E′ of prime degree

� defined over Fq is “down” if [End(E) : End(E′)] = �, “up” if [End(E′) :
End(E)] = �, and “horizontal” if End(E) = End(E). The following theorem
classifies the number of degree � isogenies of each type in terms of the Legendre
symbol

(
D
�

)
.

Theorem 2.2. Let E be an ordinary elliptic curve over Fq, with endomorphism
ring End(E) of discriminant D. Let � be a prime different from the characteristic
of Fq.

– Assume � � cE. Then there are exactly 1+
(
D
�

)
horizontal isogenies φ : E → E′

of degree �.
• If � � cπ, there are no other isogenies E → E′ of degree � over Fq.
• If � | cπ, there are �−

(
D
�

)
down isogenies of degree �.

– Assume � | cE. Then there is one up isogeny E → E′ of degree �.
• If � � cπ

cE
, there are no other isogenies E → E′ of degree � over Fq.

• If � | cπ

cE
, there are � down isogenies of degree �.

Proof. [10, §2.1] or [11, §11.5].

It follows that the maximal conductor difference between levels in an isogeny
class is achieved between a curve at the top level (with End(E) = OK) and a
curve at the bottom level (with End(E) = Z[π]).

2.1 Isogeny Graphs

We define two curves E1 and E2 in an isogeny class SN,q to have the same level
if End(E1) = End(E2). An isogeny graph is a graph whose nodes consist of all
elements in SN,q belonging to a fixed level. Note that a horizontal isogeny always
goes between two curves of the same level; likewise, an up isogeny enlarges the
size of the endomorphism ring and a down isogeny reduces the size. Since there
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are fewer elliptic curves at higher levels than at lower levels, the collection of
isogeny graphs under the level interpretation visually resembles a “pyramid” or
a “volcano” [10], with up isogenies ascending the structure and down isogenies
descending.

As in [15, Prop. 2.3], we define two isogenies φ : E1 → E2 and φ′ : E1 → E2

to be equivalent if there exists an automorphism α ∈ Aut(E2) (i.e., an invertible
endomorphism) such that φ′ = αφ. The edges of the graph consist of equivalence
classes of isogenies over Fq between elliptic curve representatives of nodes in the
graph, which have prime degree less than the bound (log q)2+δ for some fixed
constant δ > 0. The degree bound must be small enough to permit the isogenies
to be computed, but large enough to allow the graph to be connected and to
have the rapid mixing properties that we want. We will show in Section 4 that
there exists a constant δ > 0 for which a bound of (log q)2+δ satisfies all the
requirements, provided that we restrict the isogenies to a single level.

Accordingly, fix a level of the isogeny class, and let End(E) = O be the
common endomorphism ring of all of the elliptic curves in this level. Denote by
G the regular graph whose vertices are elements of SN,q with endomorphism ring
O, and whose edges are equivalence classes of horizontal isogenies defined over
Fq of prime degree ≤ (log q)2+δ. By standard facts from the theory of complex
multiplication [4, §10], each invertible ideal a ⊂ O produces an elliptic curve C/a
defined over some number field L ⊂ C (called the ring class field of O) [4, §11].
The curve C/a has complex multiplication by O, and two different ideals yield
isomorphic curves if and only if they belong to the same ideal class. Likewise,
each invertible ideal b ⊂ O defines an isogeny C/a → C/ab−1, and the degree of
this isogeny is the norm N(b) of the ideal b. Moreover, for any prime ideal P in L
lying over p, the reductions mod P of the above elliptic curves and isogenies are
defined over Fq, and every elliptic curve and every horizontal isogeny in G arises
in this way (see [11, §3] for the p > 3 case, and [12] for the small characteristic
case). Therefore, the isogeny graph G is isomorphic to the corresponding graph
H whose nodes are elliptic curves C/a with complex multiplication by O, and
whose edges are complex analytic isogenies represented by ideals b ⊂ O and
subject to the same degree bound as before. This isomorphism preserves the
degrees of isogenies, in the sense that the degree of any isogeny in G is equal to
the norm of its corresponding ideal b in H.

The graph H has an alternate description as a Cayley graph on the ideal class
group Cl(O) of O. Indeed, each node of H is an ideal class of O, and two ideal
classes [a1] and [a2] are connected by an edge if and only if there exists a prime
ideal b of norm ≤ (log q)2+δ such that [a1b] = [a2]. Therefore, the graph H (and
hence the graph G) is isomorphic to the Cayley graph of the group Cl(O) with
respect to the generators [b] ∈ Cl(O), as b ranges over all prime ideals of O of
norm ≤ (log q)2+δ.

Remark 2.1. The isogeny graph G consists of objects defined over the finite field
Fq, whereas the objects in the graph H are defined over the number field L.
One passes from H to G by taking reductions mod P, and from G to H by
using Deuring’s Lifting Theorem [8, 11, 24]. There is no known polynomial time
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or even subexponential time algorithm for computing the isomorphism between
G and H [11, §3]. For our purposes, such an explicit algorithm is not necessary,
since we only use the complex analytic theory to prove abstract graph-theoretic
properties of G.

Remark 2.2. The isogeny graph G is typically a symmetric graph, since each
isogeny φ has a unique dual isogeny φ̂ : E2 → E1 of the same degree as φ in the
opposite direction [42, §III.6]. (From the viewpoint of H, an isogeny represented
by an ideal b ⊂ O has its dual isogeny represented simply by the complex conju-
gate b̄.) However, the definition of equivalence of isogenies from [15] given in 2.1
contains a subtle asymmetry which can sometimes render the graph G asymmet-
ric in the supersingular case (Appendix A). Namely, if Aut(E1) is not equal to
Aut(E2), then two isogenies E1 → E2 can sometimes be equivalent even when
their dual isogenies are not. For ordinary elliptic curves within a common level,
the equation End(E1) = End(E2) automatically implies Aut(E1) = Aut(E2),
so the graph G is always symmetric in this case. Hence, we may regard G as
undirected and apply known results about undirected expander graphs (as in
the following section) to G.

3 Expander Graphs

Let G = (V , E) be a finite graph on h vertices V with undirected edges E .
Suppose G is a regular graph of degree k, i.e., exactly k edges meet at each
vertex. Given a labeling of the vertices V = {v1, . . . , vh}, the adjacency matrix
of G is the symmetric h×h matrix A whose ij-th entry Aij = 1 if an edge exists
between vi and vj , and 0 otherwise.

It is convenient to identify functions on V with vectors in Rh via this labeling,
and therefore also think of A as a self-adjoint operator on L2(V). All of the
eigenvalues of A satisfy the bound |λ| ≤ k. Constant vectors are eigenfunctions
of A with eigenvalue k, which for obvious reasons is called the trivial eigenvalue
λtriv. A family of such graphs G with h → ∞ is said to be a sequence of
expander graphs if all other eigenvalues of their adjacency matrices are bounded
away from λtriv = k by a fixed amount.2 In particular, no other eigenvalue is
equal to k; this implies the graph is connected. A Ramanujan graph [29] is a
special type of expander which has |λ| ≤ 2

√
k − 1 for any nontrivial eigenvalue

which is not equal to −k (this last possibility happens if and only if the graph
is bipartite). The supersingular isogeny graphs in Appendix A are sometimes
Ramanujan, while the ordinary isogeny graphs in Section 2.1 do not qualify,
partly because their degree is not bounded. Nevertheless, they still share the most
important properties of expanders as far as our applications are concerned. In
particular their degree k grows slowly (as a polynomial in log |V|), and they share
a qualitatively similar eigenvalue separation: instead the nontrivial eigenvalues λ

2 Expansion is usually phrased in terms of the number of neighbors of subsets of G, but
the spectral condition here is equivalent for k-regular graphs and also more useful
for our purposes.
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can be arranged to be O(k1/2+ε) for any desired value of ε > 0. Since our goal is
to establish a polynomial time reduction, this enlarged degree bound is natural,
and in fact necessary for obtaining expanders from abelian Cayley graphs [1].
Obtaining any nontrivial exponent β < 1 satisfying λ = O(kβ) is a key challenge
for many applications, and accordingly we shall focus on a type of graphs we
call “nearly Ramanujan” graphs: families of graphs whose nontrivial eigenvalues
λ satisfy that bound.

A fundamental use of expanders is to prove the rapid mixing of the random
walk on V along the edges E . The following rapid mixing result is standard but
we present it below for convenience. For more information, see [5, 28, 40].

Proposition 3.1. Let G be a regular graph of degree k on h vertices. Suppose
that the eigenvalue λ of any nonconstant eigenvector satisfies the bound |λ| ≤ c
for some c < k. Let S be any subset of the vertices of G, and x be any vertex in
G. Then a random walk of any length at least log 2h/|S|1/2

log k/c starting from x will

land in S with probability at least |S|2h = |S|
2|G| .

Proof. There are kr random walks of length r starting from x. One would expect
in a truly random situation that roughly |S|

h kr of these land in S. The lemma

asserts that for r ≥ log 2h/|S|1/2

log k/c at least half that number of walks in fact do.
Denoting the characteristic functions of S and {x} as χS and χ{x}, respectively,
we count that

# {walks of length r starting at x and landing in S} = 〈χS , Arχ{x} 〉 ,
(3.1)

where 〈·, ·〉 denotes the inner product of functions in L2(V). We estimate this as
follows. Write the orthogonal decompositions of χS and χ{x} as

χS =
|S|
h

1 + u and χ{x} =
1
h

1 + w , (3.2)

where 1 is the constant vector and 〈u,1〉 = 〈w,1〉 = 0. Then (3.1) equals the
expected value of |S|h kr, plus the additional term 〈u,Arw〉, which is bounded by
‖u‖ ‖Arw‖. Because w ⊥ 1 and the symmetric matrix Ar has spectrum bounded
by cr on the span of such vectors,

‖u‖ ‖Arw‖ ≤ cr ‖u‖ ‖w‖ ≤ cr ‖χS‖ ‖χ{x}‖ = cr |S|1/2 . (3.3)

For our values of r this is at most half of |S|h kr, so indeed at least 1
2
|S|
h kr of the

paths terminate in S as was required.

In our application the quantities k, k
k−c , and h

|S| will all be bounded by poly-
nomials in log(h). Under these hypotheses, the probability is at least 1/2 that
some polylog(h) trials of random walks of polylog(h) length starting from x will
reach S at least once. This mixing estimate is the source of our polynomial time
random reducibility (Corollary 1.2).
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4 Spectral Properties of the Isogeny Graph

4.1 Navigating the Isogeny Graph

Let G be as in Section 2.1. The isogeny graph G has exponentially many nodes
and thus is too large to be stored. However, given a curve E and a prime �, it is
possible to efficiently compute the curves which are connected to E by an isogeny
of degree �. These curves E′ have j-invariants which can be found by solving the
modular polynomial relation Φ�(j(E), j(E′)) = 0; the cost of this step is O(�3)
field operations [11, 11.6]. Given the j-invariants, the isogenies themselves can
then be obtained using the algorithms of [10] (or [26,27] when the characteristic
of the field is small). In this way, it is possible to navigate the isogeny graph
locally without computing the entire graph. We shall see that it suffices to have
the degree of the isogenies in the graph be bounded by (log q)2+δ to assure the
Ramanujan properties required for G to be an expander.

4.2 θ-Functions and Graph Eigenvalues

The graph H (and therefore also the isomorphic graph G) has one node for each
ideal class of O. Therefore, the total number of nodes in the graph G is the ideal
class number of the order O, and the vertices V can be identified with ideal class
representatives {α1, . . . , αh}. Using the isomorphism between G and H, we see
that the generating function

∑
Mαi,αj (n)qn for degree n isogenies between the

vertices αi and αj of G is given by

∞∑
n =1

Mαi,αj (n) qn :=
1
e

∑
z ∈α−1

i αj

qN(z)/N(α−1
i αj) , (4.1)

where e is the number of units in O (which always equals 2 for disc(O) > 4). The
sum on the righthand side depends only on the ideal class of the fractional ideal
α−1

i αj ; by viewing the latter as a lattice in C, we see that N(z)/N(α−1
i αj) is a

quadratic form of discriminantD whereD := disc(O) [4, p. 142]. That means this
sum is a θ-series, accordingly denoted as θα−1

i αj
(q). It is a holomorphic modular

form of weight 1 for the congruence subgroup Γ0(|D|) of SL(2, Z), transforming
according to the character

(
D
·
)

(see [19, Theorem 10.9]).
Before discussing exactly which degrees of isogenies to admit into our isogeny

graph G, let us first make some remarks about the simpler graph on V =
{α1, . . . , αh} whose edges represent isogenies of degree exactly equal to n. Its
adjacency matrix is of course the h × h matrix M(n) =

[
Mαi,αj (n)

]
{1≤i,j≤h}

defined by series coefficients in (4.1). It can be naturally viewed as an operator
which acts on functions on V = {α1, . . . , αh}, by identifying them with h-vectors
according to this labeling. We will now simultaneously diagonalize all M(n), or
what amounts to the same, diagonalize the matrix Aq =

∑
n≥1M(n)qn for any

value of q < 1 (where the sum converges absolutely). The primary reason this
is possible is that for each fixed n this graph is an abelian Cayley graph on
the ideal class group Cl(O), with generating set equal to those classes αi which
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represent an n-isogeny. The eigenfunctions of the adjacency matrix of an abelian
Cayley graph are always given by characters of the group (viewed as functions
on the graph), and their respective eigenvalues are sums of these characters over
the generating set. This can be seen directly in our circumstance as follows. The
ij-th entry of Aq is 1

eθα−1
i αj

(q), which we recall depends only on the ideal class of
the fractional ideal α−1

i αj . If χ is any character of Cl(O), viewed as the h-vector
whose i-th entry is χ(αi), then the i-th entry of the vector Aqχ may be evaluated
through matrix multiplication as

(Aqχ)(αi) =
1
e

∑
αj∈Cl(O)

θα−1
i αj

(q)χ(αj) =
1
e

⎛⎝ ∑
αj∈Cl(O)

χ(αj) θαj (q)

⎞⎠χ(αi) ,

(4.2)
where in the last equality we have reindexed αj �→ αi αj using the group struc-
ture of Cl(O). Therefore χ is in fact an eigenvector of the matrix eAq, with
eigenvalue equal to the sum of θ-functions enclosed in parentheses, known as
a Hecke θ-function (see [19, §12]). These, which we shall denote θχ(q), form a
more natural basis of modular forms than the ideal class θ-functions θαj because
they are in fact Hecke eigenforms. Using (4.1), the L-functions of these Hecke
characters can be written as

L(s,χ) = L(s, θχ) =
∑

integral ideals a⊂K
χ(a) (Na)−s =

∞∑
n=1

an(χ)n−s ,

where an(χ) =
∑

integral ideals a⊂K
Na=n

χ(a)

(4.3)
is in fact simply the eigenvalue of eM(n) for the eigenvector formed from the
character χ as above, which can be seen by isolating the coefficient of qn in the
sum on the righthand side of (4.2).

4.3 Eigenvalue Separation Under the Generalized Riemann
Hypothesis

Our isogeny graph is a superposition of the previous graphs M(n), where n is a
prime bounded by a parameter m (which we recall is (log q)2+δ for some fixed
δ > 0). This corresponds to a graph on the elliptic curves represented by ideal
classes in an order O of K = Q(

√
d), whose edges represent isogenies of prime

degree ≤ m. The graphs with adjacency matrices {M(p) | p ≤ m} above share
common eigenfunctions (the characters χ of Cl(O)), and so their eigenvalues are

λχ =
1
e

∑
p≤m

ap(χ) =
1
e

∑
p≤m

∑
integral ideals a⊂K

Na = p

χ(a) . (4.4)

When χ is the trivial character, λtriv equals the degree of the regular graph G.
Since roughly half of rational primes p split in K, and those which do split into
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two ideals of norm p, λtriv is roughly π(m)
e ∼ m

e log m by the prime number theo-
rem. This eigenvalue is always the largest in absolute value, as can be deduced
from (4.4), because |χ(a)| always equals 1 when χ is the trivial character. For
the polynomial mixing of the random walk in Theorem 1.1 we will require a
separation between the trivial and nontrivial eigenvalues of size 1/polylog(q).
This would be the case, for example, if for each nontrivial character χ there
merely exists one ideal a of prime norm ≤ m with Reχ(a) ≤ 1− 1

polylog(q) . This
is analogous to the problem of finding a small prime nonresidue modulo, say,
a large prime Q, where one merely needs to find any cancellation at all in the
character sum

∑
p≤m

(
p
Q

)
. However, the latter requires a strong assumption from

analytic number theory, such as the Generalized Riemann Hypothesis (GRH).
In the next section we will accordingly derive such bounds for λχ, under the
assumption of GRH. As a consequence of the more general Lemma 5.3 we will
show the following.

Lemma 4.1. Let D < 0 and let O be the quadratic order of discriminant D.
If χ is a nontrivial ideal class character of O, then the Generalized Riemann
Hypothesis for L(s,χ) implies that the sum (4.4) is bounded by O(m1/2 log |mD|)
with an absolute implied constant.

Proof (of Theorem 1.1). There are only finitely many levels for q less than any
given bound, so it suffices to prove the theorem for q large and p(x) = x2+δ,
where δ > 0 is fixed. The eigenvalues of the adjacency matrix for a given level are
given by (4.4). Recall that |D| ≤ 4q and λtriv ∼

m
e log m . With our choice of m =

p(log q), the bound for the nontrivial eigenvalues in Lemma 4.1 is λχ = O(λβ
triv)

for any β > 1
2 + 1

δ+2 . That means indeed our isogeny graphs are expanders for q
large; the random walk assertion follows from this bound and Proposition 3.1.

Proof (of Corollary 1.2). The Theorem shows that a random walk from any
fixed curve E probabilistically reaches the proportion where the algorithm A
succeeds, in at most polylog(q) steps. Since each step is a low degree isogeny,
their composition can be computed in polylog(q) steps. Even though the degree
of this isogeny might be large, the degrees of each step are small. This provides
the random polynomial time reduction of dlog along successive curves in the
random walk, and hence from E to a curve for which the algorithm A succeeds.

5 The Prime Number Theorem for Modular Form
L-Functions

In this section we prove Lemma 4.1, assuming the Generalized Riemann Hy-
pothesis (GRH) for the L-functions (4.3). Our argument is more general, and
in fact gives estimates for sums of the form

∑
p≤m ap, where ap are the prime

coefficients of any L-function. This can be thought of as an analog of the Prime
Number Theorem because for the simplest L-function, ζ(s), ap = 1 and this
sum is in fact exactly π(m). As a compromise between readability and general-
ity, we will restrict the presentation here to the case of modular form L-functions
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(including (4.3)). Background references for this section include [19, 20, 35]; for
information about more general L-functions see also [14, 39].

We shall now consider a classical holomorphic modular form f , with Fourier
expansion f(z) =

∑∞
n = 0 cn e

2πinz. We will assume that f is a Hecke eigenform,
since this condition is met in the situation of Lemma 4.1 (see the comments
between (4.2) and (4.3)). It is natural to study the renormalized coefficients
an = n−(k−1)/2cn, where k ≥ 1 is the weight of f (in Section 4.2 k = 1, so
an = cn). The L-function of such a modular form can be written as the Dirichlet
series L(s, f) =

∑∞
n=1 ann−s =

∏
p (1−αpp

−s)−1(1−βpp
−s)−1, the last equality

using the fact that f is a Hecke eigenform. The L-function L(s, f) is entire when
f is a cusp form (e.g. a0 = 0). The Ramanujan conjecture (in this case a theorem
of [6] and [7]) asserts that |αp|, |βp| ≤ 1.

Lemma 4.1 is concerned with estimates for the sums

S(m, f) :=
∑

p≤m

ap . (5.1)

As with the prime number theorem, it is more convenient to instead analyze the
weighted sum

ψ(m, f) :=
∑
pk

bpk log p (5.2)

over prime powers, where the coefficients bn are those appearing in the Dirichlet
series for −L′

L (s):

− L′

L
(s) =

∞∑
n =1

bn Λ(n)n−s =
∑
p, k

bpk log(p) p−k s ,

i.e., bpk = αk
p + βk

p .

Lemma 5.1. For a holomorphic modular form f one has

ψ(m, f) =
∑

p≤m

ap log p + O(m1/2).

Proof. The error term represents the contribution of proper prime powers. Since
|bpk | ≤ 2, it is bounded by twice∑
pk ≤m
k≥ 2

log p =
∑

p≤m1/2

2≤ k≤ log m
log p

log p ≤
∑

p≤m1/2

log p
log m

log p
≤ π(m1/2) log m ,

(5.3)
which is O(m1/2) by the Prime Number Theorem.

Lemma 5.2. (Iwaniec [20, p. 114]) Assume that f is a holomorphic modu-
lar cusp form of level3 N and that L(s, f) satisfies GRH. Then ψ(m, f) =
O(m1/2 log(m) log(mN)).
3 Actually in [20] N equals the conductor of the L-function, which in general may be

smaller than the level. The lemma is of course nevertheless valid.
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We deduce that S′(m, f) :=
∑

p≤map log p = O(m1/2 log(m) log(mN)). Fi-
nally we shall estimate the sums S(m, f) from (5.1) by removing the log(m)
using a standard partial summation argument.

Lemma 5.3. Suppose that f is a holomorphic modular cusp form of level N
and L(s, f) satisfies GRH. Then S(m, f) = O(m1/2 log(mN)).

Proof. First define ãp to be ap, if p is prime, and 0 otherwise. Then∑
p≤m

ap =
∑

p≤m

[ãp log p]
1

log p
=

∑
n≤m

[ãn log n]
1

log n
.

By partial summation over 2 ≤ n ≤ m, we then find∑
p≤m

ap =
∑

n<m

S′(n, f)
(

1
log(n)

− 1
log(n + 1)

)
+

S′(m, f)
log m

�
∑

n<m

(
n1/2 log(n) log(nN)

) ∣∣∣∣ ddn ((log n)−1
)∣∣∣∣ + m1/2 log(mN)

�
∑

n<m

n1/2 log(n) log(nN)
1

n(log n)2
+ m1/2 log(mN) ,

so in fact S(m, f) =
∑

p≤m ap = O(m1/2 log(mN)).

All the implied constants in these 3 lemmas are absolute. Some useful esti-
mates for them may be found in [2].

5.1 Subexponential Reductions Via Lindelöf Hypothesis

In the previous lemma we have assumed GRH. It seems very difficult to get
a corresponding unconditional bound for S(m, f). However, a slightly weaker
statement can be proven by assuming only the Lindelöf hypothesis (which is a
consequence of GRH). Namely, one has that

∑
n≤m an = Oε(m1/2+εNε), for

any ε > 0 ([19, (5.61)]). The fact that this last sum is over all n ≤ m, not just
primes, is not of crucial importance for our application. However, the significant
difference here is that the dependence on N is not polynomial in logN , but
merely subexponential. This observation can be used to weaken the hypothesis
in Theorem 1.1 and Corollary 1.2 from GRH to the Lindelöf hypothesis, at the
expense of replacing “polynomial” by “subexponential.”

6 Distribution of cπ

Theorem 1.1 and Corollary 1.2 are statements about individual levels. As we
mentioned in Section 1.1, our random reducibility result extends between two
levels as long as the levels satisfy the requirement that their conductors differ by
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polynomially smooth amounts. In this section we explore this extension in more
detail, and explain why the above requirement is typically satisfied.

It was mentioned after Theorem 2.2 that the largest possible conductor differ-
ence is cπ, which is the largest square factor of dπ = Trace(E)2−4q. In principle
this factor could be as large as 2

√
q, though statistically speaking most integers

(a proportion of 6
π2 ≈ .61) are square-free, explaining why cπ is very often 1 or

at least fairly small [44]. This means, for example, that most randomly selected
elliptic curves have an isogeny class consisting of only one level.

When an isogeny class consists of multiple levels, we need to be able to con-
struct vertical isogenies between levels in order to conclude that dlog instances
between the levels are randomly reducible to each other. The fastest known al-
gorithm for constructing vertical isogenies between two levels, due to Kohel [23],
has runtime O(�4), where � is the largest prime dividing the conductor of one
of the levels, but not the other. Any two levels which can be efficiently bridged
via Kohel’s algorithm can be considered as one unit for the purposes of random
reducibility. Accordingly, polynomial time random reducibility holds within an
isogeny class if cπ for that isogeny class is polynomially smooth.

With this in mind, we will now determine a heuristic estimate for the expected
size of the largest prime factor P (cπ) of cπ, i.e., the largest prime which divides
dπ to order at least 2. The trace t = Trace(E), when sampled over random
elliptic curves, is thought to have a fairly uniform distribution over most of the
Hasse interval. This serves to predict the useful heuristic that −dπ = 4q − t2 is
typically of size q (see for example [25,41]). Assuming that, the probability that
P (cπ) exceeds β can be loosely estimated as O(1/β). This is because roughly
a fraction of ρ =

∏√q

p>β

(
1 − p−2

)
integers of size q have no repeated prime

factor p > β. It is easy to see that log(ρ) = O(
∑

n>β n−2) = O(1/β), so that
1− ρ = O(1/β) as suggested.

It follows that a randomly selected elliptic curve is extremely likely to have
a small enough value of P (cπ) to allow for random reducibility throughout its
entire isogeny class. This explains why in Figure 1 all of the randomly generated
curves have P (cπ) = 1, except for one curve which has P (cπ) = 3.

Finally, let us consider the situation where a non-random curve is deliberately
selected so as to have a large value of cπ. Currently the only known methods for
constructing such curves is to use complex multiplication methods [3, Ch. VIII]
to construct curves with a predetermined number of points chosen to ensure that
cπ is almost as large as

√
dπ. Some convenient examples of such curves are the

Koblitz curves listed in the NIST FIPS 186-2 document [36], which we have also
tabulated in Figure 1. Since these curves all have complex multiplication by the
field K = Q(

√
−7), the discriminants of these curves are of the form dπ = −7c2

π.
If we assume that cπ behaves as a random integer of size

√
dπ, which is roughly√

q, then the distribution of P (cπ) is governed by the usual smoothness bounds
for large integers [44], and hence is typically too large to permit efficient ap-
plication of Kohel’s algorithm for navigating between levels. Thus we cannot
prove random reducibility from a theoretical standpoint for all of the elliptic
curves within the isogeny class SN,q of such a specially constructed curve. How-
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ever, in practice only a small subset of the elliptic curves in SN,q are efficiently
constructible using the complex multiplication method (or any other presently
known method), and this subset coincides exactly with the subcollection of lev-
els in SN,q which are accessible from the top level (where End(E) = OK) using
Kohel’s algorithm. Pending future developments, it therefore remains true that
all of the special curves that we can construct within an isogeny class have
equivalent dlog problems in the random reducible sense.
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A Supersingular Case

In this appendix we discuss the isogeny graphs for supersingular elliptic curves
and prove Theorem 1.1 in this setting. The isogeny graphs were first considered
by Mestre [33], and were shown by Pizer [37,38] to have the Ramanujan property.
Curiously, the actual graphs were first described by Ihara [18] in 1965, but not
noticed to be examples of expander graphs until much later. We have decided
to give an account here for completeness, mainly following Pizer’s arguments.
The isogeny graphs we will present here differ from those in the ordinary case in
that they are directed. This will cause no serious practical consequences, because
one can arrange that only a bounded number of edges in these graphs will be
unaccompanied by a reverse edge. Also, the implication about rapid mixing
used for Theorem 1.1 carries over as well in the directed setting with almost
no modification. It is instructive to compare the proofs for the ordinary and
supersingular cases, in order to see how GRH plays a role analogous to the
Ramanujan conjectures.

Every F̄q-isomorphism class of supersingular elliptic curves in characteristic
p is defined over either Fp or Fp2 [42], so it suffices to fix Fq = Fp2 as the field
of definition for this discussion. Thus, in contrast to ordinary curves, there is a
finite bound g on the number of isomorphism classes that can belong to any given
isogeny class (this bound is in fact the genus of the modular curve X0(p), which
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is roughly p+1
12 ). It turns out that all isomorphism classes of supersingular curves

defined over Fp2 belong to the same isogeny class [33]. Because the number of
supersingular curves up to isomorphism is so much smaller than the number of
ordinary curves up to isomorphism, correspondingly fewer of the edges need to
be included in order to form a Ramanujan graph. For a fixed prime value of
� �= p, we define the vertices of the supersingular isogeny graph G to consist of
these g isomorphism classes, with directed edges indexed by equivalence classes
of degree-� isogenies as defined below. In fact, we will prove that G is a directed
k = �+1-regular graph satisfying the Ramanujan bound of |λ| ≤ 2

√
� = 2

√
k − 1

for the nontrivial eigenvalues of its adjacency matrix. The degree � in particular
may be taken to be as small as 2 or 3.

For the definition of the equivalence classes of isogenies — as well as later
for the proofs — we now need to recall the structure of the endomorphism rings
of supersingular elliptic curves. In contrast to the ordinary setting (Section 2),
the endomorphism ring End(E) is a maximal order in the quaternion algebra
R = Qp,∞ ramified at p and ∞. Moreover, isomorphism classes of supersingular
curves Ei isogenous to E are in 1-1 correspondence with the left ideal classes
Ii := Hom(Ei, E) of R. As in Section 2.1, call two isogenies φ1, φ2 : Ei → Ej

equivalent if there exists an automorphism α of Ej such that φ2 = αφ1. Under
this relation, the set of equivalence classes of isogenies from Ei to Ej is equal to
I−1
j Ii modulo the units of Ij . This correspondence is degree preserving, in the

sense that the degree of an isogeny equals the reduced norm of the corresponding
element in I−1

j Ii, normalized by the norm of I−1
j Ii itself. This is the notion of

equivalence class of isogenies referred to in the definition of G in the previous
paragraph. Thus, for any integer n, the generating function for the number
Mij(n) of equivalence classes of degree n isogenies from Ei to Ej (i.e., the number
of edges between vertices representing elliptic curves Ei and Ej) is given by

∞∑
n=0

Mij(n) qn :=
1
ej

∑
α∈ I−1

j Ii

qN(α)/N(I−1
j Ii) , (A.1)

where ej is the number of units in Ij (equivalently, the number of automorphisms
of Ej). One knows that ej ≤ 6, and in fact ej = 2 except for at most two values of
j – see the further remarks at the end of this appendix. Proofs for the statements
in this paragraph can be found in [15, 38].

The θ-series on the righthand side of (A.1) is a weight 2 modular form for the
congruence subgroup Γ0(p), and the matrices

B(n) :=

⎛⎜⎝M11(n) · · · M1g(n)
...

. . .
...

Mg1(n) · · · Mgg(n)

⎞⎟⎠
(called Brandt matrices) are simultaneously both the n-th Fourier coefficients
of various modular forms, as well the adjacency matrices for the graph G. A
fundamental property of the Brandt matrices B(n) is that they represent the
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action of the nth Hecke operator T (n) on a certain basis of modular forms of
weight 2 for Γ0(p) (see [37]). Thus the eigenvalues of B(n) are given by the nth

coefficients of the weight-2 Hecke eigenforms for Γ0(p). These eigenforms include
a single Eisenstein series, with the rest being cusp forms. Now we suppose that
n = � is prime (mainly in order to simplify the following statements). The nth

Hecke eigenvalue of the Eisenstein series is n+1, while those of the cusp forms are
bounded in absolute value by 2

√
n according to the Ramanujan conjectures (in

this case a theorem of Eichler [9] and Igusa [17]). Thus the adjacency matrix of G
has trivial eigenvalue equal to �+1 (the degree k), and its nontrivial eigenvalues
indeed satisfy the Ramanujan bound |λ| ≤ 2

√
k − 1.

Finally, we conclude with some comments about the potential asymmetry of
the matrix B(n). This is due to the asymmetry in the definition of equivalence
classes of isogenies. Indeed, if Aut(E1) and Aut(E2) are different, then two iso-
genies E1 → E2 can sometimes be equivalent even when their dual isogenies
are not equivalent. This problem arises only if one of the curves Ei has com-
plex multiplication by either

√
−1 or e2πi/3, since otherwise the only possible

automorphisms of Ei are the scalar multiplication maps ±1 [42, §III.10]. In the
supersingular setting, one can avoid curves with such unusually rich automor-
phism groups by choosing a characteristic p which splits in both Z[

√
−1] and

Z[e2πi/3], i.e., p ≡ 1 mod 12 (see [37, Prop. 4.6]). In the case of ordinary curves,
however, the quadratic orders Z[

√
−1] and Z[e2πi/3] both have class number 1,

which then renders the issue moot because the isogeny graphs corresponding to
these levels each have only one node.
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Abstract. Cryptosystems based on the knapsack problem were among
the first public-key systems to be invented. Their high encryption/
decryption rate attracted considerable interest until it was noticed that
the underlying knapsacks often had a low density, which made them
vulnerable to lattice attacks, both in theory and practice. To prevent
low-density attacks, several designers found a subtle way to increase
the density beyond the critical density by decreasing the weight of the
knapsack, and possibly allowing non-binary coefficients. This approach
is actually a bit misleading: we show that low-weight knapsacks do not
prevent efficient reductions to lattice problems like the shortest vector
problem, they even make reductions more likely. To measure the resis-
tance of low-weight knapsacks, we introduce the novel notion of pseudo-
density, and we apply the new notion to the Okamoto-Tanaka-Uchiyama
(OTU) cryptosystem from Crypto ’00. We do not claim to break OTU
and we actually believe that this system may be secure with an appro-
priate choice of the parameters. However, our research indicates that,
in its current form, OTU cannot be supported by an argument based
on density. Our results also explain why Schnorr and Hörner were able
to solve at Eurocrypt ’95 certain high-density knapsacks related to the
Chor-Rivest cryptosystem, using lattice reduction.

Keywords: Knapsack, Subset Sum, Lattices, Public-Key Cryptanalysis.

1 Introduction

The knapsack (or subset sum) problem is the following: given a set {a1, a2,. . . ,an}
of positive integers and a sum s =

∑n
i=1miai, where each mi ∈ {0, 1}, recover

the mi’s. On the one hand, it is well-known that this problem is NP-hard, and
accordingly it is considered to be hard in the worst case. On the other hand,
some knapsacks are very easy to solve, such as when the ai’s are the successive
powers of two, in which case the problem is to find the binary decomposition
of s. This inspired many public-key cryptosystems in the eighties, following the
seminal work of Merkle and Hellman [10]:

B. Roy (Ed.): ASIACRYPT 2005, LNCS 3788, pp. 41–58, 2005.
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The Public Key: a set of positive integers {a1, a2, . . . , an}.
The Private Key: a method to transform the presumed hard public knapsack
into an easy knapsack.
Encryption: a message m = (m1,m2, . . . ,mn) ∈ {0, 1}n is enciphered into
s =

∑n
i=1miai.

However, with the noticeable exception of the Okamoto-Tanaka-Uchiyama
(OTU) quantum knapsack cryptosystem from Crypto ’00 [19], all proposed knap-
sack schemes have been broken (see the survey by Odlyzko [18]), either because
of the special structure of the public key (like in [16,22]) leading to key-recovery
attacks, or because of the so-called low-density attacks [6,3] which allow to de-
crypt ciphertexts.

The density of the knapsack is defined as d=n/ log2 A where A=max1≤i≤n ai.
The density cannot be too high, otherwise encryption would not be injective.
Indeed, any subset sum s =

∑n
i=1miai lies in [0, nA], while there are 2n ways to

select the mi’s: if 2n > nA, that is, d > n/(n− log2 n), there must be a collision∑n
i=1miai =

∑n
i=1m

′
iai, On the other hand, when the density is too low, there

is a very efficient reduction from the knapsack problem to the lattice shortest
vector problem (SVP): namely, Coster et al. [3] showed that if d < 0.9408 . . .
(improving the earlier bound 0.6463 . . . by Lagarias-Odlyzko [6]), and if the ai’s
are chosen uniformly at random over [0,A], then the knapsack problem can be
solved with high probability with a single call to a SVP-oracle in dimension
n. In practical terms, this means that n must be rather large to avoid lattice
attacks (see the survey [17]): despite their NP-hardness, SVP and other lattice
problems seem to be experimentally solvable up to moderate dimension. This
is why several articles (e.g. [6,3,1,14]) study efficient provable reductions from
problems of cryptographic interest to lattice problems such as SVP or the lattice
closest vector problem (CVP).

To thwart low-density attacks, several knapsack cryptosytems like Chor-
Rivest [2], Qu-Vanstone [16], Okamoto-Tanaka-Uchiyama [19] use in their en-
cryption process a low-weight knapsack instead of a random knapsack: r =∑n

i=1m
2
i is much smaller than n/2, namely sublinear in n. This means that

the message space is no longer {0, 1}n, but a subset with a special structure,
such as the elements of {0, 1}n with Hamming weight k, in the case of Chor-
Rivest [2] or OTU [19]. Alternatively, it was noticed by Lenstra in [7] that such
schemes still work with more general knapsacks where the coefficients are not
necessarily 0 or 1: this leads to the powerline encoding where the plaintexts are
the elements (m1, . . . ,mn) ∈ Nn such that

∑n
i=1mi = k, where again k is much

less than n/2. With such choices, it becomes possible to decrease the bit-length
of the ai’s so as to increase the density d beyond the critical density: a general
subset sum s =

∑n
i=1miai may then have several solutions, but one is able to

detect the correct one because of its special structure. It was claimed that such
knapsack schemes would resist lattice attacks.

Our Results. In this article, we show that low-weight knapsacks are still prone
to lattice attacks in theory. Extending earlier work of [6,3,20], we provide a gen-
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eral framework to study provable reductions from the knapsack problem to two
well-known lattice problems: the shortest vector problem (SVP) and the closest
vector problem (CVP). The framework relates in a simple manner the success
probability of the reductions to the number of integer points in certain high-
dimensional spheres, so that the existence of reductions can be assessed based
only on combinatorial arguments, without playing directly with lattices. We no-
tice that this number of integer points can be computed numerically for any
realistic choice of knapsacks, which makes it possible to analyze the resistance
of any concrete choice of parameters for low-weight knapsack cryptosystems,
which we illustrate on the Chor-Rivest cryptosystem. We also provide a simple
asymptotic bound on the number of integer points to analyze the theoretical
resistance of low-weight knapsack cryptosystems. Mazo and Odlyzko [9] earlier
gave sharp bounds in certain cases which are well-suited to usual knapsacks,
but not to low-weight knapsacks. As a result, we introduce the so-called pseudo-
density κ = r log2 n/ log2 A (where r =

∑n
i=1m

2
i ) to measure the resistance

of low-weight knapsacks to lattice attacks: if κ is sufficiently low, we estab-
lish provable reductions to SVP and CVP. This shows that the security of the
Okamoto-Tanaka-Uchiyama cryptosystem [19] from Crypto ’00 cannot be based
on a density argument because its pseudo-density is too low: like NTRU [4], the
security requires the hardness of lattice problems. However, we do not claim to
break OTU, and we actually believe that this system may be secure with an
appropriate choice of the parameters, due to the gap between lattice oracles and
existing lattice reduction algorithms, when the lattice dimension is sufficiently
high. Our work shows that the density alone is not sufficient to measure the
resistance to lattice attacks: one must also take into account the weight of the
solution, which is what the pseudo-density does.

Related Work. Omura and Tanaka [20] showed that the Lagarias-Odlyzko
reduction [6] could still apply to practical instantiations of the Chor-Rivest and
Okamoto-Tanaka-Uchiyama schemes with binary encoding. However, they relied
on the counting techniques of Mazo and Odlyzko [9] which are not tailored to
low-weight knapsacks. Hence, they could analyze numerically the resistance of
any concrete choice of the parameters, but the asymptotical behaviour was not
clear. As a result, it was left open to define an analogue of density to low-weight
knapsacks, and it was unknown whether or not the reduction could still work
when plaintexts were non-binary strings such as in the powerline encoding. Our
work shows that more general encodings like the powerline encoding do not rule
out lattice attacks either.

Road map. The paper is organized as follows. In Section 2 we provide necessary
background on lattices and the number of integer points in high-dimensional
spheres. We study reductions from knapsacks to the closest lattice vector problem
(CVP) in Section 3, in the case of binary knapsacks and low-weight knapsacks.
We then extend those reductions to the shortest lattice vector problem (SVP) in
Section 4. We apply our results to the OTU cryptosystem in Section 5, and to
the Chor-Rivest cryptosystem in Section 6. Finally, we discuss the significance
of our results on the security of low-weight knapsack cryptosystems in Section 7.
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2 Background

2.1 Lattices

Let ‖.‖ and 〈., .〉 be the Euclidean norm and inner product of Rn. We refer to
the survey [17] for a bibliography on lattices. In this paper, by the term lattice,
we actually mean an integral lattice. An integral lattice is a subgroup of (Zn,+),
that is, a non-empty subset L of Zn which is stable by subtraction: x − y ∈ L
whenever (x,y) ∈ L2. The simplest lattice is Zn. It turns out that in any lattice
L, not just Zn, there must exist linearly independent vectors b1, . . . ,bd ∈ L such
that:

L =

{
d∑
i=1

nibi | ni ∈ Z

}
.

Any such d-tuple of vectors b1, . . . ,bd is called a basis of L: a lattice can be
represented by a basis, that is, a matrix. Conversely, if one considers d integral
vectors b1, . . . ,bd ∈ Zn, the previous set of all integral linear combinations of
the bi’s is a subgroup of Zn, and therefore a lattice.

The dimension of a lattice L is the dimension d of the linear span of L. Since
our lattices are subsets of Zn, they must have a shortest nonzero vector: In any
lattice L ⊆ Zn, there is at least one nonzero vector v ∈ L such that no other
nonzero lattice vector has a Euclidean norm strictly smaller than that of v.
Finding such a vector v from an arbitrary basis of L is called the shortest vector
problem (SVP). Another famous lattice problem is the closest vector problem
(CVP): given a basis of L ⊆ Zn and a point t ∈ Qn, find a lattice vector w ∈ L
minimizing the Euclidean norm of w − t.

It is well-known that as the dimension increases, CVP is NP-hard and SVP
is NP-hard under randomized reductions (see [17,12] for a list of complexity
references). However, in practice, the best lattice reduction algorithms give good
results up to moderate dimension: we will discuss this issue in Section 7. This
is why it is interesting to study the solvability of various algorithmic problems,
when one is given access to a SVP-oracle or a CVP-oracle in moderate dimension.
We will call the oracles only once.

2.2 Lattice Points in High-Dimensional Spheres

Following [1,9], we denote by N(n, r) the number of integer points in the n-
dimensional sphere of radius

√
r centered at the origin: that is, N(n, r) is the
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number of (x1, . . . , xn) ∈ Zn such that
∑n

i=1 x
2
i ≤ r. Clearly, we have the fol-

lowing induction formula (which was also given in the full version of [1]):

N(n, r) =

⎧⎪⎨⎪⎩
1 if n = 0 and r ≥ 0,
0 if n = 0 and r < 0,∑�

√
r

j=−�
√
rN(n− 1, r − j2) if n > 0.

This allows to compute N(n, r) numerically when n and r are not too large,
since the running time is clearly polynomial in (n, r).

When n grows to infinity, sharp estimates of N(n, r) are known when r is
proportional to n (see [9]), in which case N(n, r) is exponential in n. Two par-
ticular cases are interesting for the knapsack problem: the techniques of Mazo
and Odlyzko [9] show that N(n, n/2) ≤ 2c0n and N(n, n/4) ≤ 2c1n where
(c0, c1) = (1.54724 . . . , 1.0628 . . .). Note that 1/c0 = 0.6463 . . . is the critical
density of the Lagarias-Odlyzko attack [6], while 1/c1 = 0.9409 . . . is the critical
density of the attack of Coster et al. [3]. These techniques are very useful when
the ratio r/n is fixed and known, but less so for more general choices of n and r.

For low-weight knapsacks, we need to upper bound N(n, r) when r is sub-
linear in n, in which case the techniques of Mazo and Odlyzko [9] do not seem
well-suited. We will use instead the following simple bound:

Lemma 1. For all n, r ≥ 0:

N(n, r) ≤ 2r
(
n+ r − 1

r

)
.

Proof. Any vector counted by N(n, r) has at most r non-zero coordinates. There-
fore, it suffices to bound the number of integer points with positive coordinates,
and to multiply by 2r to take sign into account. To conclude, the number of in-
teger points with positive coordinates and norm less than

√
r is clearly bounded

by the number Kr
n of combinations of r elements among n with repetition. And

it is well-known that Kr
n =

(
n+r−1

r

)
. �

Corollary 1. For all n, r ≥ 0:

N(n, r) ≤ 2rer(r−1)/(2n)nr

r!
.

Proof. It suffices to prove that r!
(
n+r−1

r

)
/nr ≤ er(r−1)/(2n). We have:

r!
(
n+ r − 1

r

)
/nr =

(n+ r − 1)(n+ r − 2) · · · (n− 1)
nr

≤
r−1∏
k=1

(1 +
k

n
) ≤

r−1∏
k=1

ek/n ≤ er(r−1)/(2n)

�

It follows that if both n and r grow to infinity with a sublinear r = o(n), then
N(n, r) = o(nr) by Stirling’s estimate.
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3 Reducing Knapsacks to the Closest Vector Problem

In this section, we provide a general framework to reduce the knapsack problem
to the closest vector problem. This allows us to easily study the case of low-
weight knapsacks, which arguably simplifies the approach of [20] based on [6].
The earlier work [6,3] only considered reductions to the shortest vector problem,
but we start with the closest vector problem because it is simpler to understand,
and it gives slightly stronger reductions. We will later adapt those results to the
shortest vector problem.

We will distinguish two types of knapsacks. The binary knapsack problem is
the original knapsack problem: given a set {a1, a2, . . . , an} of positive integers
and a sum s =

∑n
i=1miai, where each mi ∈ {0, 1}, recover the mi’s. Because

of the powerline encoding, we will also be interested in a more general knapsack
problem with non-binary coefficients, which we call the low-weight knapsack
problem: given a set {a1, a2, . . . , an} of positive integers and a linear combination
s =

∑n
i=1miai, where each mi ∈ Z and r =

∑n
i=1m

2
i is small, recover the mi’s.

The case r = o(n) is of particular interest.

3.1 A General Framework

Solving the knapsack problem amounts to finding a small solution of an inho-
mogeneous linear equation, which can be viewed as a closest vector problem
in a natural way, by considering the corresponding homogeneous linear equa-
tion, together with an arbitrary solution of the inhomogeneous equation. Let
s =

∑n
i=1miai be a subset sum, where each mi ∈ {0, 1}.

The link between knapsacks and lattices comes from the homogeneous linear
equation. Consider indeed the set L of all integer solutions to the homogeneous
equation, that is, L is the set of vectors (z1, . . . , zn) ∈ Zn such that:

z1a1 + · · ·+ znan = 0. (1)

The set L is clearly a subgroup of Zn and is therefore a lattice. Its dimension is
n − 1. It is well-known that a basis of L can be computed in polynomial time
from the ai’s (see e.g. [16] for one way to do so).

Using an extended gcd algorithm, one can compute in polynomial time inte-
gers y1, . . . , yn such that

s =
n∑
i=1

yiai. (2)

The yi’s form an arbitrary solution of the inhomogenous equation. Now the
vector v = (y1 −m1, . . . , yn−mn) belongs to L. And this lattice vector is fairly
close to the vector t1 = (y1, . . . , yn) as the coordinates of the difference are the
mi’s. The main idea is that by finding the closest vector to t1 in the lattice L,
one may perhaps recover v and hence the mi’s. The success probability of our
reductions will depend in a simple manner on the number of integer points in
high-dimensional spheres.
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3.2 Binary Knapsacks

In the case of binary knapsacks, the distance between t1 and v is roughly√
n/2. But because mi ∈ {0, 1}, the lattice vector v is even closer to the vector

t2 = (y1 − 1/2, . . . , yn − 1/2) for which the distance is exactly
√
n/4. It is this

simple fact which explains the difference of critical density between the Lagarias-
Odlyzko reduction [6] and the reduction by Coster et al. [3]. The following results
are straightforward:

Lemma 2. In the case of binary knapsacks, we have:

1. v is a closest vector to t2 in the lattice L.
2. If v′ is a closest vector to t2 in L, then ‖v′ − t2‖ =

√
n/4 and v′ is of the

form v′ = (y1 −m′1, . . . , yn −m′n) where s =
∑n

i=1m
′
iai and m′i ∈ {0, 1}.

Proof. The key observation is that elements of the lattice have integer coordi-
nates and that each coordinate contributes to the distance to t2 by at least 1/2.

�

This gives a deterministic polynomial-time reduction from the binary knapsack
problem to the closest vector problem (CVP) in a lattice of dimension n − 1:
this reduction was sketched in the survey [17], and can be viewed as a variant
of an earlier reduction by Micciancio [11], who used a different lattice whose
dimension was n, instead of n− 1 here.

Thus, a single call to a CVP-oracle in an (n − 1)-dimensional lattice auto-
matically gives us a solution to the binary knapsack problem, independently of
the value of the knapsack density, but this solution may not be the one we are
looking for, unless the unicity of the solution is guaranteed. One particular case
for which the unicity is guaranteed is Merkle-Hellman: more generally, for any
traditional knapsack cryptosystem such that the set of plaintexts is the whole
{0, 1}n without decryption failures, a single call to a CVP-oracle is sufficient to
decrypt.

It is nevertheless interesting to know when one can guarantee the unicity of
the solution for general knapsacks. But if for instance some ai is a subset sum
of other aj ’s where j ∈ J , then clearly, all knapsacks involving only ai and a�’s
where 
 �∈ J may also be decomposed differently using the aj ’s where j ∈ J .
This means that to guarantee unicity of solutions in a general knapsack, we may
only hope for probabilistic statements, by considering random knapsacks where
the ai’s are assumed to be chosen uniformly at random in [0,A]:

Theorem 1. Let (m1, . . . ,mn) ∈ {0, 1}n. Let a1, . . . , an be chosen uniformly
and independently at random in [0,A]. Let s =

∑n
i=1miai. Let L and the yi’s

be defined by (1) and (2). Let c be a vector in L closest to the vector t2 = (y1 −
1/2, . . . , yn− 1/2). Then the probability that c is not equal to (y1−m1, . . . , yn−
mn) is less than (2n − 1)/A.

Proof. By Lemma 2, c is of the form c = (y1 − m′1, . . . , yn − m′n) where s =∑n
i=1m

′
iai and m′i ∈ {0, 1}. If c is not equal to (y1 − m1, . . . , yn − mn), then
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m′ = (m′1, . . . ,m
′
n) �= m = (m1, . . . ,mn). But:

n∑
i=1

(mi −m′i)ai = 0. (3)

Since m �= m′, there exists i0 such that mi0 �= m′i0 . For any choice of (ai)i�=i0 ,
there exists a unique choice of ai0 satisfying (3), since mi0−m′i0 = ±1. It follows
that for a given m′ �= m, the probability that (y1 −m′1, . . . , yn −m′n) is equal
to c is less than 1/A. We conclude since the number of m′ is 2n − 1. �

This shows that when the density d = n/ log2 A is < 1, there is with high
probability a unique solution, and this solution can be obtained by a single call
to a CVP-oracle in dimension n− 1.

3.3 Low-Weight Knapsacks

We showed that the hidden vector v ∈ L related to the knapsack solution was
relatively close to two target vectors t1 and t2. In fact, v was a lattice vector
closest to t2: the distance was

√
n/4. In the general binary case, this was better

than t1 for which the distance was expected to be
√
n/2, provided that the

Hamming weight of the knapsack was roughly n/2. But if the Hamming weight
k is much smaller than n/2, then the distance between m and t1 is only

√
k,

which is much less than
√
n/4. We obtain the following general result regarding

low-weight knapsacks (not necessarily binary):

Theorem 2. Let m = (m1, . . . ,mn) ∈ Zn. Let a1, . . . , an be chosen uniformly
and independently at random in [0,A]. Let s =

∑n
i=1miai. Let L and the yi’s

be defined by (1) and(2). Let c be a vector in L closest to the vector t1 =
(y1, . . . , yn). Then the probability that c is not equal to (y1 −m1, . . . , yn −mn)
is less than N(n, ‖m‖2)/A.

Proof. By definition, c is of the form c = (y1 − m′1, . . . , yn − m′n) where s =∑n
i=1m

′
iai and m′i ∈ Z. Let m′ = (m′1, . . . ,m′n). Because c cannot be farther

from t1 than v, ‖m′‖ ≤ ‖m‖. If c is not equal to (y1 −m1, . . . , yn −mn), then
m′ �= m = (m1, . . . ,mn): there exists i0 such that mi0 �= m′i0 . For any choice of
(ai)i�=i0 , there exists at most one choice of ai0 satisfying (3). It follows that for a
given m′ �= m, the probability that (y1 −m′1, . . . , yn −m′n) is the closest vector
is less than 1/A. We conclude since the number of m′ is less than N(n, ‖m‖2),
as ‖m′‖ ≤ ‖m‖. �

Note that N(n, ‖m‖2) can be evaluated numerically from Section 2.2, so that
one can bound the failure probability for any given choice of the parameters.

We saw that t1 was better than t2 with low-weight knapsacks, but the choice
t1 can be improved if k =

∑n
i=1mi �= 0, which is the case of usual knapsacks

where all the mi’s are positive. Consider indeed t3 = (y1−k/n, y2−k/n, . . . , yn−
k/n). Then ‖v − t3‖2 = ‖m‖2 − k2/n which is less than ‖v − t1‖2 = ‖m‖2. By
replacing t1 with t3 in Theorem 2, the result becomes:
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Theorem 3. Let m = (m1, . . . ,mn) ∈ Zn and k =
∑n

i=1mi. Let a1, . . . , an be
chosen uniformly and independently at random in [0,A]. Let s =

∑n
i=1miai.

Let L and the yi’s be defined by (1) and(2). Let c be a vector in L closest to the
vector t3 = (y1 − k/n, . . . , yn − k/n). Then the probability that c is not equal to
(y1 −m1, . . . , yn −mn) is less than N(n, ‖m‖2 − k2/n)/A.

If k =
∑n
i=1mi is proportional to n, Theorem 3 yields a significant improvement

over Theorem 2: for instance, if we consider a binary random knapsack for which
k ≈ n/2, Theorem 3 involves N(n, n/4) instead of N(n, n/2) for Theorem 2,
which is exactly the difference between the critical densities of the Lagarias-
Odlyzko reduction [6] and the reduction by Coster et al. [3]. However, in the case
of low-weight knapsacks where k = o(n), the improvement becomes marginal, as
k2/n is then negligible with respect to ‖m‖2. To simplify the presentation and
the discussion, we will therefore rather consider Theorem 2.

4 Reducing Knapsacks to the Shortest Vector Problem

In the previous section, we established reductions from knapsack problems (bi-
nary and low-weight) to the closest vector problem. The original lattice at-
tacks [6,3] on knapsacks only considered reductions to the shortest vector prob-
lem (SVP), not to CVP. In this section, we show that our reductions to CVP
can be adapted to SVP, thanks to the well-known embedding or (homogeniza-
tion) method introduced by Kannan (see [5,12,13]), which tries to transform an
(n − 1)-dimensional CVP to an n-dimensional SVP. In general, the embedding
method is only heuristic, but it can be proved in the special case of knapsack
lattices. This is interesting from a practical point of view, because CVP is often
solved that way.

We adapt Theorem 2 to SVP. Again, we let s =
∑n

i=1miai. Let L be the
lattice defined by (1), and let the y′is be defined by (2). Let (b1, . . . ,bn−1)
be a basis of L. We embed L into the n-dimensional lattice L′ spanned by
(1, y1, . . . , yn) ∈ Zn+1 and the n− 1 vectors of the form (0,bi) ∈ Zn+1. We let
m′ = (1,m1, . . . ,mn) ∈ Zn+1. By definition, m′ ∈ L′ and its norm is relatively
short. The following result lowers the probability that m′ is the shortest vector
of L′.

Theorem 4. Let m = (m1, . . . ,mn) ∈ Zn. Let a1, . . . , an be chosen uniformly
and independently at random in [0,A]. Let s =

∑n
i=1miai. Let L′, m′ and the

yi’s be defined as previously. Let s be a shortest non-zero vector in L′. Then the
probability that s is not equal to ±m′ is less than

(1 + 2(1 + ‖m‖2)1/2)N(n, ‖m‖2)/A.

Proof. By definition of L′, s is of the form s = (r, ry1 − z1, . . . , ryn − zn) where
r ∈ Z, and (z1, . . . , zn) ∈ L. Since s is a shortest vector:

‖s‖2 ≤ ‖m′‖2 = 1 + ‖m‖2. (4)
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It follows that r2 ≤ 1 + ‖m‖2. Let ui = ryi − zi and u = (u1, . . . , un). We have
‖u‖ ≤ ‖s‖. Notice that:

n∑
i=1

(ui − rmi)ai = 0. (5)

We distinguish two cases. If r = 0, then u �= 0, and it follows that the probability
of (5) being satisfied for a given u �= 0 is less than 1/A. And the number of
possible u is bounded by N(n, ‖m‖2). Otherwise, r �= 0, and there are at most
2(1 + ‖m‖2)1/2 possible values for r. If s �= ±m′, we claim that there exists i0
such that ui0−rmi0 �= 0, in which case the probability that (5) is satisfied is less
than 1/A. Otherwise, u = rm: if |r| > 1, this would imply that ‖u‖ ≥ ‖m‖, and
s would not be shorter than m′; else r = ±1, and u = ±m which contradicts
s �= ±m′. This concludes the proof. �

Theorem 4 provides essentially the same bound on the success probability as
Theorem 2, because ‖m‖ is negligible with respect to N(n, ‖m‖2). This means
that in the case of low-weight knapsacks, there is no significant difference between
the CVP and SVP cases.

Theorem 4 can be viewed as a generalization of the Lagarias-Odlyzko re-
sult [6]. Indeed, if we consider a binary knapsack of Hamming weight ≤ n/2
(which we may assume without loss of generality), then the failure probability
is less than

(1 + 2(1 + n/2)1/2)N(n, n/2)/A.

Since N(n, n/2) ≤ 2c0n where c0 = 1.54724 . . . (see Section 2), it follows that
the failure probability of the reduction to SVP is negligible provided that the
density d = n/ log2 A is strictly less than 1/c0 = 0.6463 . . ., which matches the
Lagarias-Odlyzko result [6].

We omit the details but naturally, the improvement of Theorem 3 over The-
orem 2 can be adapted to Theorem 4 as well: N(n, ‖m‖2) would decrease to
N(n, ‖m‖2 − k2/n) where k =

∑n
i=1mi, provided that one subtracts k/n to

both yi and mi in the definition of L′ and m′. In the particular case of binary
knapsacks, this matches the result of Coster et al. [3]: because N(n, n/4) ≤ 2c1n

where c1 = 1.0628 . . ., the failure probability would be negligible provided that
the knapsack density is less than 1/c1 = 0.9409 . . . Whereas there was almost
no difference between the CVP reduction and the SVP reduction for low-weight
knapsacks, there is a difference in the case for binary knapsacks: in Theorem 1,
the critical density was 1 and not 1/c1. And that would not have changed if we
had transformed the CVP-reduction of Theorem 1 (instead of that of Theorem 3)
into a probabilistic reduction to SVP. This is because Lemma 2 used in Theo-
rem 1 (but not in Theorem 3) has no analogue in the SVP setting, which explains
why the result with a CVP-oracle is a bit stronger than with a SVP-oracle: there
are more parasites with SVP.

In other words, the framework given in Section 3 revisits the SVP reduc-
tions of Lagarias-Odlyzko [6] and Coster et al. [3]. By applying the embedding
technique, we obtain the same critical densities when transforming our CVP
reductions of Theorem 2 and 3 into SVP reductions.
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5 Application to the OTU Cryptosystem

In this section, we apply the results of Sections 2, 3 and 4 to the Okamoto-
Tanaka-Uchiyama cryptosystem [19] from Crypto 2000.

5.1 Description of OTU

The OTU cryptosystem is a knapsack cryptosystem where the knapsack has a
hidden structure based on discrete logarithms like the Chor-Rivest scheme [2],
but where no information on the DL group leaks, thwarting attacks like [22]. The
key generation of OTU requires the extraction of discrete logarithms: if quantum
computers are available, one can apply Shor’s quantum algorithm, otherwise one
uses groups with a special structure (e.g. groups of smooth order) so that DL is
tractable.

The knapsack (a1, . . . , an) used by OTU has a special structure. Let A =
max1≤i≤n ai. To allow decryption, it turns out that A is such that A ≥ pk for
some integers p, k > 1, and p is such that there are at least n coprime numbers
≤ p, which implies that p ≥ n, and therefore A ≥ nk, and log2 A is at least linear
in k. The OTU scheme allows two kinds of encoding:

– The binary encoding, where the plaintexts are all (m1, . . . ,mn) ∈ {0, 1}n
such that

∑n
i=1mi = k.

– The powerline encoding [7], where the plaintexts are all (m1, . . . ,mn) ∈ Nn

such that
∑n

i=1mi = k.

There is no concrete choice of parameters proposed in [19]. However, it was
pointed out on page 156 of [19] that the choice k = 2(logn)c

where c is a constant
< 1 would have interesting properties. We will pay special attention to that case
since it is the only asymptotical choice of k given in [19], but we note from the
discussion in [19–Section 3.4] that the scheme could tolerate larger values of k,
up to maybe a constant times n/ logn. Perhaps the main drawback with larger
values of k is the keysize, as the storage of the knapsack is Ω(nk) bits, which
is then essentially quadratic if k = n/ logn. What is clear is that k is at most
O(n/ logn): indeed the density in OTU is O(n/(k logn)), and the density must
be lower bounded by a constant > 0 to ensure the hardness of the knapsack,
which implies that k = O(n/ logn). This means that we should study two cases:
the suggested case k = 2(logn)c

where c is a constant < 1, and the extreme case
k = O(n/ log n).

5.2 Resistance to Low-Density Attacks

The parameter A can be chosen as small as O(pk) and p can be as small as
n logn. For the suggested case k = 2(logn)c

, we have log A = O(k log p) = o(n).
It follows that the usual density d = n/ log2 A grows to infinity, which is why it
was claimed in [19] that OTU prevents usual lattice attacks [6,3]. However, this
density argument is misleading because the weight k is sublinear in n.
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Let m = (m1, . . . ,mn) and s =
∑n
i=1miai. Theorems 4 and 2 provide effi-

cient reductions from knapsacks to SVP and CVP, provided that N(n, ‖m‖2) is
negligible with respect to A.

With the binary encoding, we have ‖m‖2 = k, and therefore N(n, ‖m‖2) =
N(n, k). We know that due to the choice of k in OTU (even in the extreme
case), we have k = o(n) with k growing to infinity. Corollary 1 then implies
that N(n, k) = o(nk), and therefore N(n, k)/A = o(1) since A ≥ nk. Hence
Theorems 4 and 2 provide efficient reductions (with success probability asymp-
totically close to 1) to SVP and CVP in dimension n, provided that k = o(n),
which is a necessary requirement for OTU.

We now show that the powerline encoding does not significantly improve the
situation, even though a plaintext m with the powerline encoding only satis-
fies k ≤ ‖m‖2 ≤ k2. If ‖m‖2 was close to k2, rather than k, Corollary 1 on
N(n, ‖m‖2) would not allow us to conclude, because nk

2
would dominate A.

The following result shows that ‖m‖2 is on the average much closer to k, as in
the binary encoding:

Theorem 5. There exists a computable constant α > 0 such that the following
holds. Let 1 ≤ k ≤ n and y = (k − 1)/n. Let m = (m1, . . . ,mn) ∈ Nn be chosen
uniformly at random such that

∑n
i=1mi = k. Then the expected value of ‖m‖2

satisfies:
E(‖m‖2) ≤ k(1 + αy).

Proof. As in the proof of Lemma 1, let Kk
n denote the number of combinations

of k elements among n with repetition: Kk
n =

(
n+k−1

k

)
=
(
n+k−1
n−1

)
. We have:

E(‖m‖2) = nE(m2
i ) = n

k∑
x=1

x2 Kk−x
n−1

Kk
n

= n

k∑
x=1

x2 k(k − 1) · · · (k − x+ 1)× (n− 1)
(n+ k − 1)(n+ k − 2) · · · (n+ k − x− 1)

.

Let:

s(n, x, k) = n(n− 1)x2 k(k − 1) · · · (k − x+ 1)
(n+ k − 1)(n+ k − 2) · · · (n+ k − x− 1)

,

so that E(‖m‖2) =
∑k

x=1 s(n, x, k). We will see that the first term dominates in
this sum:

s(n, 1, k) =
n(n− 1)k

(n+ k − 1)(n+ k − 2)
≤ k.

We now bound s(n, x, k) for all 2 ≤ x ≤ k:

s(n, x, k) ≤ kx2 (k − 1)(k − 2) · · · (k − x+ 1)
(n+ k − 1)(n+ k − 2) · · · (n+ k − x+ 1)

= kx2
k−1∏

u=k−x+1

u

n+ u
≤ kx2

(
k − 1

n+ k − 1

)x−1
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≤ kx2

(
y

1 + y

)x−1

with y =
k − 1
n

.

Hence, by separating the first two terms in the sum:

E(‖m‖2) ≤ k

(
1 +

4y
1 + y

+
k∑
x=3

x2

(
y

1 + y

)x−1
)
.

Because 1 ≤ k ≤ n, we have 0 ≤ y < 1 and 0 ≤ y/(1 + y) < 1/2. Thus, we only
need to bound the series:

f(y) =
∞∑
x=3

x2

(
y

1 + y

)x−1

.

A short derivative computation shows that for any 0 ≤ z < 1/2, the function
x �→ x2zx−1 decreases over x ≥ 3, because 2 + 3 ln(1/2) < 0. Therefore, letting
z = y/(1 + y), we obtain for all k > 1:

f(y)≤
∫ ∞

2

x2zx−1dx=
[
zx−1

ln z

(
x2 − 2x

ln z
+

2
ln2 z

)]∞
2

=
−z
ln z

(
4− 4

ln z
+

2
ln2 z

)
.

Since z ≤ 1/2, it follows that one can compute an absolute constant β > 0 such
that for all k > 1, f(y) ≤ βz, which in fact also holds when k = 1, that is, z = 0.
Hence for all 1 ≤ k ≤ n:

E(‖m‖2) ≤ k

(
1 +

4y
1 + y

+ βz

)
≤ k(1 + (4 + β)y).

This concludes the proof with α = 4 + β. �

When k = o(n), we have y = o(1) and the upper bound becomes k(1 + αy) =
k(1+o(1)), which already shows that with the powerline encoding, the expected
value of ‖m‖2 is essentially k, rather than k2. This suggests that N(n, ‖m‖2)
will on the average still be negligible with respect to A. But Theorem 5 allows us
to give a sharper estimate. In the extreme case of OTU, we have k = O(n/ log n)
growing to infinity, so y = O(1/ logn) and the upper bound becomes r = k(1 +
O(1/ logn)). By Corollary 1:

N(n, r)/A ≤ 2rer(r−1)/(2n)nr

r!nk
.

Here, r2/n = kO(n/ logn)(1 +O(1/ logn))/n = O(k/ logn) therefore:

2rer(r−1)/(2n) = O(1)k.

And nr = nk(1+O(1/ logn)) = nk × (nO(1/ log n))k ≤ nk ×O(1)k. Hence:

N(n, r)/A ≤ O(1)k

r!
= o(1).
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Thus, the reductions of Theorems 4 and 2 succeed with overwhelming probability
even with the powerline encoding, even if the extreme choice of k in OTU is
considered. This question was left open in [20].

Although we believe that the OTU cryptosystem may be secure with an
appropriate choice of the parameters, our results indicate that in its current form,
it cannot be supported by an argument based on density that would protect the
system against a single call to an SVP oracle or a CVP oracle.

5.3 The Pseudo-Density

We now explain why in the case of low-weight knapsacks, Theorems 4 and 2
suggest to replace the usual density d = n/ log2 A by a pseudo-density defined
by κ = r log2 n/ log2 A, where r is an upper bound on ‖m‖2, m being the
knapsack solution.

Theorems 4 and 2 showed that a low-weight knapsack could be solved with
high probability by a single call to a SVP-oracle or a CVP-oracle, provided that
N(n, r)/A was small. Corollary 1 shows that:

N(n, r)/A ≤ 2rer(r−1)/(2n)

r!
× nr

A
.

The left-hand term 2rer(r−1)/(2n)/r! tends to 0 as r grows to ∞, provided that
r = O(n). The right-hand term nr/A is 2r log2 n−log2 A. This shows that if the
pseudo-density κ is ≤ 1, then the right-hand term will be bounded, and therefore
the low-weight knapsack can be solved with high probability by a single call to
either a SVP-oracle or a CVP-oracle. On the other hand, if the pseudo-density κ
is larger than 1, it will not necessarily mean that the previous upper bound does
not tend to zero, as there might be some compensation between the left-hand
term and the right-hand term.

Consider for instance the case of OTU with binary encoding. For any choice
of k, the pseudo-density κ = k log2 n/ log2 A is ≤ 1 because A ≥ nk due to
decryption requirements. Therefore there is a reduction to SVP and CVP with
probability asymptotically close to 1. On the other hand, if we consider the
powerline encoding with an extreme case of k, the pseudo-density becomes κ =
k(1+O(1/ logn)) log2 n/ log2 A ≤ 1+O(1/ logn) which could perhaps be slightly
larger than 1. Nevertheless, the computation of the previous section showed that
N(n, r)/A was still o(1). Thus, the pseudo-density is a good indicator, but it may
not suffice to decide in critical cases.

6 Application to the Chor-Rivest Cryptosystem

The Chor-Rivest cryptosystem [2] is another low-weight knapsack cryptosystem,
which survived for a long time until Vaudenay [22] broke it, for all the parameter
choices proposed by the authors in [2]. Vaudenay used algebraic techniques spe-
cific to the Chor-Rivest scheme, which do not apply to OTU. His attack recovers
the private key from the public key. Schnorr and Hörner [21] earlier tried to
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decrypt Chor-Rivest ciphertexts by solving the underlying low-weight knapsack
using an improved lattice reduction method which they introduced. They suc-
ceeded for certain choices of moderate parameters, but failed for the parameter
choices proposed in [2]. Despite the fact that the Chor-Rivest scheme is broken,
it is an interesting case with respect to lattice attacks, and this is why we apply
our results to this scheme.

6.1 Description

We give a brief description of the Chor-Rivest cryptosystem [2]. One selects a
small prime q and an integer k such that one can compute discrete logarithms in
GF(qk). One computes the discrete logarithms b1, . . . , bq ∈ Zqk−1 of certain well-
chosen elements in GF(qk), to ensure decryption. The elements of the knapsack
are ai = bi + d where d is an integer chosen uniformly at random in Zqk−1. The
set of plaintexts is the subset of all (m1, . . . ,mq) ∈ {0, 1}q having Hamming
weight k, and the encryption of (m1, . . . ,mq) is:

s =
q∑
i=1

aimi (mod qk − 1).

The public key consists of the q, k and the ai’s.
Strictly speaking, Chor-Rivest involves a modular knapsack problem (modulo

qk−1), rather than the initial knapsack problem. The density of the Chor-Rivest
knapsack is d = q/(k log q), which can therefore be rather high for appropriate
choices of q and k. But all our results on the knapsack problem we have discussed
can be adapted to the modular knapsack problem. First of all, notice that a
modular knapsack can be transformed into a basic knapsack if one can guess the
hidden multiple of qk − 1 involved, that is, if one knows the integer 
 such that:

s+ 
(qk − 1) =

(
q∑
i=1

aimi

)
.

Clearly, 
 can be exhaustively searched, and it is very close to k. In the worst-case
for our reductions to lattice problems, the number of oracle calls will increase
very slightly.

Alternatively, one can adapt the lattice used in our framework. Consider a
modular knapsack s =

∑n
i=1 aimi (mod A). We replace the lattice L defined by

(1) by the set L of vectors (z1, . . . , zn) ∈ Zn such that:

z1a1 + · · ·+ znan ≡ 0 (mod A). (6)

The set L is a subgroup of Zn and is therefore a lattice. Its dimension is n,
rather than n− 1. It is again well-known that a basis of L can be computed in
polynomial time. This time, we compute in polynomial time integers y1, . . . , yn
such that

s ≡
n∑
i=1

yiai (mod A). (7)
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All of our results, such as Theorems 1–4, can then be adapted to modular knap-
sacks provided some obvious minor changes, which we omit. For instance, in the
statements of Theorems 1–4, the uniform distribution must be over [0,A[, and
we let s =

∑n
i=1 aimi (modA). Naturally, equations (1) and (2) must be replaced

respectively by equations (6) and (7).

6.2 Application

By definition, the pseudo-density of the Chor-Rivest knapsack (with binary en-
coding) is κ = k log2 q/ log2(qk) = 1. We thus conclude that the low-weight
knapsack problems arising from the Chor-Rivest cryptosystem can be efficiently
reduced to SVP and CVP with probability close to 1. In retrospect, it is there-
fore not surprising that Schnorr and Hörner [21] were able to solve certain Chor-
Rivest knapsacks using lattice reduction.

Concretely, we can even compute upper bounds on the failure probability
of the reduction for the parameters proposed in [2] and the ones used in [21],
using numerical values of N(n, r), as explained in Section 2.2. The numerical
results are summarized in Tables 1 and 2. Thus, if one had access to SVP-oracles
or CVP-oracles in dimension roughly 200–250, one could decrypt Chor-Rivest
ciphertexts with overwhelming probability for its proposed parameters.

Table 1. Application to the Chor-Rivest parameters proposed in [2]

Value of (q, k) (197,24) (211,24) (256,25) (243,24)
Value of N(q, k)/qk 2−57 2−57 2−60 2−57

Table 2. Application to the Chor-Rivest parameters attacked in [21]

Value of (q, k) (103,12) (151,16)
Value of N(q, k)/qk 2−18 2−29

7 Impact on the Security of Low-Weight Knapsack
Cryptosystems

We have established efficient provable reductions from the low-weight knapsack
problem to two well-known lattice problems: SVP and CVP. However, we do
not claim to break low-weight knapsack cryptosystems like OTU. This is be-
cause there is an experimental and theoretical gap between lattice oracles for
SVP/CVP and existing lattice reduction algorithms (see [17] for a list of refer-
ences), as the lattice dimension increases. The state-of-the-art in lattice reduction
suggests that exact SVP and CVP can only be solved up to moderate dimension,
unless the lattice has exceptional properties (such as having one extremely short
non-zero vector compared to all the other vectors).



Adapting Density Attacks to Low-Weight Knapsacks 57

To roughly estimate the hardness of SVP/CVP in a m-dimensional lattice of
volume V , lattice practitioners usually compare V 1/m

√
m with a natural quan-

tity related to the expected solution: for SVP, the quantity is the norm of the
expected shortest vector, while for CVP, it is the distance between the target
vector and the lattice. If the ratio is not large, it means that the solution is not ex-
ceptionally small: SVP and CVP become intractable in practice if the dimension
is sufficiently high. In the case of a knapsack defined by integers a1, . . . , an, the
work of [16] on the so-called orthogonal lattices show as a simple particular case
that the lattice L defined by (1) has volume V = (

∑n
i=1 a

2
i )

1/2/ gcd(a1, . . . , an).
Thus, with overwhelming probability, V ≈ A = maxi ai. Since the dimension
of L is n − 1, we need to consider V 1/(n−1) ≈ 2(log2A)/(n−1) ≈ 21/d where d
is the usual knapsack density. The quantity is thus V 1/(n−1)

√
n− 1 ≈ 21/d√n.

When dealing with a low-weight knapsack of weight r =
∑n

i=1m
2
i , this quantity

is not particularly large compared to the quantity
√
r corresponding ot the so-

lution, unless r is extremely small. This indicates that by taking a sufficiently
high dimension n and a not too small r (which is also important to avoid simple
dimension reduction methods like [8]), the corresponding lattice problems should
be hard.

One may wonder how to select the lattice dimension to guarantee the hard-
ness of SVP and CVP in practice. Current experimental records in lattice com-
putations seem to depend on the type of lattices. For instance, Schnorr and
Hörner [21], using what is still the best lattice reduction algorithm known in
practice, failed to decrypt Chor-Rivest ciphertexts for its suggested parameters,
which correspond to a lattice dimension around 200–250. Bleichenbacher and
Nguyen [1] reported similar problems with a dense 160-dimensional lattice. On
the other hand, Nguyen [13] broke the GGH-challenge in dimension 350, but
not in dimension 400. The record computation for breaking the NTRU cryp-
tosystem [4] is a SVP computation in dimension 214 by May (see [8]), while the
smallest NTRU parameter currently proposed corresponds to a 502-dimensional
lattice. Thus, in order to propose concrete parameters for OTU, it would be
useful to gather experimental data with the best reduction algorithms known
(keeping track of recent development such as [15]). Besides, SVP and CVP in-
stances arising from knapsack problems could serve as a useful benchmark to
test and design new lattice reduction algorithms.
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Abstract. In this paper, we propose a efficient and secure point mul-
tiplication algorithm, based on double-base chains. This is achieved by
taking advantage of the sparseness and the ternary nature of the so-
called double-base number system (DBNS). The speed-ups are the re-
sults of fewer point additions and improved formulæ for point triplings
and quadruplings in both even and odd characteristic. Our algorithms
can be protected against simple and differential side-channel analysis
by using side-channel atomicity and classical randomization techniques.
Our numerical experiments show that our approach leads to speed-ups
compared to windowing methods, even with window size equal to 4, and
other SCA resistant algorithms.

1 Introduction

Elliptic curve cryptography (ECC) [24, 21] has rapidly received a lot of atten-
tion because of its small key-length and increased theoretical robustness (there is
no known subexponential algorithm to solve the ECDLP problem, which is the
foundation of ECC). The efficiency of an ECC implementation mainly depends
on the way we implement the scalar or point multiplication; i.e., the compu-
tation of the point kP = P + · · · + P (k times), for a given point P on the
curve. A vast amount of research has been done to accelerate and secure this
operation, using various representations of the scalar k (binary, ternary, non-
adjacent form (NAF), window methods (w-NAF) , Frobenius expansion,. . . ),
various systems of coordinates (affine, projective,. . . ) and various randomiza-
tion techniques. See [15, 4, 1] for complete presentations.

In this paper, we propose new scalar multiplication algorithms based on a
representation of the multiplier as a sum of mixed powers of 2 and 3, called the
double-base number system (DBNS). The inherent sparseness of this represen-
tation scheme leads to fewer point additions than other classical methods. For
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c© International Association for Cryptologic Research 2005
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example, if k is a randomly chosen 160-bit integer, then one needs only about 22
summands to represent it, as opposed to 80 in standard binary representation
and 53 in the non-adjacent form (NAF).

In order to best exploit the sparse and ternary nature of the DBNS, we also
propose new formulæ for point tripling and quadrupling for curves defined over
binary fields and points in affine coordinates; and for prime fields using Jacobian
coordinates. Our algorithms can be protected against side-channel attacks (SCA)
by using side-channel atomicity [5] for simple analysis, and, in the odd case, using
a point randomization method proposed by Joye and Tymen [20] for differential
analysis.

2 Background

In this section, we give a brief overview of elliptic curve cryptography (see [1, 3,
4, 15] for more details) and the double-base number system.

2.1 Elliptic Curve Cryptography

Definition 1. An elliptic curve E over a field K is defined by an equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6 (1)

where a1, a2, a3, a4, a6 ∈ K, and Δ �= 0, where Δ is the discriminant of E.

In practice, the Weierstrass equation (1) can be greatly simplified by applying
admissible changes of variables. If the characteristic of K is not equal to 2 and
3, then (1) rewrites

y2 = x3 + ax + b, (2)

where a, b ∈ K, and Δ = 4a3 + 27b2 �= 0.
When the characteristic of K is equal to 2, we use the non-supersingular form

of an elliptic curve, given for a �= 0 by

y2 + xy = x3 + ax2 + b, (3)

where a, b ∈ K and Δ = b �= 0.
The set E(K) of rational points on an elliptic curve E defined over a field

K is an abelian group, where the operation (generally denoted additively) is
defined by the well-known law of chord and tangent, and the identity element is
the special point O, called point at infinity.

If the points on the curve are represented using affine coordinates, as P =
(x, y), both the point addition (ADD) and point doubling (DBL) involve an
expensive field inversion (to compute the slope of the chord or the tangent).
To avoid these inversions, several projective systems of coordinates have been
proposed in the literature. The choice of a coordinates system has to be made ac-
cording to the so-called [i]/[m] ratio between one field inversion and one field mul-
tiplication. It is generally assumed that 3 ≤ [i]/[m] ≤ 10 for binary fields [8, 14]
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and 30 or more for prime fields [12]. In this paper we consider affine (A) coordi-
nates for curves defined over binary fields and Jacobian (J ) coordinates, where
the point P = (X,Y,Z) corresponds to the point (X/Z2,Y/Z3) on the elliptic
curve for curves defined over fields of odd characteristic.

As we shall see, our DBNS-based point multiplication algorithms use sev-
eral primitives. In the following lines, we give a very brief description and the
complexities of some previously published point arithmetic algorithms. We also
propose improved primitives and new formulæ in Section 4.

In the following, we will use [i], [s] and [m] to denote the cost of one inversion,
one squaring and one multiplication respectively. We shall always leave out the
cost of field additions. In binary fields, we assume that squarings are free (if
normal bases are used) or of negligible cost (linear operation). Moreover, for
curves defined over large prime fields, we will assume that [s] = 0.8[m]. Note
that our algorithm can be protected against SCA (see Section 2.2) using side-
channel atomicity [5], which we have shown in the case of prime fields. In this
case, squarings and multiplications must be performed using the same multiplier
in order to be indistinguishable, and we must consider [s] = [m].

For fields of even characteristic, we use affine coordinates and we consider
doublings (DBL), triplings (TPL) and quadruplings (QPL) as well as the com-
bined double-and-add (DA), triple-and-add (TA) and quadruple-and-add (QA).
It is easy to verify that ADD and DBL can be computed in 1[i] + 1[s] + 2[m].
In [11], K. Eisenträger et al. have proposed efficient algorithms for DA, TPL
and TA. By trading some inversions for a small number of multiplications, these
results have been further improved when [i]/[m] > 6 in [6]. In Table 1 below,
we give the complexities of each of these primitives. We also give the break-even
points between the different formulæ.

Table 1. Costs comparisons and break-even points for DA, T and TA over binary
fields using affine coordinates

Operation [11] [6] break-even point
2P ± Q 2[i] + 2[s] + 3[m] 1[i] + 2[s] + 9[m] [i]/[m] = 6
3P 2[i] + 2[s] + 3[m] 1[i] + 4[s] + 7[m] [i]/[m] = 4
3P ± Q 3[i] + 3[s] + 4[m] 2[i] + 3[s] + 9[m] [i]/[m] = 5

When Jacobian coordinates are used and the curve is defined over a prime
field (or a field of odd characteristic > 3), the addition and doubling operations,
that we will denote ADDJ and DBLJ in this paper, require 12[m] + 4[s] and
4[m] + 6[s] respectively. The cost of DBLJ can be reduced to 4[m] + 4[s] when
a = −3 in (2). Also, if the base point is given in affine coordinates (Z = 1), then
the cost of the so-called mixed addition (J + A → J ) reduces to 8[m] + 3[s].
When several doublings have to be computed, as for the computation of 2wP ,
the algorithm proposed by Itoh et al. in [16] is more efficient than w invocations
of DBLJ . In the general case (a �= −3) it requires 4w[m]+(4w+2)[s]. In Table 2,
we summarize the complexity of these different elliptic curve primitives.
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Table 2. Complexity of several elliptic curve operations in Jacobian coordinates for
fields of odd characteristic �= 3

Curve operation Complexity # Registers

DBLJ 4[m] + 6[s] 6
DBLJ , a=−3 4[m] + 4[s] 5
ADDJ 12[m] + 4[s] 7
ADDJ+A 8[m] + 3[s] 7
w-DBLJ 4w[m] + (4w + 2)[s] 7

2.2 Preventing Side-Channel Analysis

Side-channel attacks (SCA) are one of the most serious threat to ECC implemen-
tations. Discovered by Kocher et al. [23, 22], these attacks can reveal a secret
information by sampling and analyzing various side-channel information (e.g.
timing, power consumption, electromagnetic radiations) of a device. SCA can
be divided into two types: simple attacks which observe only one trace given
by a single execution of the algorithm, and differential attacks which use many
observations and try to reveal the secret using statistical tools. Protecting ECC
implementations against SCA has itself become an interesting area of research
and several countermeasures have been proposed. Interested readers can refer
to [4, 1] for details.

In the current work we will use a solution proposed by Chavalier-Mames
et al. in [5] to protect against simple attacks, called side-channel atomicity.
The countermeasure is based on the simple observation that some elementary
operations are side-channel equivalent in the sense that they are indistinguishable
(or can be made so by clever software implementation) from the side-channel.

2.3 Double-Base Number System

The double-base number system (DBNS) [10] is a representation scheme in which
every positive integer k is represented as the sum or difference of {2, 3}-integers
(i.e., numbers of the form 2b3t) as

k =
m∑

i=1

si 2bi3ti , with si ∈ {−1, 1}, and bi, ti ≥ 0 . (4)

Clearly, this number representation scheme is highly redundant. If one considers
the DBNS with only positive signs (si = 1), then certain interesting numerical
and theoretical results can be proved. For instance, 10 has exactly five differ-
ent DBNS representations, 100 has exactly 402 different DBNS representations
and 1000 has exactly 1 295 579 different DBNS representations. Probably, the
most important theoretical result about the double-base number system is the
following theorem from [9].

Theorem 1. Every positive integer k can be represented as the sum of at most

O

(
log k

log log k

)
{2, 3}-integers.
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The proof is based on Baker’s theory of linear forms of logarithms and more
specifically on a result by R. Tijdeman [25].

Some of these representations are of special interest, most notably the ones
that require the minimal number of {2, 3}-integers; i.e., an integer can be rep-
resented as the sum of m terms ({2, 3}-integers), but cannot be represented as
the sum of m− 1 or less. These representations, called canonic representations,
are extremely sparse. Some numerical facts provide a good impression about
the sparseness of the DBNS. The smallest integer requiring three {2, 3}-integers
in its canonic DBNS representations is 23. The next smallest integers requiring
4-to-7 {2, 3}-integers are 431, 18 431, 3 448 733 and 1 441 896 119 respectively.
In all of the above results we have assumed only positive (+1) values for the
si’s. If one considers both signs, then the theoretical difficulties in establishing
the properties of this number system dramatically increase. To wit, it is pos-
sible to prove that the smallest integer that cannot be represented as the sum
or difference of two {2, 3}-integers is 103. The next limit is conjectured to be
4985, but to prove it rigorously, one has to prove that the Diophantine equations
±2a3b ± 2c3d ± 2e3f = 4985 do not have solutions in integers.

Finding one of the canonic DBNS representations, especially for very large
integers, seems to be a very difficult task. Fortunately, one can apply a greedy
algorithm to find a fairly sparse representation very quickly: given k > 0, find
the largest number of the form z = 2b3t less than or equal to k, and apply the
same procedure with k − z until reaching zero. Although the greedy algorithm
sometimes fails in finding a canonic representation1, it is very easy to implement
and it guarantees a representation satisfying the asymptotic bound given by
Theorem 1 (see [9]).

In this paper, we will use a slightly modified version of the greedy algorithm
in order to find a DBNS representation of the scalar k of particular form, well
adapted to fast and secure elliptic curve point multiplication. In the next section,
we introduce the concept of double-base chains and the corresponding scalar
multiplication algorithms.

3 Double-Base Chain and Point Multiplication

Let E be an elliptic curve defined over K, and let P �= O be a point on E(K).
Assuming k is represented in DBNS, our new scalar multiplication algorithm
computes the new point kP ∈ E(K), by using the so-called double-base chain
as defined below.

Definition 2 (Double-Base Chain). Given k > 0, a sequence (Cn)n>0 of
positive integers satisfying:

C1 = 1, Cn+1 = 2u3vCn + s, with s ∈ {−1, 1} (5)

1 The smallest example is 41; the canonic representation is 32+9, whereas the greedy
algorithm returns 41 = 36 + 4 + 1.
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for some u, v ≥ 0, and such that Cm = k for some m > 0, is called a double-
base chain for k. The length m of a double-base chain is equal to the number of
{2, 3}-integers in (4) used to represent k.

Let k > 0 be an integer represented in DBNS as k =
∑m

i=1 si 2bi3ti , with
si ∈ {−1, 1}, where the bi’s and ti’s form two decreasing sequences; i.e., b1 ≥
b2 ≥ · · · ≥ bm ≥ 0 and t1 ≥ t2 ≥ · · · ≥ tm ≥ 0. These particular DBNS
representations allow us to expand k in a Horner-like fashion such that all partial
results can be reused.

We first remark that such a representation always exists (e.g., the binary
representation is a special case). In fact, this particular DBNS representation
is also highly redundant. Counting the exact number of DBNS representations
which satisfy these conditions is indeed a very interesting problem, but the only
partial results we have at the moment are beyond the scope of this paper.

If necessary, such a particular DBNS representation for k can be computed
using Algorithm 1 below, which is a modified version of the greedy algorithm
briefly described in Section 2.3. Two important parameters of this algorithm

Algorithm 1. Conversion to DBNS with restricted exponents
Input k, a n-bit positive integer; bmax, tmax > 0, the largest allowed binary and

ternary exponents
Output The sequence (si, bi, ti)i>0 such that k = m

i=1 si 2bi 3ti , with b1 ≥ · · · ≥
bm ≥ 0 and t1 ≥ · · · ≥ tm ≥ 0

1: s ← 1
2: while k > 0 do
3: define z = 2b3t, the best approximation of k with 0 ≤ b ≤ bmax and 0 ≤ t ≤ tmax

4: print (s, b, t)
5: bmax ← b, tmax ← t
6: if k < z then
7: s ← −s
8: k ← |k − z|

are the upper bounds for the binary and ternary exponents in the expansion of
k, called bmax and tmax respectively. Clearly, we have bmax < log2(k) < n and
tmax < log3(k) ≈ 0.63n. We noticed that using these utmost values for bmax and
tmax do not result in short expansion. Instead, we consider the following heuristic
which leads to very good results: if k = (kn−1 . . . k1k0)2 is a randomly chosen n-
bit integer (with kn−1 �= 0), we initially set bmax = x and tmax = y, where 2x3y

is a very good, non-trivial (with y �= 0) approximation of 2n. (Specific values are
given in Table 7 for n = 160.) Then, in order to get decreasing sequences for bi’s
and ti’s, the new largest exponents are updated according to the values of b and
t obtained in Step 3.

The complexity of Algorithm 1 mainly depends on the way we implement Step
3; finding the best approximation of k of the form z = 2b3t. If we can afford the
storage of all the mixed powers of 2 and 3, this can be implemented very easily
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using a search over an ordered table of precomputed values. Otherwise, we can
use an efficient solution recently proposed in [2] based on continued fractions
and Ostrowski’s number system. In both cases, the complexity of the conversion
is negligible compared to the cost of the scalar multiplication. However, it is
important to remark that, in most cases, the conversion into DBNS might not
be needed. Indeed, in most ECC protocols, the multiplier k is a randomly chosen
integer. We can thus directly generate a random DBNS number in the required
form. Also, when k is part of a secret key, the conversion into DBNS can be done
offline and even further optimized, when computation time is not an issue.

In the next sections, we present two versions of the DBNS-based point multi-
plication algorithm. We shall refer to the even case for curves defined over binary
fields, when affine coordinates are used; and to the odd case for curves defined
over large prime fields (or more generally any field of odd characteristic greater
than 3), when Jacobian coordinates are preferred.

3.1 Point Multiplication in Even Characteristic

In even characteristic, i.e., with P ∈ E(F2n) and k defined as above, Algorithm 2
below, computes the new point kP . We remark that although m−1 additions are

Algorithm 2. Double-Base Scalar Multiplication in even characteristic
Input An integer k = m

i=1 si 2bi3ti , with si ∈ {−1, 1}, and such that b1 ≥ b2 ≥ · · · ≥
bm ≥ 0, and t1 ≥ t2 ≥ · · · ≥ tm ≥ 0; and a point P ∈ E(K)

Output the point kP ∈ E(K)
1: Z ← s1P
2: for i = 1, . . . , m − 1 do
3: u ← bi − bi+1

4: v ← ti − ti+1

5: if u = 0 then
6: Z ← 3(3v−1Z) + si+1P
7: else
8: Z ← 3vZ
9: Z ← 4�(u−1)/2�Z

10: if u ≡ 0 (mod 2) then
11: Z ← 4Z + si+1P
12: else
13: Z ← 2Z + si+1P
14: Return Z

required to compute kP , we never actually use the addition operation (ADD);
simply because we combine each addition with either a doubling (Step 13), a
tripling (Step 6) or a quadrupling (Step 11), using the DA, TA and QA prim-
itives. Note also that the TA operation for computing 3P ± Q is only used in
Step 6, when u = 0. Another approach of similar cost is to start with all the
quadruplings plus one possible doubling when u is odd, and then perform v − 1
triplings followed by one final triple-and-add. We present new algorithms for 4P
and 4P ±Q in Section 4.
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In order to evaluate the complexity of Algorithm 2, we have to count the
number of curve operations; i.e., the number of DBL, DA, TPL, TA, QPL,
QA, which clearly depends on the DBNS representation of the scalar k. In fact,
Algorithm 2 gives us a double-base chain for k, say Km, that we can use to
determine the number of curve operations required to evaluate kP . Let us define
Wn as the number of curve operations required to compute KnP from Kn−1P .
We have K1 = 1 and W1 = 0 (in Step 1, we set Z to P or −P at no cost). Then,
for n > 1 we have

Wn+1 = δu,0 ((v − 1)T + TA)

+ (1− δu,0)
(

v T +
⌊

u− 1
2

⌋
Q+ δ|u|2,0QA+ δ|u|2,1DA

)
, (6)

where δi,j is the Kronecker delta such that δi,j = 1 if i = j and δi,j = 0 if i �= j,
and |u|2 denotes u mod 2 (the remainder of u in the division by 2). The total
cost for computing kP from the input point P is thus given by

Wm =
m∑

i=1

Wi . (7)

In Section 5, we illustrate the efficiency of this algorithm by providing com-
parisons with classical methods and a recently proposed ternary/binary ap-
proach [6].

3.2 Point Multiplication in Odd Characteristic

For fields of odd characteristic > 3, when primitives in Jacobian coordinates are
more efficient, Algorithm 3 below is used to compute kP . It takes advantage
of the known w-DBLJ and ADDJ+A formulæ recalled in Section 2.1 and the
new TPLJ , w-TPLJ and w-TPLJ /w′-DBLJ proposed in Section 4. Its com-
plexity depends on the number of doublings, triplings and mixed additions that
have to be performed. Clearly, the total number of (mixed) additions is equal
to the length m of the double-base chain for k, or equivalently the number of

Algorithm 3. Double-Base Scalar Multiplication in Odd Characteristic > 3
Input An integer k = m

i=1 si 2bi3ti , with si ∈ {−1, 1}, and such that b1 ≥ b2 ≥ · · · ≥
bm ≥ 0, and t1 ≥ t2 ≥ · · · ≥ tm ≥ 0; and a point P ∈ E(K)

Output the point kP ∈ E(K)
1: Z ← s1P
2: for i = 1, . . . , m − 1 do
3: u ← bi − bi+1, v ← ti − ti+1

4: Z ← 3vZ
5: Z ← 2uZ
6: Z ← Z + si+1P
7: Return Z
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{2, 3}-integers in its DBNS representation. Also, the number of doublings and
triplings are equal to b1 ≤ bmax and t1 ≤ tmax respectively. However, the field
cost can be more precisely evaluated if one considers the exact complexity of
each iteration, by counting the exact number of field multiplications and squar-
ings required in Steps 4 and 5 by the consecutive calls to v-TPL and u-DBL.
In Section 5, we make this complexity analysis more precise and we compare
our new approach with several previous algorithms recognized for their effi-
ciency.

4 New Point Arithmetic Algorithms

In this section we present new formulæ for point quadrupling (QPL) and com-
bined quadruple-and-add (QA) in even characteristic, and for triplings (TPLJ ,
w-TPLJ and w-TPLJ /w′-DBLJ ) in odd characteristic, to be used in conjunc-
tion with the proposed point multiplication algorithms.

4.1 New Algorithms for 4P and 4P ± Q in Even Characteristic

We remark that the trick used in [11] by Eisenträger et al., which consists in
evaluating only the x-coordinate of 2P when computing 2P ± Q, can also be
applied to speed-up the quadrupling (QPL) primitive. Indeed, given P = (x1, y1),
where P �= −P , we have 2P = (x3, y3), where

λ1 = x1 +
y1

x1
, x3 = λ2

1 + λ1 + a, y3 = λ1(x1 + x3) + x3 + y1,

and 4P = 2(2P ) = (x4, y4), where

λ2 = x3 +
y3

x3
, x4 = λ2

2 + λ2 + a, y4 = λ2(x1 + x4) + x4 + y1 .

We observe that the computation of y3 can be avoided by evaluating λ2 as

λ2 =
x2

1

x3
+ λ1 + x3 + 1 . (8)

As a result, computing 4P over binary fields requires 2[i]+3[s]+3[m]. Compared
to two consecutive doublings, it saves one field multiplication at the extra cost
of one field squaring. Note that we are working in characteristic two and thus
squarings are free (normal basis) or of negligible cost (linear operation in binary
fields).

For the QA operation, we evaluate 4P ±Q, as 2(2P )±Q using one doubling
(DBL) and one double-and-add (DA), resulting in 3[i] + 3[s] + 5[m]. This is
always better than applying the previous trick one more time by computing
(((P +Q)+P )+P )+P ) in 4[i]+ 4[s]+ 5[m]; or evaluating 3P +(P +Q) which
requires 4[i] + 4[s] + 6[m].

In [6], Ciet et al. have improved an algorithm by Guajardo and Paar [13]
for the computation of 4P ; their new method requires 1[i] + 5[s] + 8[m]. Based
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on their costs, QA is best evaluated as (4P )±Q using one quadrupling (QPL)
followed by one addition (ADD) in 2[i] + 6[s] + 10[m]. In Table 3 below, we
summarize the costs and break-even points between our new formulæ and the
algorithms proposed in [6].

Table 3. Costs comparisons and break-even points for QPL and QA in even charac-
teristic using affine coordinates

Operation present work [6] break-even point
4P 2[i] + 3[s] + 3[m] 1[i] + 5[s] + 8[m] [i]/[m] = 5
4P ± Q 3[i] + 3[s] + 5[m] 2[i] + 6[s] + 10[m] [i]/[m] = 5

4.2 New Point Tripling Formula in Odd Characteristic

In order to best exploit the ternary nature of the DBNS representation we also
propose new point tripling algorithms in Jacobian coordinates, for curves defined
over fields of odd characteristic (�= 3).

To simplify, let us first consider affine coordinates. Let P = (x1, y1) ∈ E(K) be
a point on an elliptic curve E defined by (2). By definition, we have 2P = (x2, y2),
where

λ1 =
3x2

1 + a

2y1
, x2 = λ2

1 − 2x1, y2 = λ1(x1 − x2)− y1 . (9)

We can compute 3P = 2P + P = (x3, y3), by evaluating λ2 (the slope of the
chord between the points 2P and P ) as a function of x1 and y1 only. We have

λ2 =
y2 − y1

x2 − x1

= −λ1 −
2y1

x2 − x1

= −3x2
1 + a

2y1
− 8y3

1

(3x2
1 + a)2 − 12x1y2

1

.

(10)

We further remark that

x3 = λ2
2 − x1 − x2

= λ2
2 − x1 − λ2

1 + 2x1

= (λ2 − λ1)(λ2 + λ1) + x1,

(11)

and

y3 = λ2(x1 − x3)− y1

= −λ2(λ2 − λ1)(λ2 + λ1)− y1 .
(12)

Thus 3P = (x3, y3) can be computed directly from P = (x1, y1), without evalu-
ating the intermediate values x2 and y2.
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By replacing x1 and y1 by X1/Z
2
1 and Y1/Z

3
1 respectively, we obtain the fol-

lowing point tripling formulæ in Jacobian coordinates. Given P = (X1,Y1,Z1),
we compute 3P = (X3,Y3,Z3) as

X3 = 8Y 2
1 (T −ME) +X1E

2

Y3 = Y1(4(ME − T )(2T −ME)− E3)
Z3 = Z1E,

(13)

where M = 3X2
1 + aZ4

1 , E = 12X1Y
2
1 −M2 and T = 8Y 4

1 .
The complexity of this new point tripling algorithm is equal to 6[s]+10[m]. If

one uses side-channel atomicity to resist simple SCA, then this is equivalent to
16[m]. We express TPLJ in terms of atomic blocks Table 11 of Appendix A. In
comparison, computing 3P using the doubling and addition algorithms from [5],
expressed as a repetition of atomic blocks, costs 10[m] + 16[m] = 26[m].

As we have seen in Section 3.2, operation count of Algorithm 3 can be reduced
by improving the computation of consecutive triplings; i.e., expressions of the
form 3wP . From (13), we remark that the computation of the intermediate value
M = 3X2

1 + aZ4
1 requires 1[m] + 3[s] (we omit the multiplication by 3). If we

need to compute 9P , we have to evaluate M ′ = 3X2
3 + aZ4

3 . Since Z3 = Z1E,
we have aZ4

3 = aZ4
1E4 (where E = 12X1Y

2
1 − M2), and aZ4

1 and E2 have
already been computed in the previous iteration. Hence, using these precomputed
subexpressions, we can compute M ′ = 3X2

3 + (aZ4
1 )(E2)2, with 1[m] + 2[s]. The

same technique can be applied to save one multiplication for each subsequent
tripling. Thus, we can compute 3wP with (15w + 1)[m], which is better than w
invocation of the tripling algorithm. The atomic blocks version of w-TPLJ is
given in Table 12 of Appendix A. Note that the idea of reusing aZ4 for multiple
doublings was first proposed by Cohen et al. in [7], where modified Jacobian
coordinates are proposed. It is possible that a similar approach for repeated
triplings can lead to further improvements.

From Table 2, DBLJ normally requires 4[m] + 6[s], or equivalently 10 blocks
of computation if side-channel atomicity is used. However, in our scalar mul-
tiplication algorithm, we remark that we very often invoke w′-DBLJ right af-
ter a w-TPLJ (the only exceptions occur when u = 0, which correspond to a
series of consecutive {2, 3}-integers in the expansion of k having the same bi-
nary exponents). Using subexpressions computed for the last tripling, we can
save 1[s] for the first DBLJ . The next (w′ − 1)-DBLJ are then computed with
(4w′ − 4)[m] + (4w′ − 4)[s]. (The details of these algorithms are given in Ap-
pendix A.) We summarize the complexities of these curve operations in Table 4.

Table 4. Costs of tripling algorithms in Jacobian coordinates for curves defined over
fields of odd characteristic > 3

Curve operation Complexity # Registers

TPLJ 6[s] + 10[m] 8
w-TPLJ (4w + 2)[s] + (11w − 1)[m] 10
w-TPLJ /w′-DBLJ (11w + 4w′ − 1)[s] + (4w + 4w′ + 3)[m] 10
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5 Comparisons

In this section, we compare our algorithms to the classic double-and-add, NAF
and 4-NAF methods, plus some other recently proposed algorithms. More pre-
cisely, we consider the ternary/binary approach from [6] in even characteristic
and two algorithms from Izu et al., published in [17] and [19] for curves defined
over fields of odd characteristic. In the later case, we consider the protected ver-
sion of our algorithm, combined with Joye’s and Tymen’s randomization tech-
nique to counteract differential attacks [20].

If we assume that k is a randomly chosen n-bit integer, it is well known that
the double-and-add algorithm requires n doublings and n/2 additions on average.
Using the NAF representation, the average density of non-zero digits is reduced
to 1/3. More generally, for w-NAF methods, the average number of non-zero
digits is roughly equal to 1/(w + 1). Unfortunately, it seems very difficult to
give such an estimate for the particular DBNS representation we are considering
in this paper. In [9], it is proved that the greedy algorithm (with unbounded
exponents) returns a DBNS expansion which satisfies the asymptotic bound of
O(n/ log n) additions, but this is probably not valid with the restriction that the
exponents form two decreasing sequences. The rigorous determination of this
complexity leads to tremendously difficult problems in transcendental number
theory and exponential Diophantine equations and is still an open problem.

Hence, in order to estimate the average number of {2, 3}-integers required to
represent k, and to precisely evaluate the complexity of our point multiplication
algorithms, we have performed several numerical experiments, over 10000 ran-
domly chosen 160-bit integers (163-bit integers for binary fields). Our results are
presented in the next two sections.

5.1 Binary Fields

The average number of curve operations are presented in Table 5 for 163-bit
numbers. The corresponding numbers of field operations are given in Table 6 for
different ratios [i]/[m], using the best complexities from Tables 1 and 3 in each
case.

In Table 6, we remark that our algorithm requires fewer inversions and multi-
plications than the other methods, and because we are working over binary fields,
squarings can be ignored. We can estimate the cost of each method, in terms

Table 5. Average number of curve operations using the binary, NAF, ternary/binary
and DB-chain approaches for n = 163 bits

Algorithm D DA T TA Q QA

binary 82 81 – – – –
NAF 109 54 – – – –
ternary/binary 38 37 55 – – –
DB-chain (Algo. 2) – 17 35 5 25 14
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Table 6. Average number of field operations using the binary, NAF, ternary/binary
and DB-chain approaches for n = 163 bits, and [i]/[m] = 4, 8

Algorithm [i]/[m] = 4 [i]/[m] = 8
[i] [s] [m] [i] [s] [m]

binary 244 244 407 163 244 893
NAF 217 217 380 163 217 704
ternary/binary 222 222 353 130 333 795
DB-chain (Algo. 2) 215 240 327 117 405 798

Table 7. Average number of terms and the corresponding field complexity of our new
scalar multiplication algorithm obtained using 10000 randomly chosen 160-bit integers
and different largest binary and ternary exponents

bmax tmax m Field cost Complexity (#[m])

57 65 44.52 1[i] + 742.10[s] + 1226.92[m] 1999.02
76 53 38.40 1[i] + 740.59[s] + 1133.58[m] 1904.17
95 41 36.83 1[i] + 755.77[s] + 1077.48[m] 1863.25
103 36 38.55 1[i] + 772.42[s] + 1074.22[m] 1876.25

of the equivalent number of field multiplications, by multiplying the number of
inversions by the ratio [i]/[m]. By doing so, we obtain a speed-up of 21%, 13.5%
and 5.4% over the binary, NAF and ternary/binary approaches respectively for
[i]/[m] = 8; and 14.1%, 4.8% and 4.4% for [i]/[m] = 4.

5.2 Prime Fields

In this section, we report results for 160-bit integers. If the classic methods are
used in conjunction with side-channel atomicity (which implies [s] = [m]), the
average cost of the double-and-add method can be estimated to 159× 10+ 80×
11+41 = 2511[m]; similarly, the NAF and 4-NAF methods require 2214[m] and
1983[m] respectively. The results of our numerical experiments are presented in
Table 7.

In Table 7, we give the average number m of {2, 3}-integers used to represent
a random 160-bit integer, and the average number of field operations performed
by Algorithm 3 for different values of bmax and tmax. (This cost includes the fixed
cost of Joye and Tymen’s randomization.) In order to compare our algorithm
with the side-channel resistant algorithms presented in [17, 19, 18], we also give
the uniform cost in terms of the number of field multiplications. Note that,
because we are using side-channel atomicity to prevent simple analysis, squarings
cannot be optimized and must be computed using a general multiplier. We thus
assume [s] = [m] and [i] = 30[m].

In Table 8, we summarize the complexities of these recognized methods. The
figures for the algorithms from Izu, Möller and Takagi are taken from [17] and [19]
assuming Coron’s randomization technique which turns out to be more efficient
in their case. The cost of our algorithm is taken from the third row of Table 7,
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Table 8. Comparison of different scalar multiplication algorithms protected against
simple and differential analysis

Algorithm Complexity (#[m])

double-and-add 2511
NAF 2214
4-NAF 1983
Izu, Möller, Takagi 2002 [17] 2449
Izu, Takagi 2005 [19] 2629
Double-base chain (Algo. 3) 1863

with bmax = 95 and tmax = 41, which corresponds to the best non-trivial ap-
proximation to 2160 and leads to the best complexity.

We remark that our new algorithm outperforms all the previous recognized
methods. It represents a gain of 25.8% over the double-and-add, 15.8% over the
NAF, 6% over 4-NAF, 23.9% over [17] and 29.1% over [19].

6 Conclusions

In this paper, we have presented fast and secure scalar multiplication algorithms
which take advantage of the sparseness and the ternary nature of the double-
base number system. When Jacobian coordinates are used for curves defined over
fields of odd characteristic (greater than 3), new formulæ for TPLJ and w-TPLJ

have been proposed and expressed in atomic blocks to prevent simple analysis.
Differential attacks are prevented using Joye and Tymen randomization method,
but any countermeasure (allowing for mixed addition) can be integrated to our
point multiplication algorithm. When working over binary fields, improved algo-
rithms for point quadrupling and combined quadruple-and-add have been pre-
sented. Although many theoretical questions remain open about the double-base
number system, e.g. the exact determination of the average number of {2, 3}-
integer, or the number of DBNS representation with decreasing exponents of
a given integer, we have produced a modified greedy algorithm to convert the
multiplier k into the particular DBNS form required by our point multiplication
algorithm. However, we want to make clear the point that in most cases, this
conversion is not necessary. When k is randomly chosen, it suffices to generate
directly a random, convenient DBNS number (with decreasing exponents); and
when k is part of a secret key, the conversion process can be performed offline
and even further optimized. We believe that the proposed point multiplication
algorithms are very competitive contenders for fast and secure ECC implemen-
tations.
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A w-DBLJ and w-TPLJ Algorithms in Atomic Blocks

In this appendix, we give the algorithms for DBLJ (including the case when
a doubling is performed right after a tripling), w-DBLJ , TPLJ and w-TPLJ ,
expressed in atomic blocks.

Table 9. The DBLJ algorithm in atomic blocks. When DBLJ is called right after
w-TPLJ , the blocks Δ2, Δ3 and Δ4 can be replaced by the blocks Δ′

2 and Δ′
3 to save

one multiplication.

DBLJ

Input: P = (X1, Y1, Z1)
Output: 2P = (X3, Y3, Z3)
Init: R1 = X1, R2 = Y1, R3 = Z1

Δ1 R4 = R1 × R1 (X2
1 ) Δ6 R2 = R2 × R2 (Y 2

1 )
R5 = R4 + R4 (2X2

1 ) R2 = R2 + R2 (2Y 2
1 )

∗ ∗
R4 = R4 + R5 (3X2

1 ) ∗
Δ2 R5 = R3 × R3 (Z2

1 ) Δ7 R5 = R1 × R2 (S)
R1 = R1 + R1 (2X1) ∗
∗ R5 = −R5 (−S)
∗ ∗

Δ3 R5 = R5 × R5 (Z4
1 ) Δ8 R1 = R4 × R4 (M2)

∗ R1 = R1 + R5 (M2 − S)
∗ ∗
∗ R1 = R1 + R5 (X3)

Δ4 R6 = a × R5 (aZ4
1 ) Δ9 R2 = R2 × R2 (4Y 4

1 )
R4 = R4 + R6 (M) R7 = R2 + R2 (T )
∗ ∗
R5 = R2 + R2 (2Y1) R5 = R1 + R5 (X3 − S)

Δ5 R3 = R3 × R5 (Z3) Δ10 R4 = R4 × R5 (M(X3 − S))
∗ R2 = R4 + R7 (−Y3)
∗ R2 = −R2 (Y3)
∗ ∗

Δ′
2 R5 = R10 × R10 Δ′

3 R5 = R5 × R9

R1 = R1 + R1 R4 = R4 + R6

∗ ∗
∗ ∗
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Table 10. The w-DBLJ algorithm in atomic blocks. The 10 blocks (or 9 if executed
after w-TPLJ ) of DBLJ (Table 9) must be executed once, followed by the blocks Δ11

to Δ18 which have to be executed w − 1 times. After the execution of DBLJ , the
point of coordinates (Xt, Yt, Zt) correspond to the point 2P ; at the end of the w − 1
iterations, 2wP = (X3, Y3, Z3) = (Xt, Yt, Zt).

w-DBLJ

Input: P = (X1, Y1, Z1)
Output: 2wP = (X3, Y3, Z3)
Init: (Xt, Yt, Zt) is the result of DBLJ (P ), R6 = aZ4

1 , R7 = 8Y 4
1

Δ11 R4 = R1 × R1 (X2
t ) Δ15 R5 = R1 × R2 (S)

R5 = R4 + R4 (2X2
t ) ∗

∗ R5 = −R5 (−S)
R4 = R4 + R5 (3X2

t ) ∗
Δ12 R5 = R6 × R7 (aZ4

t + 8Y 4
t ) Δ16 R1 = R4 × R4 (M2)

R6 = R5 + R5 (aZ4
t ) R1 = R1 + R5 (M2 − S)

∗ ∗
R4 = R4 + R6 (M) R1 = R1 + R5 (Xt+1)

Δ13 R3 = R2 × R3 (YtZt) Δ17 R2 = R2 × R2 (4Y 4
t )

R3 = R3 + R3 (Zt+1) R7 = R2 + R2 (T )
∗ ∗
R1 = R1 + R1 (2Xt) R5 = R1 + R5 (Xt+1 − S)

Δ14 R2 = R2 × R2 (Y 2
t ) Δ18 R4 = R4 × R5 (M(Xt+1 − S))

R2 = R2 + R2 (2Y 2
t ) R2 = R4 + R7 (−Yt+1)

∗ R2 = −R2 (Yt+1)
∗ ∗
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Table 11. The TPLJ algorithm in atomic blocks

TPLJ

Input: P = (X1, Y1, Z1)
Output: 3P = (X3, Y3, Z3)
Init: R1 = X1, R2 = Y1, R3 = Z1

Γ1 R4 = R3 × R3 (Z2
1 ) Γ9 R8 = R6 × R7 (T )

∗ R7 = R7 + R7 (8Y 2
1 )

∗ ∗
∗ ∗

Γ2 R4 = R4 × R4 (Z4
1 ) Γ10 R6 = R4 × R5 (ME)

∗ ∗
∗ R6 = −R6 (−ME)
∗ R6 = R8 + R6 (T − ME)

Γ3 R5 = R1 × R1 (X2
1 ) Γ11 R10 = R5 × R5 (E2)

R6 = R5 + R5 (2X2
1 ) ∗

∗ ∗
R5 = R5 + R6 (3X2

1 ) ∗
Γ4 R9 = a × R4 (aZ4

1 ) Γ12 R1 = R1 × R10 (X1E
2)

R4 = R5 + R9 (M) ∗
∗ ∗
∗ ∗

Γ5 R5 = R2 × R2 (Y 2
1 ) Γ13 R5 = R10 × R5 (E3)

R6 = R5 + R5 (2Y 2
1 ) R8 = R8 + R6 (2T − ME)

∗ R5 = −R5 (−E3)
R7 = R6 + R6 (4Y 2

1 ) ∗
Γ6 R5 = R1 × R7 (4X1Y

2
1 ) Γ14 R4 = R6 × R7 8Y 2

1 (T − ME)
R8 = R5 + R5 (8X1Y

2
1 ) R6 = R6 + R6 (2(T − ME))

∗ R6 = −R6 (2(ME − T ))
R5 = R5 + R8 (12X1Y

2
1 ) R1 = R1 + R4 (X3)

Γ7 R8 = R4 × R4 (M2) Γ15 R6 = R6 × R8 (2(ME − T )(2T − ME))
∗ R6 = R6 + R6 (4(ME − T )(2T − ME))
R8 = −R8 (−M2) ∗
R5 = R5 + R8 (E) R6 = R6 + R5 (4(ME − T )(2T − ME) − E3)

Γ8 R3 = R3 × R5 (Z3) Γ16 R2 = R2 × R6 (Y3)
∗ ∗
∗ ∗
∗ ∗
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Table 12. The w-TPLJ algorithm in atomic blocks. The 16 blocks of TPLJ must
be executed once, followed by the blocks Γ17 to Γ31 which have to be executed w − 1
times. After the execution of TPLJ , the point of coordinates (Xt, Yt, Zt) correspond
to the point 3P ; at the end of the w − 1 iterations, 3wP = (X3, Y3, Z3) = (Xt, Yt, Zt).

w-TPLJ

Input: P = (X1, Y1, Z1)
Output: 3wP = (X3, Y3, Z3)
Init: (Xt, Yt, Zt) is the result of TPLJ (P ), R9 = aZ4

1 , R10 = E2

Γ17 R4 = R9 × R10 (aZ4
t E2) Γ25 R6 = R4 × R5 (ME)

∗ ∗
∗ R6 = −R6 (−ME)
∗ R6 = R8 + R6 (T − ME)

Γ18 R5 = R1 × R1 (X2
t ) Γ26 R10 = R5 × R5 (E2)

R6 = R5 + R5 (2X2
t ) ∗

∗ ∗
R5 = R5 + R6 (3X2

t ) ∗
Γ19 R9 = R4 × R10 (aZ4

t ) Γ27 R1 = R1 × R10 (XtE
2)

R4 = R5 + R9 (M) ∗
∗ ∗
∗ ∗

Γ20 R5 = R2 × R2 (Y 2
t ) Γ28 R5 = R10 × R5 (E3)

R6 = R5 + R5 (2Y 2
t ) R8 = R8 + R6 (2T − ME)

∗ R5 = −R5 (−E3)
R7 = R6 + R6 (4Y 2

t ) ∗
Γ21 R5 = R1 × R7 (4XtY

2
t ) Γ29 R4 = R6 × R7 (8Y 2

t (T − ME))
R8 = R5 + R5 (8XtY

2
t ) R6 = R6 + R6 (2(T − ME))

∗ R6 = −R6 (2(ME − T ))
R5 = R5 + R8 (12XtY

2
t ) R1 = R1 + R4 (Xt+1)

Γ22 R8 = R4 × R4 (M2) Γ30 R6 = R6 × R8 (2(ME − T )(2T − ME))
∗ R6 = R6 + R6 (4(ME − T )(2T − ME))
R8 = −R8 (−M2) ∗
R5 = R5 + R8 (E) R6 = R6 + R5 (4(ME − T )(2T − ME) − E3)

Γ23 R3 = R3 × R5 (Zt+1) Γ31 R2 = R2 × R6 (Yt+1)
∗ ∗
∗ ∗
∗ ∗

Γ24 R8 = R6 × R7 (T )
R7 = R7 + R7 (8Y 2

t )
∗
∗
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Abstract. We give improved upper bounds on the communication com-
plexity of optimally-resilient secure multiparty computation in the cryp-
tographic model. We consider evaluating an n-party randomized function
and show that if f can be computed by a circuit of size c, then O(cn2κ)
is an upper bound for active security with optimal resilience t < n/2 and
security parameter κ. This improves on the communication complexity
of previous protocols by a factor of at least n. This improvement comes
from the fact that in the new protocol, only O(n) messages (of size O(κ)
each) are broadcast during the whole protocol execution, in contrast to
previous protocols which require at least O(n) broadcasts per gate.

Furthermore, we improve the upper bound on the communication
complexity of passive secure multiparty computation with resilience
t < n from O(cn2κ) to O(cnκ). This improvement is mainly due to
a simple observation.

1 Introduction

1.1 Secure Multiparty Computation

Secure multiparty computation (MPC) allows a set of n players to compute an
arbitrary function of their inputs in a secure way. More generally, we consider re-
active computations, which are specified as a circuit with input gates, evaluation
gates (e.g., AND and OR gates), random gates, and output gates.

Security is specified with respect to an adversary corrupting up to t of the
players for a defined threshold t. A passive adversary can inspect the internal
state of corrupted players, an active adversary can take full control over them.
A protocol is t-secure if an adversary attacking the protocol with t corruptions
can only obtain inevitable goals w.r.t. gathering information and influencing
the output of the protocol. I.e. it can only learn the inputs and outputs of the
corrupted players, and, if it is active, only influence the inputs of the corrupted
players.
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1.2 Brief History of MPC

The MPC problem dates back to Yao [Yao82]. Independently Goldreich, Micali
and Wigderson and Chaum, Damg̊ard and van de Graaf [GMW87, CDG87] pre-
sented solutions to the MPC problem. Their protocols provide cryptographic se-
curity against a computationally bounded active adversary corrupting up to t <
n/2 of the players. Later, unconditionally secure MPC protocols were proposed
by Ben-Or, Goldwasser and Wigderson [BGW88] and Chaum, Crépeau and
Damg̊ard [CCD88] for the secure-channels model , where perfectly secure chan-
nels are assumed between every pair of parties. These protocols have resilience
t < n/3. Later Rabin and Ben-Or [RB89] and independently Beaver [Bea91b]
presented protocols with resilience t < n/2 for the secure-channels model with
broadcast channels.

1.3 Previous Work on the Complexity of Secure MPC

There has been substantial research on the complexity of secure MPC, both the
round complexity and the communication complexity in messages and bits.

As for the round complexity of secure MPC, it is now known that in a network
without any setup any functionality can be computed securely in three rounds
and that there exists functionalities which cannot be computed in two rounds
without setup [GIKR02]. Furthermore, it is known that after an initial setup
phase, any functionality can be computed in two rounds [GIKR02, CDI05] and
that there exist functionalities which cannot be computed in one round even
after a setup phase. Even though the resulta in [GIKR02, CDI05] only applies
to a setting where the number of parties is relatively small, the above results go
a long way in resolving the exact round complexity of secure MPC.

As for the communication complexity, the picture is much more open, and
we are far from knowing the exact communication complexity of secure MPC.
The communication complexity of a protocol is measured as the total number of
bits sent by all uncorrupted parties during the protocol execution.

Very few results are known about the lower bound on the communication
complexity, except those which follow trivially from known lower bounds on the
communication complexity of Byzantine agreement — since the model of secure
MPC requires agreement on the output, Byzantine agreement is a special case
of secure MPC. For the upper bound on the communication complexity, much
more is known.

The seminal protocols with passive security tend to be very communication-
efficient, in contrast to their active-secure counterparts, that require high com-
munication complexities. The high communication complexities of active-secure
protocols is mainly due to their intensive use of a Byzantine agreement primi-
tive, which is to be simulated by communication-intensive broadcast protocols.
The most efficient broadcast protocols for t < n communicate Ω(n2
) bits for
broadcasting an 
-bit message [BGP92, CW92]. We denote the communication
complexity for broadcasting an 
-bit message by B(
).
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Over the years, several protocols have been proposed which improve the ef-
ficiency of active-secure MPC. In the cryptographic model (with t < n/2), all
protocols presented so far [GV87, BB89, BMR90, BFKR90, Bea91a, GRR98,
CDM00, CDD00] require every player to broadcast one message for each multi-
plication gate. For a circuit with c gates, this results in a total communication
complexity of Ω(cnB(κ)) = Ω(cn3κ), where κ denotes the security parameter of
the protocol. In the secure-channels model with broadcast with t < n/2, things
are even worse: The most efficient protocol in this model [CDD+99] requires
Ω(n4) κ-bit messages to be broadcast for every multiplication gate.

In the secure-channels model with t < n/3, recently more efficient proto-
cols were proposed [HMP00, HM01]: The latter protocol requires only O(n2)
broadcasts in total (independently of the size of the circuit), and communicates
an additional O(cn2) bits in total. This result is based on the so-called player-
elimination framework , where subsets of players with faulty majority are elimi-
nated. This prevents corrupted players from repetitively disturbing and slowing
down the computation. Unfortunately, the player-elimination framework cannot
capture models with t < n/2: In order to reconstruct an intermediate value (a
wire), at least t + 1 players are required. After eliminating a group of players
with faulty majority, the remaining set of players does not necessarily contain
t + 1 honest players (it might even contain only one single player), hence the
remaining players cannot reconstruct intermediate results — and would have to
restart the whole computation.

1.4 Contributions

We consider upper bounds on the communication complexity of active-secure
MPC protocol in the cryptographic model with t < n/2 and passive-secure
MPC protocols in the cryptographic model with t < n. The most efficient
active-secure protocol for this model is the protocol by Cramer, Damg̊ard and
Nielsen [CDN01]. This protocol requires every player to broadcast O(1) κ-bit
values for each multiplication gate in the circuit. When replacing the broadcast
primitive by the most efficient broadcast protocol with resilience t < n/2 known
today (but unknown at the time when [CDN01] was published), this results in
an overall communication complexity of O(cn3κ) for evaluating a circuit with c
gates. The same upper bound for active security was proved by Jakobsson and
Juels [JJ00] using similar techniques.

We improve the upper bound for active security by constructing a new MPC
protocol for the cryptographic model with resilience t < n/2: The new protocol
requires every player to broadcast O(1) κ-bit values in total, i.e., during the
whole protocol execution. Additionally, the players communicateO(n2κ) bits per
multiplication over the normal channels. This results in a total communication
complexity of O(cn2κ + nB(κ)) = O(cn2κ + n3κ). If every party has just one
input to the circuit, then c ≥ n and O(cn2κ+ n3κ) = O(cn2κ).1

1 For simplicity we specify all bounds in the following for circuits with c = Θ(n).
Bounds for c ≤ n are obtained by letting c = n.
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The new protocol follows the basic paradigm of [CDN01], enhanced with ideas
of [Bea91a] and [HMP00] and several novel technical contributions. Our protocol
essentially improves over the best known upper bound for active security by a
factor n.

Using a simple observation about threshold homomorphic encryption-based
MPC protocols we also present a passive secure protocol with resilience t < n,
communicating only O(cnκ) bits. This improves the best known upper bound
for passive security, as given by the protocol of Franklin and Haber [FH96], by
a factor n.

2 Preliminaries

In this section we discuss our model of security of protocols and we sketch the
technical setting for threshold homomorphic encryption based MPC. The reader
familiar with these issues can safely skip this section.

2.1 Model

We consider n players that are pairwise connected with authenticated open chan-
nels and we assume synchronous communication. The adversary may corrupt any
t of the players. All parties and the adversary are restricted to probabilistic poly-
nomial time. We consider a static adversary, which corrupts all parties before
the protocol execution.

Specifying a multiparty functionality. We assume that the task to be realized is
given by an arithmetic circuit with input, addition, multiplication, randomizing
and output gates, all over some ring M. We consider reactive circuits where
some input gates might appear after output gates. We assume that the circuit
is divided into layers being either input layers, consisting solely of input gates,
evaluation layers consisting of addition, multiplication, and randomizing gates,
and output layers, consisting solely of output gates. An input gate G specifies
its layer and the party that is to supply the value for the gate. A negation gate
specifies its layer and a gate in a previous layer, from which it takes its input.
An addition gate as well as a multiplication gate specifies its layer and two gates
in a previous layer, from which it takes its input. An output gate specifies its
layer and a gate in a previous layer, which is to be revealed.

The ideal evaluation. To explain the multiparty functionality specified by a
reactive circuit, it is convenient to image an ideal process, where the parties are
connected to a fully trusted party with secure channels. The ideal evaluation of
the circuit takes place in a layer by layer manner. For each input layer, for every
gate specifying Pi as the party to contribute the input, Pi sends to the trusted
party an input value v ∈ M over a secure line. If no value is sent, the trusted
party sets v to be 0. For each evaluation layer, the trusted party computes values
of all evaluation gates according to the circuit; Randomizing gates are set to be
uniformly random values v ∈R M and addition gates and multiplication gates
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are evaluated in the expected manner. For each output layer, the trusted party
sends the value of all output gates in the layer to all parties.

Notice that in the ideal evaluation an adversary controlling some set of cor-
rupted parties can only achieve inevitable goals: Of information it only learns the
output and the corrupted parties’ inputs and, if it is active, the only influence
it can exert on the evaluation is changing the corrupted parties’ inputs to the
function.

The goal of a protocol for a circuit is to realize the same functionality in a
real-life network.

The real-life model. We assume that the network has a setup phase. In the setup
phase a setup function s : {0, 1}∗ → ({0, 1}∗)n+1, r �→ (p, s1, . . . , sn) is evaluated
on a random input, and the value p is made public. The value si is only given to
the party Pi. The reason for having a setup phase is that we will be interested
in MPC protocols with active resilience t < n/2, and without a setup phase not
even the Byzantine agreement problem [LSP82], which is a special case of the
general MPC problem, can be solved with active resilience t < n/2. The function
s is specified as part of the general protocol. In particular, s is not allowed to
depend on the circuit.

Defining security. There are many proposals on how to model the security of
an n-party protocol, i.e. for what it means for a protocol to realize the ideal
evaluation of a circuit. Common to most is that the real-life adversary can only
obtain goals comparable to those of an ideal-model adversary, i.e. inevitable
goals.

The comparison of the protocol execution to the ideal evaluation is made by
requiring that the complete view of an adversary attacking the protocol execu-
tion can be simulated given only the view of an adversary attacking the ideal
evaluation with the same corrupted parties. This captures exactly the idea that
the information gathering and the influencing capabilities of the adversary in-
clude nothing extra to that of which the adversary is entitled. This so-called
simulation approach to comparing the protocol execution to the ideal evaluation
originates in the definition of zero-knowledge proof in [GMR85] by Goldwasser,
Micali and Rackoff. For the MPC setting the simulation approach is introduced
by Goldreich, Micali and Wigderson [GMW87] and elaborated on in a large body
of later work [GL90, MR91, Bea91b, BCG93, HM00, Can00, Can01]. Of these
models, the universally composable (UC) security framework of Canetti [Can01]
gives the strongest security guarantees. When proving an upper bound it makes
sense to consider the strongest security notion. The core model in [Can01] is
asynchronous, but contains hints on how to apply it to a synchronous setting as
we consider here. This was e.g. done in [DN03]. It is straight-forward to formally
cast our reactive circuit model in the model of [DN03], and we can prove all our
protocols secure in this model.

For the detail of proofs permitted in this extended abstract we will not need
any formal details about this particular simulation model. The informal proof
sketches given in subsequent sections can easily be extended to fully formal simu-
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lation proofs using by now standard proof techniques for threshold homomorphic
encryption based MPC, see e.g. [CDN01, DN03].

2.2 Homomorphic Encryption Scheme

In our protocols we assume the existence of a semantically secure (in the sense of
IND-CPA [BDPR98]) probabilistic public-key encryption function EZ : M×R →
E, (m,α) �→M , where Z denotes the public key, M denotes a set of messages, R
denotes the set of random strings, and E denotes the set of encryptions. We write
E instead of EZ for shorthand. The decryption function is Dz : E → M,M �→ m,
where z denotes the secret key. Again, we write D instead of Dz.

We require that E is a group homomorphism, i.e., E(m1, α1)⊕E(m2, α2) =
E(m1 + m2, α1 � α2) for the corresponding group operations + in M, � in R,
and ⊕ in E. We require that M is a ring ZM for M > 1. The other groups can
be arbitrary.

In general we use capital letters to denote the encryption of the corresponding
lowercase letters. For a ∈ N and B ∈ E and α ∈ R we write aB as a shorthand
for B⊕· · ·⊕B with a−1 additions and we use αa as a shorthand for α� · · ·�α
with a−1 multiplications. We use A B to denote A⊕(−B), where −B denotes
the inverse of B in E.

We define a ciphertext-randomization function R : E × R → E, (M, γ) �→
(M ⊕ E(0, γ)). If M = E(m,α), then R(M, γ) = E(m,α � γ). If γ is uniformly
random in R and independent of α, then α � γ is uniformly random in R and
independent of α, so R(M, γ) will be a new independent, uniformly random
encryption of m. We say that M ′ = R(M, γ) is a randomization of M .

We also require that there exists a passive secure threshold function sharing
of Dz between n parties. I.e. for a given threshold t we split the decryption
key z in n shares z1, . . . , zn and there exists a share-decryption function SDzi :
E → S,M �→ mi, where S denotes the set of message shares. And there exists
a combining function C : St+1 → M, (m(1), . . . ,m(t+1)) �→ m, with the property
that if M = EZ(m) andm(j) = SDzij

(M) for i = 1, . . . , t+1 and t+1 distinct key
shares zij , then m = C(m(1), . . . ,m(t+1)). We require that the semantic security
holds even when the distinguisher is given any t decryption key shares prior to
the distinguishing game. Furthermore, for all M = EZ(m), given M , m and
any t key shares one can efficiently compute all decryption shares mi = Dzi(M)
for i ∈ {1, . . . , n}. This requirement is made to guarantee that no subset of
the parties of size at most t learns anything from the other parties’ decryption
shares, which they could not have computed themselves from the result of the
decryption.

Realizations. The probabilistic encryption function of Paillier [Pai99], enhanced
by threshold decryption [FPS00, DJ01], satisfies all required properties. This
scheme has M = ZN for an RSA modulus N . A scheme satisfying the require-
ments can also be build based on the QR assumption [CDN01, KY02]. For this
scheme M = Z2.
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2.3 Non-malleable Zero-Knowledge Proofs

The passive secure protocol uses only a threshold homomorphic encryption
scheme as described above. To add robustness and independence of inputs to
the active protocol a number of zero-knowledge proofs of correct behavior and
a non-malleable proof of knowledge are needed. In the following sections we re-
fer to these proofs when they are needed. The proofs can all be realized with
three round protocols with a total of O(κ) bits of communication per proof.
The scheme based on the QR assumption in addition needs the strong RSA
assumption for the proofs to be realizable in O(κ) bits.

Details on how to realize the non-malleable zero-knowledge proofs can be
found in e.g. [CDN01].

3 Active-Secure MPC Protocol for t < n/2

In this section we present our upper bound on the communication complexity
of an active-secure MPC protocol. The upper bound is given by a protocol. We
first give an overview on this protocol, then present the required sub-protocols,
and finally analyze the security and the communication complexity.

3.1 Overview

In the protocol description we use P = {P1, . . . , Pn} to denote the set of parties.
We assume that the parties agree on the circuit before the protocol is run.
The circuit is specified over the ring M of the encryption scheme with input
gates, addition gates, multiplication gates, randomizing gates, and output gates.
The proposed protocol can easily be modified to evaluate Boolean circuits, see
Section 3.7 for details. In the simplest case, when the parties wish to evaluate
a deterministic function, the circuit will consist of a layer of inputs gates, then
the arithmetic gates necessary to evaluate the function, and finally the output
gates. However, we also consider randomized gates, set to an unknown random
values, and reactive circuits, where some players may receive output before some
(other) players provide inputs.

The proposed protocol follows Beaver’s circuit randomization ap-
proach [Bea91a]: In a preparation phase, a pool of random triples (a, b, c), with
c = ab, are generated, encrypted and distributed to all players. In the evaluation
phase, for each multiplication one prepared triple is used. This approach brings
two advantages: First, it might be simpler to generate random products (instead
of multiplying two given values). Second, the load of the multiplication protocol
is shifted to the preparation phase, where all triples are generated in parallel,
and costs can be amortized.

More formally, the protocol proceeds in three phases:

Setup Phase: In the setup phase a random key pair (Z, z) is generated and
the decryption key z is shared among the parties with threshold t, where
t < n/2.
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Preparation Phase: In a preparation phase, cM random triples(
a(i), b(i), c(i)

)
∈ M3 (for i = 1, . . . , cM ) with c(i) = a(i)b(i) are gener-

ated, encrypted, and given to every player in P , where cM denotes the
number of multiplication gates in the circuit. Furthermore, cR random
values r(i) ∈ M (for i = 1, . . . , cR) are generated and encrypted, where cR
denotes the number of random gates in the circuit.

Evaluation Phase: In an evaluation phase, the gates of the circuit are
processed level by level, associating to each gate a random ciphertext en-
crypting the (output) value of the gate. The various gates are handled as
follows: For each input gate, the designated input party broadcasts an encryp-
tion of its input for that gate. Addition gates are handled non-interactively
using the homomorphic properties of the encryption scheme. For each mul-
tiplication gate one prepared triple from the preparation phase is used as
described in [Bea91a]. For each randomizing gate, an encryption of a pre-
pared random value r(i) is used. For the output gates, the ciphertexts are
decrypted using the threshold function sharing of Dz.

In the subsequent sections we describe the phases of the protocol in detail,
and finally analyze the overall complexity of the protocol.

3.2 Setup Phase

The setup function generates ((Z, pk,H), z1, . . . , zn), where (Z, z) is a random
key pair with z split into (z1, . . . , zn) with threshold t, pk is a random key
for a non-malleable trapdoor commitment scheme,2 and H is a random hash
function chosen from a class of collision-resistant hash functions, which is used
by a protocol described in the following section. The setup function also sets
up digital signatures to allow to do Byzantine Agreement (BA) for resilience
t < n/2, as discussed in Section 2.1.

One could consider a simpler setup function which only sets up digital signa-
ture keys. This allows to realize BA for resilience t < n/2, which in turn allows
to run a secure protocol to compute the setup function for the remaining values.
Either a specialized protocol or one of the general MPC protocols. In all cases
this would add a term p = O(poly(n+κ)) to our bounds, where p is independent
of the circuit to be evaluated, giving a bound O(cn2κ+ poly(n+ κ)).

3.3 Preparation Phase

The goal of this phase is to securely generate cM encrypted triples(
A(i),B(i),C(i)

)
(i = 1, . . . , cM ), where a(i) and b(i) are uniformly random values

from M unknown by all parties and c(i) = a(i)b(i), and furthermore, to generate
cR encrypted random values R(i) (i = 1, . . . , cR).

The preparation phase proceeds in three stages: First, cM random fac-
tors A(1), . . . ,A(cM ) are generated. Second, the factors B(1), . . . ,B(cM ) and the

2 To be used in the non-malleable zero-knowledge proofs (see [CDN01]).
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products C(1), . . . ,C(cM ) are computed in parallel. Third, the random values
R(1), . . . ,R(cR) for the randomizing gates are prepared.

In each stage, every player in P contributes to the generation of the values.
However, not all these contributions will be considered. Instead, the players in
P agree on a subset Pok ⊆ P with the following two properties: (1) Every player
in Pok successfully verified the contribution of every other player in Pok, and (2)
the majority of the players in Pok is honest. Given both properties are satisfied,
the output of the stage (so far known only to Pok) can easily be made known
to the players in P \ Pok. This interim reduction of the player set is similar to
the player elimination framework of [HMP00], but opposed to this, can also be
applied to settings with t < n/2.

For the sake of easier presentation, we use a vector notation: We denote
the triples by ( �A, �B, �C) and the random values by �R. Furthermore, we extend
all operators on group elements also to vectors of group elements, where the
semantics is component-wise application of the operator.

Prepare cM Random Ciphertexts �A. We first present a protocol to generate
a single random encryption A, and will then extend it to generate cM random
ciphertexts �A at once. The protocol proceeds as follows:
1. Every player Pi ∈ P selects at random ai ∈ M and computes an encryption

Ai = E(ai).
2. Every player Pi ∈ P sends Ai to every player Pj ∈ P , and proves to Pj

interactively that he knows the plaintext of Ai.
3. Every player Pi broadcasts the hash value hi = H(Ai) among all players in
P , where H denotes the collision-resistant hash function defined in the setup
phase.

4. Initially we set the set of mutually agreeing players to Pok = P . Then, in
sequence, every player Pj ∈ Pok verifies for every player Pi ∈ Pok whether
– the broadcast hash value hi matches the received encryption Ai, i.e.,
hi

?= H(Ai), and
– the bilateral interactive proof by Pi is accepting for Pj .

If Pj ’s verifications succeed for all players Pi ∈ Pok, then Pj broadcasts ⊥
to confirm so. Otherwise, Pj picks the index i of some player Pi ∈ Pok that
failed in Pj ’s verification, and broadcasts i. In the latter case, both players
Pi and Pj are removed from the set Pok of agreeing players, i.e., all players
set Pok ← Pok \ {Pi, Pj}.

5. Every player Pj ∈ Pok sets A =
⊕

Pi∈Pok
Ai and sends it to every Pi ∈ P\Pok.

6. Every player Pi ∈ P \Pok sets A as the majority of received values by players
in Pok.
We first argue that at the end of the protocol, all players in P hold the same

encryption A, and then, that the plaintext of A is unknown to the adversary.
One can easily verify that all honest players in Pok compute the same value A
(otherwise they hold a collision of H). Furthermore, the majority of players in
Pok is honest (at least half of the removed players P \Pok is corrupted), hence in
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Step 5, the majority of players Pj ∈ Pok distributes the correct value A, and all
players in P will decide for the same value A. In order to argue about the secrecy
of the plaintext of A, observe that at least one player in Pok is honest and chooses
ai uniformly at random. Since the encryption scheme is semantically secure3 and
the proof of plaintext knowledge for ai is zero-knowledge, the protocol reveals
zero knowledge about ai to the corrupted parties.4 Since all (corrupted) parties
Pj ∈ Pok gave a non-malleable proof of plaintext knowledge of their contribution
aj , and this proof was accepted by all parties in Pok (at least one of them
being honest), their shares aj are independent of the share ai. It follows that
A is an encryption of a uniformly random value a =

∑
i∈Pok

ai of which the
adversary has zero knowledge. This informal sketch of the security can be turned
into a formal simulation proof using known proof techniques, see e.g. [CDN01,
DN03].

In order to generate cM random ciphertexts �A, the above protocol is slightly
modified:

1. Every player Pi ∈ P selects at random �ai ∈ McM and computes its
component-wise ciphertexts �Ai.

2. Every player Pi ∈ P sends �Ai to every player Pj ∈ P , and proves to Pj
interactively that he knows the plaintext of each component of �Ai.

3. Every player Pi broadcasts the hash value hi = H( �Ai) among all players in
P .

4. Set Pok = P and, in sequence, every player Pj ∈ Pok verifies for every player
Pi ∈ Pok whether

– the broadcast hash value hi matches the received ciphertexts �Ai, i.e.,
hi

?= H( �Ai), and
– all the bilateral interactive proofs by Pi are accepting for Pj .

If Pj ’s verifications succeed for all players Pi ∈ Pok, then Pj broadcasts ⊥
to confirm so. Otherwise, Pj picks the index i of some player Pi ∈ Pok that
failed in Pj ’s verification, and broadcasts i. In the latter case, both players
Pi and Pj are removed from the set of agreeing players, i.e., all players set
Pok ← Pok \ {Pi, Pj}.

5. Every player Pj ∈ Pok sets �A =
⊕

Pi∈Pok
�Ai and sends it to every Pi ∈ P\Pok.

6. Every player Pi ∈ P\Pok sets �A as the majority of received vectors by players
in Pok.

3 Notice that the fact that the decryption key is shared between the parties is no
problem for the semantic security as the adversary can inspect at most t parties;
Since the decryption key is shared with threshold t, the t shares known by the
adversary gives zero knowledge about the decryption key.

4 Here we colloquially distinguish between information and knowledge. Since Ai de-
termines ai clearly the adversary has full information about ai. However, by the
semantic security and the fact that the adversary is polynomial time bounded, it
has zero knowledge about ai.
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The security of this protocol follows immediately from the security of the
previous protocol. The communication complexity of the protocol is O(cMn2κ+
nB(κ)) bits.

Prepare Random Ciphertexts �B and Products �C. The B and C values of
the triples are generated similarly to the A values. For the sake of simplicity, we
present solely the protocol for generating a single triple. The generalization to
vectors of triples is straight-forward along the lines of the protocol for generating
�A.
1. Every player Pi ∈ P selects at random bi ∈ M, computes Bi = E(bi) and

Ci = R(biA).
2. Every player Pi ∈ P sends Bi and Ci to every player Pj ∈ P , and proves

to Pj interactively that he knows the plaintext bi of Bi, and that Ci is a
randomization of biA.

3. Every player Pi broadcasts the hash value hi = H(Bi,Ci) among all players
in P .

4. Set Pok = P and, in sequence, every player Pj ∈ Pok verifies for every player
Pi ∈ Pok whether
– the broadcast hash value hi matches the received ciphertexts (Bi,Ci),

i.e., hi
?= H(Bi,Ci), and

– all the bilateral interactive proofs by Pi are accepting for Pj .
If Pj ’s verifications succeed for all players Pi ∈ Pok, then Pj broadcasts ⊥
to confirm so. Otherwise, Pj picks the index i of some player Pi ∈ Pok that
failed in Pj ’s verification, and broadcasts i. In the latter case, both players
Pi and Pj are removed from the set of agreeing player, i.e., all players set
Pok ← Pok \ {Pi, Pj}.

5. Every player Pj ∈ Pok sets B =
⊕

Pi∈Pok
Bi, and C =

⊕
Pi∈Pok

Ci, and sends
them to every Pi ∈ P \ Pok.

6. Every player Pi ∈ P \Pok sets B and C to be the majority of received values
from players in Pok.
The correctness of the resulting triple (A,B,C) follows directly from the

distributive law in groups. The security of the protocol can be argued along the
lines of the proof of the previous protocol.

The above protocol can be extended to vector-values in a straight-forward
manner. The communication complexity of the extended protocol is O(cMn2κ+
nB(κ)) bits.

Prepare cR Random Values �R. The random �R vector is prepared exactly as
the random �A vector, only the corresponding �B and �C vectors are not generated.

3.4 Evaluation Phase

In the evaluation phase, the circuit is evaluated layer by layer. In the following,
we give the protocols for evaluating the different types of gates.
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Input Gates. When a party Pi is to provide an input for some gate G, the
parties proceed as follows:
1. Pi computes Vi = E(vi) broadcasts Vi.
2. Pi bilaterally proves (in zero-knowledge) knowledge of plaintext vi to every

player Pj ∈ P .
3. Each Pj ∈ P , lets bj = 1 if the proof from Pi was accepted and lets bj = 0

otherwise.
4. The parties in P run a BA with input bj from Pj . Let the output be b ∈ {0, 1}.
5. If b = 1, then each Pj ∈ P sets the encryption for gate G to be the broadcast

value Vi; Otherwise, Pj sets the encryption for gate G to be E(0, e), where 0
and e denotes the neutral elements from M respectively R.
After this protocol the input gate is defined to the same value by all parties.

The proof of knowledge given by Pi serves the purpose of guaranteeing indepen-
dence of inputs. The privacy of the protocol follows from the semantic security
of the encryption scheme, using that the proofs are zero-knowledge.

Using that the communication complexity of one zero-knowledge proof is
O(κ), the communication complexity for giving one input is seen to be O(B(κ)+
nκ+ B(1)). Assuming that B(κ) ≥ nκ, this is O(B(κ)).

Output Gates. When the value of some gate G (with associated ciphertext
M) is to be revealed towards a party Pj , the parties proceed as follows:
1. Every player Pi ∈ P computes mi = SDzi(M) and sends it to Pj .
2. Every player Pi ∈ P gives a zero-knowledge proof to every other party Pj

that mi is a correct i’th decryption share.
3. Pj collects t + 1 decryption shares for which the proof of correct decryption

share succeeded and combine them to obtain m = D(M).
Since at least t+ 1 parties are honest, Pj will be able to collect t+ 1 shares

where the proof succeeded. By the soundness of the zero-knowledge proof all
collected shares will be correct, except with negligible probability. By the way
the values (z1, . . . , zn) were set up and the requirements on the share combining
algorithm have that indeed m = Dz(M).

The privacy of the protocol follows from the requirements on the threshold
decryption protocol: from the result of the protocol and the key shares of the
t corrupted parties, the adversary could compute the key shares of the honest
parties on its own. Therefore the protocol leaks zero knowledge about the key
shares of the honest parties.

The communication complexity is seen to be O(nκ) per output gate and party
to learn the output. If all parties are to learn the output, the communication
complexity is O(n2κ) per output gate.

If only one party is to learn the output and the output should be private,
the decryption shares sent to Pj should be sent over private channels. This does
not affect the order of the communication complexity.

Addition Gates. For an addition gate G where the input gates of G has
associated ciphertexts M1 and M2, the associated ciphertext of G is set to be
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MG = M1 ⊕ M2. As the ⊕-operator is deterministic, all parties agree on the
encryption MG, and by the homomorphic properties of ⊕ it holds that D(MG) =
D(M1) + D(M2).

Multiplication Gates. For a multiplication gate G where the two input gates
have associated ciphertexts M1 and M2, the associated ciphertext MG of G is
computed as follows:
1. Every party Pi ∈ P picks the prepared triple (A,B,C) that is associated with

the gate.
2. Every party Pi ∈ P computes D = A⊕M1 and E = B ⊕M2.
3. Every party Pi ∈ P invokes the decryption protocol from Section 3.4 on D

and E. Denote the results by d respectively e.
4. Every party sets MG = (eM1) (dB) ⊕ C.

The above way to use a prepared triple is from [Bea91a].
We argue that the protocol maintains agreement on the associated cipher-

texts. Assume that the parties agree on M1 and M2. By the fact that ⊕ is a
function, the parties will agree on D and E. Therefore the decryption protocol
will return correct and consistent d and e values to the parties. Using that  
and ⊕ are functions it then follows that the parties will agree on MG.

We then argue the correctness of the protocol. By the correctness of the
decryption protocol and the homomorphic properties of ⊕ and  we have that
D(MG) = em1−db+c = (b+m2)m1−(a+m1)b+ab = m1m2, wherem1 = D(M1)
and m2 = D(m2).

For the privacy, the only values that are revealed are d and e. However, since
a and b are independent, uniformly random elements from M unknown to any
adversary which inspects at most t parties, it follows that d and e are uniformly
random and independent of m1 and m2 in the view of the adversary. Therefore
the protocol leaks zero knowledge about m1 and m2.

The communication complexity per gate is that of two invocations of the
decryption protocol, i.e. O(n2κ).

Randomizing Gates. When the circuit is evaluated, the randomizing gates
should be initialized by uniformly random values. To reflect the ideal evalua-
tion the random values used for initialization should be unknown to all parties.
Therefore, to every random gate, one random encrypted value R(i) is associ-
ated.

3.5 Complexity Analysis

In this section we consider the complexity of the active-secure protocol. Sum-
ming the complexities stated in the presentation of the protocol gives us a total
complexity of O(((cM + cR)n2κ+nB(κ))+ cIB(κ)+ cOn

2κ+ cMn
2κ), where cM

denotes the number of multiplication gates, cR denotes the number of randomiz-
ing input gates, cI denotes the number of input gates, and cO denotes the number
of output gates. This is seen to be O((cM + cR + cO)n2κ+ nB(κ) + cIB(κ)).
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In the synchronous model with t < n/2, broadcasting (and/or doing BA on) a
total of 
 bits can be done with complexity O(n2
+ n3κ) under the strong RSA
assumption and the assumption the RSA signatures are secure (c.f. [Nie03]).
We have n + cI broadcasts of κ-bit messages, giving 
 = (n + cI)κ and (a
bit informally) nB(κ) + cIB(κ) = O(n2(n + cI)κ + n3κ) = O(cIn2κ + n3κ).
This immediately gives us the bound O((cM + cR + cO + cI)n2κ+ n3κ) on the
communication complexity of the overall protocol.

Theorem 1. Under the QR assumption (or the DCR assumption), the strong
RSA assumption and the assumption that RSA signatures are secure, O(cn2κ)
is an upper bound on the communication complexity of an active-secure protocol
with resilience t < n/2 for evaluating an n-party function with arithmetic circuit
complexity c ≥ n.

3.6 Ongoing Computations

The result for active security assumes that the size of the circuit is known before
the computation starts, to allow for a preparation phase. For an on-going reactive
computation, even the circuit might be specified as the computation unfolds and
in particular the length of the computation might not be specified on beforehand.
Our result can be extended to such a setting. We simply hold a pool of prepared
triples, and each time it dries out we prepare at least twice as many triples as last
time. After polynomially many activations, this gives a maximum of O(log(κ))
runs of the preparation phase and prepares at most twice as many triples as
needed. This gives the bound O(cn2κ+ n3κ log(κ)).

3.7 Boolean Circuits

The proposed protocol evaluates a circuit of arithmetic gates, where the under-
lying ring is the message space of the encryption scheme. We can extend the
protocol to evaluate a Boolean circuit, even when the message space of the en-
cryption scheme is larger (e.g., when using Paillier encryption). In the sequel,
we present the necessary modifications for Boolean circuits over AND and NOT
gates. The protocol for Boolean circuits has the same communication complexity
as the protocol for arithmetic circuits.

Input gates. In the input protocol, the player providing input must prove that
the input is in {0, 1}. Therefore, the zero-knowledge proof for proving plaintext
knowledge is augmented by a zero-knowledge proof for proving that the plaintext
is either 0 or 1.

AND-gates. As it is guaranteed that all wires are encryptions of either 0 or 1,
AND-gates can be realized as multiplication gates.

NOT-gates. A NOT-gates can be computed by using the homomorphism of the
encryption scheme. Given an encrypted bit B, its negation can be computed
as E(1)  B. Every player can compute the encrypted value of a negation gate
locally, without communicating with other players.
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Randomizing gates. It must also be ensured that the output of randomizing
gates are in {0, 1}. If M > 2 (as is the case for Paillier’s cryptosystem), and we
want to stay within the new upper bound, a new protocol is needed for this.

0. Let �R(0) = E(�0, �e) be a constant vector of length cR, where each element is
the constant encryption E(0, e). Let Pok = P , let Pdone = ∅, let iprev = 0, let
inext = 1 and let Prev be an empty stack.

1. Pinext computes �R(inext) from �R(iprev) as follows: For each element R(iprev) in
�R(iprev), pick α ∈R R and b ∈R {0, 1} and, if b = 0, let R(inext) = E(0, α) ⊕
R(iprev), and if b = 1, let �R(inext) = E(1, α) R(iprev).

2. Pinext broadcasts the hash value hi = H(�R(inext)) among all players in P .

3. Pinext sends �R(inext) to every player Pj ∈ P , and gives to Pj (for each element
R(iprev)) a non-malleable zero-knowledge proof of knowledge of α for which
either R(inext) = E(0, α)⊕R(iprev) or R(inext) = E(1, α) R(iprev).

4. The parties P enter a BA on whether to accept the proofs given by Pinext :
Each party Pj ∈ P enters with bj = 1 iff in the above step it received �R(inext)

such that hi = H(�R(inext)) and the bilateral proof from Pinext to Pj was
accepted.

5. – If the outcome of the BA is b = 0, then all parties in P set Pok =
Pok \ {inext} and set inext to be the smallest i ∈ Pok \ Pdone.

– If the outcome of the BA is b = 1, then all parties in P set Pdone =
Pdone ∪ {inext}, push iprev on Prev, let iprev = inext and set inext to be
the smallest i ∈ Pok \ Pdone.

In both cases, if Pok \ Pdone = ∅, then go to Step 8.
6. The party Pinext broadcasts a bit b ∈ {0, 1}, where b = 0 iff iprev �= 0 and
Pinext never received �R(iprev) such that hiprev = H(�R(iprev)) (in Step 3).

7. – If iprev = 0 or Pinext broadcast 1, then all parties in P go to Step 1.
– If iprev �= 0 and Pinext broadcast 0, then all parties set Pok = Pok \
{iprev, inext}. Then iprev is set to be the top of Prev (which is then popped)
and inext is set to be the smallest i ∈ Pok \Pdone (if Pok \Pdone = ∅, then
go to Step 8.) Then all parties in P go to Step 6.

8. All parties in P which knows �R(iprev) such that hiprev = H(�R(iprev)) sends
�R(iprev) to all parties.

9. All parties in P waits for a value �R(iprev) for which hiprev = H(�R(iprev)) to
arrive and outputs �R(iprev).

We first argue termination and agreement: It is straight-forward to verify that
the procedure reaches Step 8. Since at this point Piprev at some point broadcast
hiprev and had its proof accepted by a majority of the parties in P , at least
one honest party must have received �R(iprev) such that hiprev = H(�R(iprev)). At
least that party will echo �R(iprev) in Step 8 and thus all parties will terminate in
Step 9. Since hiprev is a broadcast value, all parties will output the same value
�R(iprev) unless a collision under H is found.
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We then argue that �R(iprev) is a vector of encryptions of random bits of
which the adversary has zero knowledge. At termination we clearly have that
Pok ⊆ Pdone. Furthermore, at termination Pok will contain a majority of honest
parties and there exists a sequence i0 = 0 < i1 < · · · < il−1 < il ≤ n such that
Pok = {i1, . . . , il} and for m = 1, . . . , l, the vector �R(im) was computed by Pim
from �R(im−1) as specified in Step 1. Since the proof of knowledge ensures that
each party “flips” the encryptions independently and at least one party in Pok

is honest it follows that �R(il) is a vector of encryptions of independent random
bits unknown to the adversary.

Each party broadcasts (at most) κ bits in Step 2 and one bit in Step 6.
Besides this n BAs are executed and each party Pinext sends the vector �R(inext)

to all parties and gives the non-malleable zero-knowledge proofs of knowledge
in Step 3. Assuming that B(k) dominates the cost of one Byzantine agreement,
the total communication complexity of this is O(cRn2κ+ nB(κ)), as desired.

The above protocol can be seen as a strengthening of the protocol used in the
original preparation phase to deal with large values being build sequentially from
large contributions from all parties. Similar protocols can be used to prepare
c gates for the Mix-and-Match protocol in [JJ00] with complexity O(cn2κ +
nB(κ)) and for mixing c ciphertext in anonymizing networks and voting (with n
servers) with complexity O(cn2κ + nB(κ)). In both cases an optimization over
Θ(cnB(κ)) = Θ(cn3κ).

4 Passive-Secure MPC Protocol for t < n

In this section we present an upper bound on the communication complexity of
a passive secure MPC protocol. Again the upper bound is given by a protocol.
As opposed to the active secure protocol, the passive protocol is not based on
novel technical contributions but rather a neat observation.

The essential observation is that from the threshold homomorphic encryp-
tion based MPC protocol of [CDN01] each gate has a short publicly known
representation, namely the associated encryption. This is opposed to e.g. secret
sharing based protocols, where the representation is exactly shared among the
parties and therefore inherently large (Θ(nκ)). This observation allows to des-
ignate some party Pking which drives the protocol and evaluates the circuit gate
by gate, with help of the other parties.

The protocol proceeds along the lines of the active protocol, though no prepa-
ration phase is needed anymore. The details are given below.

Setup phase. In the setup phase the setup function s generates a random key
pair (Z, z), splits z into (z1, . . . , zn) with threshold t = n − 1, sets p = Z and
sets si = zi for i = 1, . . . , n. Furthermore one designated party Pking is chosen,
called the king, e.g. Pking = P1.

Input gates. When a party Pi is to provide the input vi ∈ M, the parties proceed
as follows:
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1. Pi selects αi ∈R R, computes and sends Vi = E(vi, αi) to Pking.
2. Pking sends Vi to all parties.

The privacy of the protocol follows from the semantic security of the encryp-
tion scheme.

Output gates. The value of some gate G with associated ciphertext M is revealed
as follows:
1. Every party Pi computes and sends mi = SDzi(M) to Pking.
2. Pking computes m = C(m1, . . . ,mn) and sends it to all parties.

The security of this protocol is argued along the lines of the active-secure
protocol. The communication complexity is O(nκ).

If the value is to be revealed privately to only one party Pj , then the
parties send their decryption shares mi privately to Pj , who computes m =
C(m1, . . . ,mn).

Addition gates. The king computes the value of addition gates using the homo-
morphism of the encryption scheme.

Multiplication gates. For a multiplication gate G where the two input gates
have associated ciphertexts M1 and M2, the associated ciphertext MG of G is
computed as follows:
1. Every party Pi ∈ P selects ai ∈R M, αi, βi ∈R R, computes Ai = E(ai, αi)

and Ci = R(aiM2, βi), and sends Ai and Ci to Pking.
2. Pking computes A = M1

⊕
Pi∈P Ai and C =

⊕
Pi∈P Ci and sends A and C

to all parties,
3. Every party Pi ∈ P computes its decryption share ai = SDzi(A) and sends

it to Pking.
4. Pking decrypts a = C(a1, . . . , an), computes GM = aM2  C and send it to

all parties.
The security is argued as for the active-secure protocol. The communication

complexity is O(nκ).

Randomizing gates. An encryption of a random value m, unknown to the ad-
versary, is computed as follows:
1. Every party Pi ∈ P selects ai ∈ M, αi ∈ R, computes Ai = E(ai, αi) and

sends it to Pking.
2. Pking computes A =

⊕
Pi∈P Ai and sends it to all parties.

Complexity analysis. It is straight forward to verify that the total number of
bits sent by the parties is O((cI + cM + cO + cR)nκ).

Theorem 2. Under the QR assumption (or the DCR assumption), O(cnκ) is an
upper bound on the communication complexity of a passive secure protocol with
resilience n − 1 for evaluating an n-party randomized function with arithmetic
circuit complexity c.
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5 Conclusions and Open Problems

We presented new upper bounds on the communication complexity of optimally
resilient active-secure MPC and optimally resilient passive-secure MPC. In both
cases we improved the previously best bounds by a factor n. The improvement of
the bound for active security was based on a combination of previous techniques
for efficient MPC along with several novel technical contributions, as opposed to
the improvement of the bound for passive security, which was based on a simple
observation.

Our bounds were based either on the DCR assumption or on the QR as-
sumption (in both cases requiring, additionally the strong RSA assumption and
the assumption that RSA signatures are secure for active security). Even though
these assumptions are standard assumptions, they are very specific. It is an in-
teresting open problem to achieve the same bounds under general assumptions,
as e.g. the existence of one-way functions. One approach would be to investi-
gate the efficiency of active-secure information-theoretic MPC with t < n/2. It
is known that the player elimination framework does not apply to this thresh-
old [HMP00, HM01]. The ideas presented here might however allow to obtain
similar results in this model. The new upper bound for passive security however
seems very challenging to obtain under general assumptions.

It is an interesting open problem to obtain the new bound for also adaptive
security. In [DN03] an adaptively secure version of the protocol from [CDN01]
was presented. However, the techniques from [DN03] do not allow to make our
protocol here adaptive secure while staying within the bound O(cn2κ + n3κ).
We stress that although our protocol cannot be proven adaptively secure (we
cannot construct a simulator), there is no obvious way for an adaptive adversary
to violate the correctness or the security of the computation. This is in contrast
to some folklore trick for improving efficiency, namely to have the players agree
on a small random subset of players, who then perform the whole protocol.5

In this approach, an adaptive adversary can trivially violate both privacy and
correctness of the protocol, simply by corrupting the majority (or even all) of
the players in the subset, once this is randomly chosen.

Another interesting open problem is to prove non-trivial lower bounds on the
communication complexity of secure MPC.
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Abstract. We present generic frameworks for constructing efficient
broadcast encryption schemes in the subset-cover paradigm, introduced
by Naor et.al., based on various key derivation techniques. Our frame-
works characterize any instantiation completely to its underlying graph
decompositions, which are purely combinatorial in nature. This abstracts
away the security of each instantiated scheme to be guaranteed by the
generic one of the frameworks; thus, gives flexibilities in designing
schemes. Behind these are new techniques based on (trapdoor) RSA ac-
cumulators utilized to obtain practical performances.

We then give some efficient instantiations from the frameworks. Our
first construction improves the currently best schemes, including the one
proposed by Goodrich et.al., without any further assumptions (only pseudo-
random generators are used) by some factors. The second instantiation,
which is the most efficient, is instantiated based on RSA and directly im-
proves the first scheme. Its ciphertext length is of order O(r), the key size
is O(1), and its computational cost is O(n1/k log2 n) for any (arbitrary
large) constant k; where r and n are the number of revoked users and all
users respectively. To the best of our knowledge, this is the first explicit
collusion-secure scheme in the literature that achieves both ciphertext size
and key size independent of n simultaneously while keeping all other costs
efficient, in particular, sub-linear in n. The third scheme improves Gen-
try and Ramzan’s scheme, which itself is more efficient than the above
schemes in the aspect of asymptotic computational cost.

Keywords:Broadcast Encryption, Revocation Scheme, Subset-cover,Op-
timal Key Storage.

1 Introduction

Broadcast encryption (BE) involves 1 broadcaster and n receivers. Each receiver
is given a unique private key. The broadcaster is given a private broadcaster
key. The broadcaster wishes to broadcast messages to a designated set P ⊆ N =
{1, ..., n} of receivers. Any receivers in P should be able to decrypt the broadcast
message using only its private key while a coalition F ⊆ N � P (revoked users)
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should not be able to do so. Such a scheme is motivated largely by pay-TV
systems, the distribution of copyrighted materials such as CD/DVD. Broadcast
encryption schemes were first formalized by Fiat and Naor [13]. Since then, many
variants of the basic problem were proposed. The arguably most challenging
variant is the one which considers the case where P can be an arbitrary subset
in N while the collusion is considered the full one, N � P , and also that the
private key stored by each user is fixed from the initialization time (stateless
receiver). The main goal is to construct efficient schemes that satisfy the above
variant and require only small size of both the header of broadcast and the
private key as a function of n or r := n − |P |. The header is the encapsulation
of session key that is used to encrypt data.

An efficient solution which is considered a ground work to many consequences
is the Complete (binary) Subtree scheme (CS) by Naor et al. [18]. Schemes
which were considered the current state of the art (before two very recent works,
see below) are: (i) Pseudo-random sequences generator (PRSG) based schemes
such as the Subset Difference scheme (SD) [18], its refinement–the Layered SD
scheme (LSD) [14], and their somewhat generalizations in [4]. (ii) RSA accumu-
lator based schemes such as Asano’s scheme [2], and its optimal generalizations
in [3,11]. See Table 1 for the efficiency comparison. No scheme above could
achieve simultaneous small header size independent of n, small key size of or-
der O(log n), while keeping computational cost and all other costs grow only
sub-linear in n.

More recently, Goodrich et al. [12] and Wang et al. [20] independently pro-
pose more efficient schemes that break the above barrier. In particular, they
achieve simultaneously header size of order O(r) and key size of O(log n), and
computational cost of O(n1/k) for arbitrary constant k. (In fact, in [20] only the
case when k = 1, 2 is considered).

In this paper, we propose generic frameworks for constructing broadcast en-
cryption and give some efficient instantiations. One of our instantiations
(Instantiation 2 in Table 1) achieves not only small header size as of order O(r)
but also small key size as O(1) with no extra non-secret storage, while keep-
ing computational cost O(n1/k log2 n) which grows only sub-linear in n. Thus
this is the first scheme that achieves header and private key size independent
of n while keeping computational cost sub-linear in n, with no extra non-secret
storage. The contributions in more detail are described below.

1.1 Our Contributions

In the general subset-cover paradigm of [18], which includes almost all of the
above schemes, it has been implicitly understood that one can separate the design
of such a scheme into two seemingly orthogonal problems namely: designing
combinatorial set system which enables subset covering (this step determines the
header size), and defining computational key derivation (this step determines the
private key size and computational cost). This is first explicitly characterized by
Gentry-Ramzan [11] for the case of Akl-Taylor’s RSA based key derivation [1].
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Table 1. Comparison among previous schemes and our instantiations. (k is an arbitrary
parameter, a is an arbitrary constant).

Header size Priv. key size Comp. cost (bit complexity)
Complexity ≤ Prime-gen Others

CS [18] O(r log(n
r
)) log n + 1 - O(log log n)

PRSG or OWF -based ↓
SD [18] O(r) 2r−1 O(log2 n) - O(log n)
LSD [14] O(r) 2kr−k O(log1+1/k n) - O(log n)
GST04 [12] O(r) 4kr 2 log n - O(n1/k)
WNR04 [20] O(r) 4r 2 log n - O(n1/2)
Instantiation 1 O(r) 2kr ≤ log n + 1 - O(n1/k)
RSA Accumulator -based ↓
Asano [2] O(r loga(n

r
)+r) 1 O(2a log5

a n) O(2a log2
a n)

GR04 [11] O(r loga(n
r
)+r) 1 O(a log5

a n) O(a log2
a n)

Instantiation 3 O(r loga(n
r
)+r) 1 O(1) O(a log n)

(SD)acc O(r) 2r−1 1 O(n log4 n) O(n)
Instantiation 2 O(r) 2kr 1 O((log5 n)/k5)O((n1/k log2 n)/k)

Framework. In this paper, we characterize the two orthogonal components
in general. We then explicitly present three generic sub-frameworks for com-
putational key derivation component (generic as arbitrary set systems are ap-
plicable): PRSG based technique (re-formalizing from [4] so as to be consistent
with presentations here), non-trapdoor- and trapdoor- RSA Accumulator based
techniques. The non-trapdoor RSA based one is a new optimal generalization of
Akl-Taylor’s technique and is further improved by the trapdoor RSA based one.

The main issue is that we characterize three sub-frameworks so that such
instantiations in these frameworks and their resulting efficiencies will depend
solely on properties related to graph decompositions of the set systems being
instantiated; while in the same time the security will be guaranteed automatically
from the general frameworks. The PRSG based framework will be based on
tree decomposition, and the two RSA based frameworks will be based on chain
decomposition; both are purely combinatorial. Therefore the whole paradigm
abstracts away the computational security issues and reduces the problem to
only pure combinatorics. Moreover it allows modularity in designing a scheme:
it is a matter of finding a set system which yields a good header size in the first
step, and then finding a graph decomposition of that set system that yields a
good private key size and computational cost.

As for the generic efficiency characterization, both RSA based frameworks
achieve key size of O(1) for all instances. One generic property of the trapdoor
based framework that makes it superior to the non-trapdoor based one is that
when restricting to the same asymptotic resources and instantiating the same
set system (or to be more precise, its hierarchical version and itself respectively),
if the non-trapdoor based one allows n users in the scheme, then the trapdoor
based one will allow nk users for any (arbitrary large) constant k. Indeed, the
costs due to prime generation are exactly the same (not only asymptotically).
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Efficient Instantiations. For the combinatorial set system component, all of
our schemes are based on new set systems we call Subset Incremental chain (SIC)
and Layered-SIC (LSIC) which are designed so to achieve small header size as
being O(r) while intrinsically have graph decompositions with good properties.
For the computational key derivation component, we instantiate the LSIC set
system by presenting their graph decompositions, resulting in various concrete
schemes upon each sub-framework as follows. We use the notation (X)y to denote
an instantiation of the set system X using the y-based framework. Denote LSIC[k]
as LSIC with parameter k. Note that LSIC[1] = SIC.

Instantiation 1 : (LSIC[k])prsg. This scheme directly improves the scheme of [12,20]
(and it is fair to compare with since the same assumption, PRSG, or equivalently
one-way function, was used). In particular it can reduce some overheads, albeit
only within constant terms in the worst case: the worst-case key sizes are half of
those in [12,20]. Indeed the key size in our scheme is non-uniform among users;
some users are even required to store only constant-size keys (cf. Theorem 4, 6,
and Eq.(4)). Our scheme also reduces the computational cost from [12], but only
in the average case (the worst-case costs are asymptotically the same).

Instantiation 2 : (LSIC[k])acc, (LSIC[k])tacc. Note that (t)acc is for (trapdoor) ac-
cumulator. The performance of this scheme is as mentioned previously. It is the
first scheme that achieves header and private key size independent of n while
keeping computational cost sub-linear in n, with no extra non-secret storage.
The number of primes used per user is optimal as being O(log n) for (LSIC[k])acc

and further reduced to O((log n)/k) for (LSIC[k])tacc (so that the on-the-fly
prime generation cost is O((log5 n)/k5)). Had one used the non-optimal Akl-
Taylor’s framework as put forth to the context of BE by [2,3,11], it would be
O(n1/k logn) which is super-logarithmic (and the prime generation cost would
be O(n1/k log5 n)).

Instantiation 3 : (LSIC[loga n])tacc. This scheme improves Gentry and Ramzan’s
scheme [11], which itself is more efficient than the above schemes in the aspect
of asymptotic computational cost. Our scheme reduces poly-logarithmic cost due
to prime generation, which was the dominant cost, to only a constant one with-
out affecting the other parameters. Among the constant-key-size schemes with
header size O(r loga(n/r) + r) and no extra non-secret storage, this is the first
one in the literature that achieves O(log n) overall computational cost. (And in
fact, ours uses only a constant number of primes). The previous improvement
for this class of schemes was done by [11] to improve [2] but only in the constant
term involving a. (See Table 1).

1.2 Other Related Works

Very recently, Boneh et.al. [7] propose a public-key broadcast encryption scheme
which achieves size O(1) for both header and private key. However, the size of
the public key to be used by an encrypter, which is also the non-secret storage
needed for the decrypter, is O(n). Moreover, the computational cost is O(n− r)
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(albeit with small coefficient). The second scheme in [7] reduces the non-secret
storage size to O(

√
n) but with the price of the increased header size as O(

√
n),

and not independent of n anymore. Boneh and Silverberg [6] show that n-linear
maps can be used to construct an optimal public-key scheme with constant pri-
vate key, public key, and header size. However, there are currently no known
constructions for such a map for n > 2. Most recently, Jho et.al. [15] propose
some efficient schemes with small header size when r is not too small. How-
ever, their schemes do not enjoy practical asymptotic performances as either the
header size is c1r + c2n = O(n) (for some constant c1, c2) or the key size is(
n−1
k

)
= O(nk) (where k ≥ 2) for their best two schemes.

2 Framework and Some Preliminaries

2.1 Framework

We refer to [18] for the definitions and the security notions for private-key broad-
cast encryption. Now we recap the subset-cover framework [18] separately into
two components as follows.

Combinatorial Set System Component. We first redefine a set system
which is useful for such a scheme in this framework called complement-cover set
system. Such a set system is a family of subsets of a universe with the property
that every subset of the universe can be efficiently partitioned to a union of some
collection of subsets in the family.

Definition 1. (Complement-Cover Set System). For a map c : Z2
>0 →

Z>0, a set system S = {S1, ..., Sm} over a base set N = {1, ..., n} is c-complement-
cover if there is a polynomial-time algorithm such that upon input any subset
R ⊂ N , outputs {Si1 , ..., Sit} for some 1 ≤ i1, . . . , it ≤ m such that N � R =⋃t
j=1 Sij and that t ≤ c(n, |R|). �
As usual n, r is the number of all users and revoked users respectively. Such a

c(n, r)-complement-cover set system yields a broadcast encryption scheme in the
subset-cover framework with the header size c(n, r). The scheme is as follows.
The broadcaster defines a subset key for each subset in the family. Each user
stores a set of keys in such a way that he can derive all the keys of subsets (in
the family) that he is a member. (Thus, the easiest way to do is to store them
all. However to reduce the storage of keys, it would be better to store only some
and derive the others from those stored keys on the fly. Such derivation patterns
are predefined by the broadcaster.) To revoke the set R of users, the broadcaster
just let a header to be a session key encrypted with each key of subsets in the
partition of N � R. Thus the header size is c(n, r). We often denote cX(n, r) for
c(n, r) of the set system SX, where X is the name of that set system.

Computational Key Derivation Component. We formalize the specifica-
tion on key derivations in the context of access control scheme as the following.
Denote by k(S) the subset key for S ∈ S and p(u) the private key of u ∈ N .
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Informally, the security of such a scheme requires that with p(u), one can derive
k(S) if and only if u ∈ S; moreover, the collusion N � S cannot derive it.

Definition 2 (Access Control Scheme, AC). . An Access Control Scheme
AC for a set system S over a base set N is a 2-tuple of polynomial-time algorithms
(Keygen, Derive), where:

Keygen(1λ): Takes as input a security parameter 1λ. It returns all k(Si)’s, all
p(u)’s, and public parameter pub.

Derive(〈u, p(u)〉, Si, pub): Takes as input u ∈ N , the key p(u), Si ∈ S, and pub.
It returns k(Si) if u ∈ Si, or special symbol ⊥ otherwise. �

Naor et al. [18] proved that BE in the subset-cover paradigm whose the access
control component is secure in the sense of Key-Indistinguishability (KIND) is
secure in the standard notion, namely IND-CCA1. Dodis and Katz [10] use the
technique involving multiple encryption to obtain a generic scheme which is
IND-CCA2-secure. Key-Intractability (KINT) can be defined analogously. These
definitions are captured in the full version of this paper due to limited space
here. Also note that there is a simple conversion from KINT-secure scheme to
KIND-secure one. Thus KIND or KINT is sufficient for the security of the scheme.

Denote (X)y to be the access control scheme for set system SX that is con-
structed via AC framework y. Denote KeySize(X)y(u) to be the number of keys of
u (i.e., |p(u)|, when p(u) is treated as a set) and CompCost(X)y to be the worst-
case computational cost for Derive. We also refer (X)y as a BE scheme via the
complement-cover set system SX. For any y, HeaderSize(X)y(n, r) = cX(n, r).

2.2 Some Terminology

Viewing Set system as Poset. A set system is partially ordered by the
inclusion relation (⊂). Interpreting a set system as a partially ordered set (poset)
is useful when defining key derivations in AC. Intuitively, Derive algorithm implies
that whenever Si ⊂ Sj, anyone who can access k(Si) is allowed to access k(Sj).

Terminology for Posets, Graphs. The terminology for posets and graphs
used in this paper is quite standard one (cf.[9]) (with some exceptions, see below).
Here we review some. A graph is a pairG = (V,E) of sets satisfyingE ⊆

(
V
2

)
. V is

the set of vertices (or nodes), usually denoted V (G), E is the set of edges, usually
denoted E(G). Often, we abuse notation v ∈ G to mean v ∈ V (G). A tree is a
connected acyclic graph. We often denote x = parentT (y) if x is the parent of y
in tree T . A directed graph is a pair G = (V,E) of sets satisfying E ⊆ V ×V , i.e.,
an edge is an ordered pair. A directed acyclic graph (DAG) is a directed graph
with no directed cycle in it. A notation of chain x → y → z means a directed
graph which E = {x, y, z}, V = {(x, y), (y, z)} and is generalized naturally.

An inclusion poset S can be represented by a DAG G by setting V = S,
E = {(S, S′) : S ⊂ S′; S, S′ ∈ S}. This is called the maximal representation,
denoted DAGmax(S). The minimal representation, denoted DAGmin(S), is the one
with E = {(S, S′) : S ⊂c S′; S, S′ ∈ S} where we say S ⊂c S′ iff there is no
S′′ ∈ S such that S ⊂ S′′ ⊂ S′.
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Fig. 1. Toy example 1 and its graph decompositions

In our context1, a graph decomposition (often denoted G) of a poset S is
a family of connected subgraphs whose sets of nodes partition the set of all
nodes in the DAGmax(S). (Thus we sometimes say G is a graph decomposition of
DAGmax(S)). When each subgraph is a tree whose edges are directed away from
the root, we call it a tree decomposition (often denoted T ). When each graph is a
directed chain whose edges are directed in the same direction, we call it a chain
decomposition (often denoted C). An induced graph decomposition is one in
which each subgraph is an induced subgraph. Fig.1 shows graph decompositions
of the set system for toy example 1, Stoy1 = {{1}, {2}, {3}, {4}, {1, 2}, {2, 3},
{2, 4}, {3, 4}, {1, 2, 3}}. From now we abuse some notations, often in figures,
e.g., writing 12 or 1, 2 instead of {1, 2} if it causes no confusion. Note that every
chain decomposition is a tree decomposition.

We will fix BT to be the complete binary tree of n leaves labeled 1, ..., n from
left to right. The level of node in BT is the distance from root to it. For a fixed
node, its left (resp., right) nodes are those nodes with the same level and appear
on the left (resp., right). BT will be used only to help defining set systems and
should not be confused with the graph representations of posets of set systems.

3 New Set Systems

3.1 Subset Incremental Chain (SIC) Set System

The SIC Set System. For i, j ∈ N = {1, ..., n} and i < j, denote

i⇀j := {{i}, {i, i+ 1}, . . . , {i, . . . , j}},
i↽j := {{j}, {j, j − 1}, . . . , {j, . . . , i}},

and (i⇀i) = (i↽i) := {{i}}. Consider the binary tree BT. For a node v in BT,
let lv (resp., rv) be the leftmost (resp., rightmost) leaf under v. We define the
set system SIC (of n users) by letting

SSIC =
⋃

v∈BTL

(lv+1↽rv) ∪
⋃

v∈BTR

(lv⇀rv−1) ∪ (1⇀n) ∪ (2↽n), (1)

where BTL (resp., BTR) are the set of internal nodes which are left (resp., right)
children. An informal visual view of SSIC is shown in Fig.2, where the union of
all the collections written there is the only important information.
1 Our notions for tree and chain decompositions are not standard ones (cf.[9]). Instead

the notions introduced here might be named as tree cover and path cover, resp.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

BTR

BTL

∈
∈

2↽2 3⇀3 6↽6 7⇀7 10↽10 11⇀11 14↽14 15⇀15

2↽4 10↽125⇀7 13⇀15

2↽8 9⇀15

1⇀162↽16

Fig. 2. Set system SIC defined by the union of all the collections written at each node

Theorem 1. SSIC is (2r)-complement-cover set system.

Proof. We call a set of the form {i, i+1, . . . , j} for some i ≤ j a consecutive set.
We first claim that any consecutive set, say A = {i, . . . , j}, can be partitioned to
no more than 2 sets in SSIC; then prove it as follows. Let a be the least common
ancestor node of the leaves i and j in BT, denoted lca(i, j) = a. Let s be the
least ancestor of a which is in BTL if a ∈ BTR and which is in BTR if a ∈ BTL.
Let x, y be the left and right children of a. First if i = 1 then A ∈ (1⇀n) ⊆ SSIC;
else if j = n then A ∈ (2↽n) ⊆ SSIC (since 2 ≤ i). Now assume i �= 1, j �= n.
We list all possible cases of (i, j) as follows. Let ∗ be an unspecified value.

1. If (i = la; j = ∗; a ∈ BTL) then A ∈ (ls ⇀ rs − 1) ⊆ SSIC (since i = ls; j <
rs − 1; and s ∈ BTR),

2. If (i = ∗; j = ra; a ∈ BTR) then A ∈ (ls+1↽rs) ⊆ SSIC (since j = rs; ls+1 <
i; and s ∈ BTL),

3. If (i = la; j �= ra; a ∈ BTR) then A ∈ (la⇀ra − 1) ⊆ SSIC (since j ≤ ra − 1),
4. If (i �= la; j = ra; a ∈ BTL) then A ∈ (la + 1↽ra) ⊆ SSIC (since la + 1 ≤ i),
5. If (i �= la; j �= ra; a ∈ ∗) then A = P ∪ Q; P = {i, . . . , rx}, Q = {ly, . . . , j},

and we have P,Q ∈ SSIC (since
– lca(i, rx) = x, thus (i, rx) will fall to the case 2 or 4 and P ∈ SSIC;
– lca(ly, j) = y, thus (ly, j) will fall to the case 1 or 3 thus Q ∈ SSIC).

These proved the claim. Now we are back to the proof, it is obvious that N � R
can be partitioned to no more than r consecutive sets if 1 or n ∈ R; or to no
more than r+1 such sets otherwise. In the former case, the partition size to sets
in SSIC is ≤ 2r; while in the latter case (where {1, ..., s} and {t, ..., n} for some
s, t are included in the partition), it is ≤ 1(1) + 2(r − 1) + 1(1) = 2r. �

Intuitively, SIC has graph decompositions with good properties since each
collection in the union of Eq.(1) forms a chain of subset. This will become clearer
in the next section. The set system LSIC below generalizes SIC.

3.2 Layered SIC (LSIC) Set Systems

The LSIC[k] Set System. We view BT consisting of subtrees (also binary and
complete) of n1/k leaves so that there are exactly k layers of such subtrees, where
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

2↽2 3⇀3 6↽6 7⇀7 10↽10 11⇀11 14↽14 15⇀15

2↽4 10↽125⇀7 13⇀15

b↽b c⇀c

a⇀db↽d

1⇀3 6↽8 9⇀11 14↽16a b c d

A∈

Fig. 3. Set system LSIC[k], k = 2, as the union of all collections written at each node

k| logn. We will call such subtree an “atomic” subtree (to distinguish from other
kinds of subtrees in BT). Informally, each atomic subtree contributes sets to
SLSIC as in the SIC set system for that subtree, albeit each leaf in the subtree
represents all the leaves under it in BT. More formally, for node z in BT, let
Az := {lz, lz + 1, ..., rz} (i.e., all the leaves under z). Let us consider the leaves
u, v in an atomic subtree where v is some node on the right of u. We denote
u(+1), u(+2) (and so on) be the next one, two (and so on) right leaves to u in
that atomic subtree. Denote u(−1), u(−2) analogously. Denote

u⇀v := {Au,Au ∪Au(+1) , . . . ,Au ∪ · · · ∪Av},
u↽v := {Av,Av ∪Av(−1) , . . . ,Av ∪ · · · ∪Au}.

Let l′w, r′w be the leftmost and rightmost leaves under w in the atomic subtree
and not w itself; for example, l′root = a, r′root = d and l′a = 1, r′a = 4 in Fig.3. Let
A be the set of all nodes which are the roots of atomic subtrees but excluding
the root of BT. We define LSIC[k] analogously to Eq.(1) by letting

SLSIC[k] =
⋃

v∈BTL∪A

(l′v
(+1)

↽r′v) ∪
⋃

v∈BTR∪A

(l′v⇀r′v
(−1))

∪ (l′root⇀r′root) ∪ (l′(+1)
root ↽r′root). (2)

Intuitively, each v ∈ A has two collections (l′v
(+1)

↽r′v), (l
′
v⇀r′v

(−1)) attached
since it is the root of an atomic subtree, which SIC applies (cf. Eq.(1) and Fig.2).

Theorem 2. SLSIC[k] is (2kr)-complement-cover set system for a constant k ;
and SLSIC[loga n] is O(r loga(n/r)+r)-complement-cover set system for a constant
a.

Note that when k=loga n, from the former claim we already have that SLSIC[loga n]

is (2r loga n)-complement-cover, but the claim above gives a sharper bound.

Proof. First we will prove that SLSIC[k] is (2kr)-complement-cover. Let STR de-
note the Steiner tree of a set of leaves R ⊆ N , i.e., the subtree of BT that
consists of all paths from the root to each leaf in R. We call a node v spe-
cial if v ∈ A. We “color” a node if it is special but is not in STR and all of
its special ancestors are in STR. Denote C the set of all color nodes. Hence
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N � R =
⋃
v∈C Av =

⋃k
j=1

⋃
v∈Lj∩C Av where we denote Lj to be the set

of all special nodes in the j-th special layer away from root (i.e., at distance
j(logn)/k from the root). It suffices to prove that for each special layer j, the
set Yj :=

⋃
v∈Lj∩C Av can be partitioned to at most 2r sets in the family SLSIC.

Denote xi to be the number of uncolored special nodes in the i-th atomic sub-
trees from left to right in this j-th layer. From Theorem 1, it is easy to deduce
that Yj can be partitioned to at most 2(x1 + x2 + · · ·+ xp) sets in SLSIC, where
p is the last atomic subtree in this layer (in fact, p = n(j−i)/k). But we have
x1 + · · · + xp ≤ r since the Steiner tree of r leaves passes through all these
uncolored special nodes. This proves the claim.

Next we will prove that SLSIC[loga n] is O(r loga(n/r) + r)-complement-cover.
We first give the definition of Stratified Subset-Difference set system with each
atomic subtree of a leaves (SSDa): SSSDa

={Au�Av : u is an ancestor of v in the
same atomic subtree}. It is known [11] that SSSDa

is (O(r loga(n/r)+r))-comple-
ment-cover. Using a similar approach as when proving Theorem 1, it is not hard
to see that each Au�Av can be partitioned to at most 2 sets in SLSIC[loga n]. (The
proof is omitted here due to space). Combining these we have that LSIC[loga n]
has cLSIC[loga n](n, r) = 2cSSDa

(n, r) = O(r loga(n/r) + r). �

4 Key Derivation Based on PRSG

4.1 Reformalize the PRSG Based Framework of [4]

Framework Idea (review). In this framework, we use pseudo-random sequence
generators to derive keys from one subset to another. The correctness of access
control schemes allows this to be done only if the first set is included in the latter
(e.g.,{1} ⊂ {1, 2}). Thus such derivations can be defined in correspondence with
directed edges in a graph decomposition of DAGmax(S), in which all the inclusion
relations in S are included. One exception is that there should be no node with
indegree > 1 in any graph in the decomposition since it would imply a collision
of PRSG, which should be computable by neither broadcasters nor adversaries.
Therefore, all the valid decompositions are tree decompositions, of which the
class includes all graph decompositions of the poset that allow indegree ≤ 1 for
all nodes. Each user then stores keys for subsets which he is in and are closest
to the root of that tree. For the toy example 1 in Fig.1, our paradigm with the
tree decomposition in the figure namely Ttoy1 allows the user 2 to store only the
keys at 2, 24.

Note that in order to be provably secure in the KIND sense, it is mandatory
to make an adaptation so that keys are not derived from another key directly.
Instead, one should use intermediate keys denoted t(S) for S ∈ S; how to use
this is explained in the construction. This was neglected in many recent schemes
that use similar one-way derivation approaches.

The Construction (X)prsg. This is based solely on a tree decomposition, say
T , of the poset SX. The scheme applies to an arbitrary complement-cover set
system X.
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Keygen : (Subset keys) At a root S of a tree in T , let t(S) ← {0, 1}λ. For
each node S (either root or non-root of a tree in T ) whose all children are
Si1 , ..., Sid where d is the outdegree of S, we define the following recurrence
relation:

t(Si1)‖ · · · ‖t(Sid)‖k(S)← PRSGd+1(t(S)), (3)

where |t(Si1)| = · · · = |t(Sid)| = |k(S)| = λ bits; PRSGj : {0, 1}λ→ {0, 1}jλ.
(User keys) For u ∈ N , we define p(u) = {t(S)|u ∈ S;u �∈ parentG(S), G ∈ T }.

Derive : Find the tree where S is in and then use Eq.(3) to derive k(S).

Characterizing Efficiency. Let RNT (u) = |{S | u ∈ S;u �∈ parentG(S), G ∈
T }| and call it the reachability number of u in T (since it is the minimal number of
sufficient nodes such that when traversing from these nodes in the edge direction
we meet all S ∈ S such that u ∈ S). Let DDT = the depth of the deepest trees.
We have

KeySize(X)prsg(u) = RNT (u), CompCost(X)prsg = DDT . (4)

Theorem 3. ([4]) (X)prsg is secure in the sense of KIND assuming secure PRSG.

4.2 PRSG Based Instantiation for SIC, LSIC

Instantiating SIC. It suffices to define a tree decomposition of SSIC and the
concrete scheme will follow automatically from the general construction of the
framework. We choose the following natural one and prove that it is the optimal
decomposition for SIC. For i ≤ j ∈ N , define a graph G(i ⇀ j) as {i} →
{i, i+ 1} → · · · → {i, ..., j}; G(i↽j) as {j} → {j, j − 1} → · · · → {j, ..., i}. Let

TSIC = {G(lv+1↽rv)|v ∈ BTL}∪{G(lv⇀rv−1)|v ∈ BTR}∪{G(1⇀n),G(2↽n)}
(5)

Let 〈x〉 denotes the binary representation of x. We have the following theorem.

Theorem 4. The tree decomposition TSIC yields minimal maxu∈N RNT (u), in-
deed we have

RNTSIC
(u) =

{
logn+ 2− f(〈u− 1〉) ; 2 ≤ u ≤ n
1 ;u = 1,

where f(y) := the number of the same consecutive least significant bits of y. In
particular, maxu∈N RNTSIC

(u) = logn+ 1. We also have DDTSIC
= n.

Proof. We define Fv = lv + 1↽rv if v ∈ BTL and lv⇀rv − 1 if v ∈ BTR. TSIC is
really a tree decomposition since {Fv : v ∈ BTL ∪ BTR} ∪ {(1⇀n), (2↽n)} can
be proved to be a pairwise non-intersecting family (somewhat straightforwardly).
Next we prove the formula for RNTSIC

(u). For u ∈ N � {1}, only possible trees
in TSIC that u appears are those graphs G(Fv) for internal nodes v on the path
from the leaf u to the root in BT, and G(1⇀n),G(2↽n). Each graph G(·) that
u appears contribute one key for u. Thus RNTSIC

(u) is at most (logn−1)+2. Let
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u,w1, ...,wlog n, root be the nodes on that path. Due to symmetry, we assume
w.l.o.g. that w1, ...,wz−1 ∈ BTL and wz ∈ BTR. Now it is easy to see that

for 1 ≤ j ≤ z − 1 : G(Fwj ) = G(lwj + 1↽rwj ) does not contain u(= lwj );
for j = z : G(Fwj ) = G(lwz ⇀rwz − 1) contains u(= lwz);
for z < j ≤ logn : G(Fwj ) contains u (since lwj < u < rwj ),

and that z = f(〈u− 1〉). Thus RNTSIC
(u) = (log n− 1) + 2− (f(〈u − 1〉)− 1) as

desired. Now we prove that TSIC is optimal (obtaining minimal (maxu∈N RNT (u))
among all T of SIC). Observe that for all T of SIC,

∑
u∈N RNT (u) =

∑
S∈SSIC

|{u :
u ∈ S, u �∈ parentG(S), G ∈ T }| ≥ |SSIC| = n logn+ 1. Hence maxu∈N RNT (u) ≥
!n logn+1

n " = logn+ 1. Our decomposition matches this bound. �
The number of keys at each user is not uniform as recorded in the corol-

lary below. While sharing some similarities with our scheme, the basic schemes
in [12,20] assign one-way chains in both left and right directions at each node
in BT while we use only one direction and exploit some symmetries. This can
be an intuition as to why we can reduce key size at least 2 times (and up to
logn in the best case, user 1). Those schemes can be considered as instantia-
tions in our framework, but with storage-redundancies in the sense that the set
systems extracted from their schemes are sets with repetition. Moreover, the
scheme of [12] can also be shown to be derivation-redundant since its derivation
graph as exposed in our framework contains loop edges. (See our full paper).

Corollary 5. In the scheme (SIC)prsg, there are exactly 2x users who store ex-
actly x+ 2 keys for 0 ≤ x ≤ (logn)− 1 and exactly 1 user who stores 1 key.

Instantiating LSIC. Before describing our default tree decomposition of SLSIC,
denoted TLSIC[k], we first describe a more straightforward one, denoted T ′LSIC[k],
which is constructed, informally, as the union of all TSIC applied to each atomic
subtree in BT. More formally, we can define G(u⇀ v) for u, v which are leaves
in the same atomic subtree, analogously as before, by letting G(u⇀v) = Au →
Au ∪ Au(+1) → · · · → (Au ∪ · · · ∪ Av), and analogously for G(u↽ v). Without
going into details, we can define T ′LSIC[k] from Eq.(2) in an analogous way when
we defined TSIC in Eq.(5) from Eq.(1).

Now TLSIC[k] is constructed by an observation that G(l′v⇀r
′(−1)
v ) and G(v⇀∗)

can be combined into one chain (and in particular, one tree) since the maximum
element in the former, Al′v ∪· · ·∪A

r
′(−1)
v

, is included in Av, the minimum element
of the latter. For v ∈ BTR ∪ {root}, let w1, ...,wm be the sequence of nodes in
BTL ∩ A such that w1 = l′v; for 1 ≤ i ≤ m − 1, wi+1 = l′wi

; and lv = l′wm
, then

define Ḡ(l′v ⇀ x) := G(l′wm
⇀ r

′(−1)
wm ) → · · · → G(l′w1

⇀ r
′(−1)
w1 ) → G(l′v ⇀ x)

where x is some right node of l′v. (Here, ‘→’ means to connect the chains). The
definition for Ḡ(x↽r′v) for v ∈ BTL ∪ {root} can be done analogously. Now we
define

TLSIC[k] = {Ḡ(l′(+1)
v ↽r′v)|v ∈ BTL} ∪ {Ḡ(l′v⇀r′(−1)

v )|v ∈ BTR}

∪ {Ḡ(l′root⇀r′root), Ḡ(l′(+1)
root ⇀r′root)}. (6)
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G(1⇀3)

G(a⇀d)
G(a⇀d)

1
1,2

1,2,3

2 3 4

2,3,4
1����4
1����8

1����12
1����16

..

..
..
..

3,4
5

5,6
5,6,7

6 7 8

6,7,8
5����8..

7,8
9

9,10
9����11

10 11 12

10����12
9����12..

11,12
13

13,14
13����15

14 15 16
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Fig. 4. The tree decomposition TLSIC[k] of the set system LSIC[k] (see Fig.3). A more
simple decomposition T ′

LSIC[k] is the one without the thick red edges.

The abstraction of this decomposition may disguise the simplicity of the scheme;
in Fig.4 we thus give an explicit example when n = 16 and k = 2 (cf. Fig.3).

The following theorem and corollary can be proved by an elementary counting
argument based on Theorem 4. We omit the proof to the full version of this paper.

Theorem 6. The tree decomposition TLSIC[k] yields

RNTLSIC[k](u) = logn+ 1 + k − gk(〈u − 1〉)

where gk(〈x〉) := f(0||〈x1〉) + f(b1||〈x2〉) · · ·+ f(bk−1||〈xk〉) where we parse 〈x〉,
with padding of 0s on the left so to have length logn bits, as 〈x1〉|| · · · ||〈xk〉 so
that each 〈xi〉 has length (log n)/k bits; bj is the least significant bit of 〈xj〉. In
particular, maxu∈N RNTLSIC[k](u) = logn+ 1. We also have DDTLSIC[k] = kn1/k.

As an example, user 4 will store 2 keys: k(1234), k(4) (see Fig.4). This can be
calculated as |p(4)| = 4+1+2− (f(0||00)+ f(0||11)) = 2 (Note 〈4−1〉 = 0011).

Corollary 7. In (LSIC[k])prsg, exactly
∑x−1

j=0

(
k
j

)
C(x−1, j, (log n)/k)2x−1−j users

store exactly x keys for 2 ≤ x ≤ (logn)+1 and exactly 1 user stores 1 key where
C(a, b, c) is the number of integer compositions (ordered partitions) of a into b
positive integers, each ≤ c.2

5 Key Derivation Based on Non-trapdoor RSA

5.1 The New Non-trapdoor RSA Based Framework

Framework Idea. We first briefly review the access control scheme of Akl-
Taylor [1]. There, each S ∈ S is assigned a publicly known prime. The key
of S is defined as k(S) = s T :S �→T pT modulo an RSA modulus, where s is a
secret; and S �→ T means (S,T ) is not an edge in DAGmax(S). Each user u just
stores k({u}). The terms in the exponents are arranged so that even any collusion
cannot compute keys that are not supposed to be computable by them. However,
the number of primes used in the above schemes are too large as |S|. Such
2 For example C(5, 3, 2) = 3 since 5 = 1 + 2 + 2 = 2 + 1 + 2 = 2 + 2 + 1. The exact

formula of C(a, b, c) is quite complicated and is shown in [19].



Graph-Decomposition-Based Frameworks 113

primes will be stored as non-secret storage or derived on-the-fly.3 We propose a
new paradigm which makes uses of prime powers so that the number of primes
used becomes optimal. We will see shortly that assigning prime powers depends
essentially on a chain decomposition of DAGmax(S). Indeed, the number of primes
used will be exactly the number of chains; and each node in the same chain will
correspond to the same prime but with a distinct power. For the toy example
1 in Fig.1, our new paradigm with the chain decomposition Ctoy1 will result in
only 5 primes used while the Akl-taylor’s needs 9 primes. We will describe how
to assign those powers over primes by an incidence matrix. We formalize the
notion of incidence matrices that admit a secure scheme as maximin matrix :

Maximin Matrix. An n×m matrix {aij} where aij ∈ Z≥0 is called a maximin
matrix for set system X if for all S ∈ SX, there exists j: 1 ≤ j ≤ m such that
maxi∈S aij < mini∈N�S aij . We give a formal treatment of RSA functions as

accumulators and our construction first, then explain later.

RSA Accumulators. We fix a function f : Uf × Ef → Uf to be an RSA
function: f(x, e) := xe mod η where η = pq, p = 2p′+1, q = 2q′+1 and p, q, p′, q′

are distinct odd primes. We restrict that Uf is the set of quadratic residues and
Ef is the set of primes not equal to p′, q′. We say f is generated from an RSA
function generator GRSA(1λ). The function f is an instance of RSA accumulators,
first proposed in [5], which has a quasi-commutative property: for all x ∈ Uf ,
and e1, e2 ∈ Ef , f(f(x, e1), e2) = f(f(x, e2), e1). If E = {e1, ..., eh} where each
ei ∈ Ef , then we denote f(x,E) := f(f(...f(x, e1), ...), eh). Note that a set E is
threaten as a multi-set, where the repetition of members is important. We thus
denote a repetition of a member e which occurs te times as te � e. For example,
f(x, {s� e1, t� e2}) = x(es

1·et
2).

The Construction (X)acc.

Keygen : Run a GRSA to obtain a description of f : Uf × Ef → Uf . Pick a random
secret s ∈ Uf . For 1 ≤ j ≤ m, pick an element pj ∈ Ef . Let pub consist of all
pj ’s and {aij}; indeed we let user derive prime pj only when necessary by
predetermining the intervals of those primes (see below). Let

p(u) = f(s, {auj � pj : 1 ≤ j ≤ m}),
k(S) = f(s, {(maxi∈S aij) � pj : 1 ≤ j ≤ m}). (7)

for user u ∈ N and set S ∈ SX.
Derive : Compute k(S) = f(p(u), {(maxi∈S aij − auj) � pj : 1 ≤ j ≤ m}).

Theorem 8. (X)acc is KINT-secure assuming the strong RSA assumption.

First it is easy to see that the correctness holds: Derive is computable. Next
we will give an intuition as to why for each S ∈ S, the collusion of all users
3 In the latter, a sequence of integers {xj} is pre-specified by the broadcaster and

pi is defined to be the first prime in [xi, xi+1); the program to recognize {xj} has
negligible size (cf. [2]). More primes imply more computational cost on-the-fly.
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from N �S cannot compute the key of S. Informally, the best they can do is to
obtain the value with the same base s and the exponent term being GCD of all
the exponent terms of the keys for users in N � S, which is

∏m
j=1 p

mini∈N�S aij

j

(by the well-known trick involving using the extended Euclid’s algorithm). To
be able to compute the key of S, it must divide

∏m
j=1 p

maxi∈S aij

j . But this will
not happen due to the property of the maximin matrix.

Constructing a Maximin Matrix. Consider a chain decomposition C =
{G1, ..., Gm} of SX. For each chain Gj : S1 → · · · → Sl, construct j-th col-
umn by letting

aij :=

⎧⎨⎩0 if i ∈ S1

w if i ∈ Sw+1 � Sw
l otherwise

(8)

Proposition 9. The above construction is a maximin matrix. Moreover, C with
the minimum number of chains will imply the maximin matrix with the minimum
m, the number of all primes used.

Proof. We will prove that the construction by Eq.(8) is a maximin matrix for X.
Consider arbitrary S ∈ S, observe that there is a chain Gj : S1 → · · · → Sl and
some w, 0 ≤ w ≤ l − 1, such that S = Sw+1 (since C is a chain decomposition).
For all i ∈ S we have 0 ≤ aij ≤ w by the construction. For all i′ ∈ N �S we have
w > ai′j also by the construction. This implies maxi∈S aij ≤ w < mini′∈N�S ai′j
which is what we wanted to prove. To prove the second claim, it is sufficient to
prove the converse of the first claim: from any maximin matrix for X one can
construct a a chain decomposition in which the number of chains is less than or
equal to the number of columns of the matrix. The proof idea is essentially the
same as the first, thus we omit the detail to the full version of this paper. �

Characterizing Efficiency. We will generate primes on the fly using the tech-
nique in [2] (cf. footnote 3). Without going into detail, this technique requires
computational cost O(log4 P ) to generate one prime, and produces each prime
of size O(P logP ), where P is the number of all primes needed in such a scheme.
In our scheme, P = m. Note that only when P = O(1), it is worthless to use
this technique; we just store the least P primes (which requires only negligible
storage) so the cost for prime generation in this case is O(1).

Using the notation defined earlier, we have that RNC(u) represents the num-
ber of chains in C that u appears; and DDC represents the length of the longest
chain in C. The number of all chains in C is |C| (and= m). We obtain:

KeySize(X)acc(u) = 1, CompCost(X)acc = O(MCacc
C + PCacc

C ),

where MCacc
C (u),PCacc

C (u) are the cost due to Modular exponentiation and on-
the-fly Prime generation for user u respectively and MCacc

C := maxu∈N MCacc
C (u),

PCacc
C := maxu∈N PCacc

C (u). Such costs depend solely on C and can be character-
ized as:

MCacc
C (u) = O(DDC · (log |C|) · RNC(u)), PCacc

C (u) = O((log4 |C|) · RNC(u)).
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The analysis are as follows. The cost of modular exponentiation for computing
Derive is logarithm in the exponent term which is

∏m
j=1 p

(maxi∈S aij−auj)
j . To

determine its complexity, observe that maxi∈S aij = auj for all but only RNC(u)
terms of j due to Eq.(8) and the fact that u appears only RNC(u) chains. Also,
observe that maxi∈S aij − auj ≤ DDC due to Eq.(8). Each pj is O(m logm),
hence has bit length O(logm). Combining these, we get MCacc

C (u) as above. The
cost for prime-generation above follows from the fact that the number of primes
to be generated when deriving keys are RNC(u).

Remark 1. The MC of our scheme is asymptotically optimal among all non-
trapdoor RSA-accumulator based paradigms (if there are any others) since it
matches the lower bound in [11], which states that the optimal MC is of the
same order as the number of subsets (in the set system) that one user is in,
albeit here we calculate in bit complexity which includes the size of primes.

Remark 2. The Akl-Taylor’s scheme [1] is a special case of our framework where
the trivial chain decomposition (the collection of all one-node chains) is used.

5.2 Non-trapdoor RSA Based Instantiation for SIC, LSIC

Instantiating SIC, LSIC. We will state the result for LSIC so that the result for
SIC can be obtained by setting k = 1. It suffices to define a chain decomposition
of SLSIC[k] and the concrete scheme will follow automatically. We choose a chain
decomposition CLSIC[k] = TLSIC[k] defined in Eq.(6). (Note that it is obvious that
TLSIC[k] was also a chain decomposition). A concrete example for (SIC)acc is shown
in Fig.5 for n = 8. As an example, the subset key k(567) = s(p

6
1p

1
2p

1
3p

3
4p

2
5p

1
6p

1
7p

3
8).

The following result follows directly from Theorem 4, 6 and the generic effi-
ciency characterization of the framework with the fact that |CLSIC[k]| = n.

Corollary 10. MCacc
CLSIC[k]

= O(kn1/k log2 n) and PCacc
CLSIC[k]

= O(log5 n).

Scheme (LSIC[k])acc has computational cost O(max{kn1/k log2 n, log5 n}). For
trillion users (n = 1012), choose k as low as 4 we have 4n1/4 log2 n < log5 n so
that the computational cost is dominant by the latter, which is roughly as in
Asano’s scheme (but ours enjoy exceptionally lower header size).
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Fig. 5. Instantiating SIC (n = 8) by the non-trapdoor RSA accumulator based frame-
work
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Remark 3. If we instantiate with with Akl-Taylor’s, its chain decomposition
has maxu∈N hu = O(n1/k logn), and m = O(2k · n1/k(logn)/k). Thus PC =
O(n1/k log5(n)), which is much worse than ours, O(log5 n). Moreover, this cost
always dominates over the optimal MC for LSIC, O(n1/k log2 n).

6 Key Derivation Based on Trapdoor RSA Accumulator

6.1 The New Trapdoor RSA Based Framework

Framework Idea. The framework in this section is applicable to a class of
posets that we call tree-stratifiable posets. Informally, such a poset of this type
is defined as one which can be considered as formed by a tree hierarchy of
atomic posets (not necessarily homogeneous), as shown in Fig.6. There, the graph
decomposition G = {Gx, Gy, Gz , ...} is said to form a hierarchy represented by
tree H where V (H) = {x, y, z, ...}. Intuitively, such a graph decomposition is
said to form a hierarchy if all the inclusion relations from every node in a lower
subgraph (one with a lower index in the hierarchy), say Gy in the figure, to the
next upper one in the hierarchy,Gx, are via a unique minimal node in that upper
subgraph. Denote this minimal node as MGy . We will put a “dummy node” in
each subgraph so that it will be the “representative” of that poset to reach that
unique minimal node in the upper poset. (In the figure, the dummy node is DGy

for subgraph Gy to reach MGy).
The idea for key derivations are as follows. First we define the key for each

node in the highest sub-poset in the hierarchy by using the RSA-based framework
in the last section. Recursively in a top-down fashion, we will define the set of
keys corresponding to each lower sub-poset in the hierarchy. At some point,
the set of keys for the nodes in Gx are defined. Then we define the “dummy
key” for the dummy node in a next lower level sub-poset by applying a random
permutation perm (w.l.o.g we will use the reverse direction) to the key of the
minimal element in that upper sub-poset that it connects, that is, k(DGy) =
perm−1(k(MGy)). To define keys for the other nodes in this lower sub-poset (at
Gy), we will again use the RSA-based framework for that sub-poset. However,
this time the key for the dummy node has been already determined, while all
the keys must agree with the relations of (G′y)acc, where G′y is the modified

...

...⇒ perm perm-1

D
G

k( )

M
G

k( )Gy

Gx

Gz

Gw

Gu Gv

x

y

u

wz

v

Tree-stratifiability
Key derivation
between subposets

tree HDAG of a posetmin

y

y
Gy

max
min element in sub-poset( )

...
...

Fig. 6. The underlying idea for the trapdoor RSA based framework



Graph-Decomposition-Based Frameworks 117

subgraph that includes the dummy node, i.e., the relation of keys as defined in
Eq.(7) instantiated to a poset that has G′y as its representation. To solve this, it
suffices to use the trapdoor of RSA. In this way, we can define keys recursively
until reaching the lowest sub-posets. Users, on the other hand, do not have to
use trapdoor since they only compute keys in the bottom-up fashion. Note that
(perm, perm−1) is a public permutation, such as any block cipher with a fixed
known key. We will model perm as an ideal random permutation in the security
proof (the random permuation model).

The idea of reducing the whole poset by instantiating RSA-based framework
in each sub-poset results in the use of only small number of primes for the overall
scheme since the same set of primes can be used across different instantiations
for different sub-posets.

To formalize this, we first define some more notations. For a directed graphG,
denote Vmin(G) the set of all minimal elements of poset S such that DAGmin(S) =
G. Vmax(G) is defined analogously. The definition below captures what we have
explained in the framework idea. Essentially, the bijection π below mapsGx �→ x.

Definition 3. (Tree-Stratifiable Poset) An inclusion poset S is called
tree-stratifiable poset iff there exist an induced graph decomposition G of S and
a tree H with a bijection π : G → V (H) such that for each G ∈ G if we define G′

by letting V (G′) = V (G)∪ {DG} and E(G′) = E(G)∪ {(S,DG) : S ∈ Vmax(G)}
where DG is a dummy node; define MG :=

⋃
S∈Vmax(G) S; and define a graph

W by letting V (W) =
⋃

G∈G V (G′) and E(W) =
⋃

G∈G
(
E(G) ∪ {(DG,MG)}

)
,

then we have that (1) for all G ∈ G, MG ∈ Vmin(π−1(parentH(π(G)))) and (2)
E(DAGmin(S)) ⊆ E(DAGmax(W)). �

Trapdoor RSA Accumulators. A trapdoor RSA function generator GtRSA is
the one that works exactly the same as GRSA but in addition also outputs the
trapdoor td which is φ(η) where φ is the Euler’s phi function. With td, given the
description of f, any y ∈ Uf , and a (multi-)set of accumulated values E, one can
efficiently compute x ∈ Uf such that f(x,E) = y. Denote such x by ftd(y,E−1).

Towards formalizing the construction, we “normalize” each sub-poset G ∈ G
so that its base set will be BG = {1, ..., |Vmin(G′)|} as follows. Construct γ :
V (G′) → 2BG by first picking an injective map γ̃ : Vmin(G) → BG then define
for S ∈ V (G′), γ : S �→ {γ̃(U) : U ∈ Vmin(G), U ⊆ S}. Let SG = γ(V (G′)) (the
set of all images by γ from V (G′)) be the set system with the base set BG.

The Construction (X)tacc. For simplicity we will consider homogeneously
stratifiable poset, i.e., each SG is isomorphic to each other (in the sense that its
corresponding DAG is isomorphic), say the set system Y. Let {aij}1≤i≤d,1≤j≤m
be a maximin matrix for set system Y, where d is the cardinality of its base set.

Keygen : Run a GtRSA to obtain a description of f : Uf × Ef → Uf and trapdoor
td. For 1 ≤ j ≤ m, pick an element pj ∈ Ef . Let perm and perm−1 be a
publicly available permutation mapping Uf → Uf . Let pub consist of all pj ’s
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and {aij}. Pick a random t ∈ Uf . Define keys recursively in a top-down
fashion in the tree H:

[Top]. At the subgraph Groot ∈ G, where root is the root of H, by definition
we have N = MGroot . We let k(N) = k(MGroot) = t.
[Intermediate]. At each atomic subgraphG∈G, the key k(MG) is previously
determined. Define the key for the dummy node: k(DG) = perm−1(k(MG)).
By using the trapdoor td and k(DG), we solve Eq.(11) by setting S = DG

(thus γ(S) = BG) to determine the secret sG, i.e.,

sG = ftd(k(DG), {(max
i∈BG

aij) � pj : 1 ≤ j ≤ m}−1). (9)

Then we define the key at each element in this subgraph, S ∈ V (G), by:

k(S) = f(sG, {aγ̃(S),j � pj : 1 ≤ j ≤ m}) (for S ∈ Vmin(G)), (10)
k(S) = f(sG, {( max

i∈γ(S)
aij) � pj : 1 ≤ j ≤ m}) (for S ∈ V (G)). (11)

[Bottom]. For each u ∈ N , we let p(u) = k({u}).
Derive : Compute from the relations given in Eq.(9),(10),(11) but in the bottom-

up fashion by using applications of f(·, ·), perm(·) starting from f(p(u), ·).
Note that td is not required to do this.

Theorem 11. (X)tacc is KINT-secure in the random permutation model (perm
as an ideal random permutation), assuming the strong RSA assumption.

Characterizing Efficiency. If the set system X of n users is tree-stratifiable
homogeneously into a set system Y of d users with the tree H then

KeySize(X)tacc(u) = 1, CompCost(X)tacc = O(MCtacc
X + PCtacc

X ),

where the cost from modular exponentiation and prime generation are depended
solely on both H,Y and only Y respectively, and can be characterized as:

MCtacc
X = hH ·MCacc

CY
, PCtacc

X = PCacc
CY
, (12)

where hH is the deepest depth of H. The first claim follows from the fact that
a user has to compute Eq.(11) for at most hH times. The second claim is from
the fact that we reuse the same set of primes across sub-posets. There is also
the cost due to applications of perm, which is O(hH), but this is suppressed by
MC.

Generic Application. We now confine our interest to the case where H is the
balanced completed n1/k-ary tree of depth hH = k. This forces the base sets of
Y and X to have cardinality n1/k and n respectively. In this case we say X =
hierk(Y). The operation hierk is well-defined and can be thought as the converse
direction of tree-stratification; thus, from any poset Z one can construct a tree-
stratifiable poset, namely hierk(Z), by first scaling down the cardinality of the
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Fig. 7. Instantiating LSIC[k] (n = 16, k = 2, see Fig.3) by trapdoor RSA based frame-
work

base set of Z to n1/k. (Since usually any set system is originally defined in term of
n). We write Z(n1/k) to emphasize the cardinality of base set. The point is that
when k is a constant, Eq.(12) allows one to construct a full scheme of n users but
with exactly the same asymptotic performances as those of (Z(n1/k))acc, which is
a “scaled-down” scheme, in both parameters MC,PC! Moreover, if cZ(n)(n, r) =
O(r) then we can show that chierk(Z(n1/k))(n, r) = O(kr) = O(r) (by exactly the
same proof as that of Theorem 2); therefore, HeaderSize is also unaffected.

6.2 Trapdoor RSA Based Instantiation for LSIC

It is easy to see that LSIC[k] is tree-stratifiable since LSIC[k] = hierk(SIC(n1/k)).
(We could have define LSIC via hier operation rather than directly in Sec.3.2).
An example is shown in Fig.7. From the efficiency characterization we have:

Corollary 12. (i) MCtacc
LSIC[k] = O(n1/k(log2 n)/k), PCtacc

LSIC[k] = O((log5 n)/k5).
(ii) MCtacc

LSIC[loga n] = O(a log a logn), PCtacc
LSIC[loga n] = O(1).

Proof. See that MCacc
C

SIC(n1/k)
=O((n1/k log2 n)/k2), PCacc

C
SIC(n1/k)

= O((log5 n)/k5);

and MCacc
CSIC(a)

= O(a log2 a), PCacc
CSIC(a)

= O(1). (In fact, for the case SIC(a), the
maximum number of primes used per user is log a+ 1, a small constant). �

7 Concluding Remarks

We presented three generic frameworks for constructing broadcast encryption
and give some efficient instantiations. Almost all subset-cover broadcast en-
cryption schemes based on PRSG (or one-way function) or RSA accumulator
in the literature can be rewritten as instantiations in our paradigms. In fact,
[18,14,17,4,12,20,15] can be viewed as PRSG-instantiated schemes and [2,3,11]
are non-trapdoor-RSA-instantiated schemes from our frameworks.

The whole paradigm abstracts away the computational security issues and
reduces the problem to only pure combinatorics. We leave as an open problem
the question of showing any combinatorial bound from the efficiency charac-
terization in each sub-framework. Note that the previous bounds for broadcast
encryption [16] are done in the setting where no key derivation is involved.
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Abstract. A two-argument function is computed privately by two par-
ties if after the computation, no party should know anything about the
other inputs except for what he is able to deduce from his own input
and the function value. In [1] Bar-Yehuda, Chor, Kushilevitz, and Orl-
itsky give a complete characterisation of two-argument functions which
can be computed privately (in the information-theoretical sense) in the
Honest-But-Curious model and study protocols for “non-private” func-
tions revealing as little information about the inputs as possible. The
authors define a measure which determines for any function f the ad-
ditional information E(f) required for computing f and claim that f
is privately-computable if and only if E(f) = 0. In our paper we show
that the characterisation is false: we give a privately-computable func-
tion f with E(f) �= 0 and another function g with E(g) = 0 that is not
privately-computable. Moreover, we show some rather unexpected and
strange properties of the measure for additional information given by
Bar-Yehuda et al. and we introduce an alternative measure. We show
that for this new measure the minimal leakage of information of ran-
domized and deterministic protocols are equal. Finally, we present some
general relations between the information gain of an optimal protocol
and the communication complexity of a function.

1 Introduction

We investigate computations of functions of two n-bit inputs x and y by two
players Alice holding x and Bob having y. For a given function f Alice (A) and
Bob (B), both with unlimited computational power, communicate to determine
f(x, y) keeping as much of its input secret from the other party as possible.
In this setting two models are considered in the literature. In the first one we
assume that the players are honest but curious, that means they never deviate
from the given protocol but try to acquire knowledge about the input bits of the
other player only by observing the communication. In the second setting Alice
or Bob can be malicious, i.e. they can cheat. In this paper we study privacy in
the Honest-But-Curious setting.
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Private computation was introduced by Yao [8]. He considered the problem
under cryptographic assumptions. Private computation in the information-the-
oretical secure setting has been introduced by Ben-Or et al. [3] and Chaum et
al. [5]. Ben-Or et al. have presented a function that is not privately computable.
A complete characterisation of such functions has been given independently by
Kushilevitz [6] and Beaver [2]. This characterisation has been given by using so
called forbidden submatrices. Let M be a matrix. We say that two row indices
i and j are related (i ∼ j) if there is a column k for which Mi,k = Mj,k. For
example, the row indices of matrix T shown below are related while the rows of
matrix T ′ are not related.

T =
[

0 0
0 1

]
, T ′ =

[
1 0
0 1

]
. (1)

We define the equivalence relation ≡ to be the transitive closure of ∼. In a
similar way, we define the relations ∼ and ≡ on the columns of M . A matrix
is forbidden if it is not monochromatic (i.e. not all elements of the matrix are
the same), all its rows are equivalent with respect to ≡ on rows, and all its
columns are equivalent with respect to ≡ on columns. Matrix T defined in (1) is
a small example of a forbidden matrix and T ′ is an example for a not forbidden
matrix. Privately-computable functions can be characterised as follows. Let Mf

denote the communication matrix for the function f , i.e. an 2n×2n matrix such
that rows and columns are indexed by n-bit inputs and for every x, y ∈ {0, 1}n
we have (Mf )x,y = f(x, y). For example T and T ′ in (1) are communication
matrices of the two argument Boolean functions AND and XOR, respectively.

Theorem 1 ([6,2]). In the Honest-But-Curious model a two-argument function
f can be computed privately if and only if Mf does not contain any forbidden
submatrix.

Using this characterisation one can see that the majority of functions can-
not be computed privately. For such functions it is natural to study the mini-
mum amount of information about the individual inputs that must leak during
their computation. There are several ways to quantify such a leakage. In [1]
Bar-Yehuda et al. introduced three measures: a combinatorial measure Ic, an
information-theoretic measure Ii, and a measure Ic-i that includes both combi-
natorial and information-theoretic aspects. For the measures they proved general
tight bounds on minimum amount of information about the inputs that must be
revealed in a computation. Moreover, they showed that sacrificing some privacy
can reduce the number of messages required during the computation.

In [1] the authors define for any function f the additional information E(f)
required for computing f as a difference between Ic(f) and log2 | range(f)|, where
| range(f)| denotes the cardinality of the range of function f . They claim that
f is privately-computable if and only if E(f) = 0. In our paper we show that
the characterisation is false. We construct a privately-computable function f
with E(f) �= 0. Moreover we show that for the function fmin(x, y) = min{x, y},
where x and y are interpreted as integers from {0, 1, . . . , 2n − 1}, it holds that
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E(fmin) = 0. On the other hand, fmin cannot be computed privately since the
communication matrix of fmin:

Mfmin =

⎡⎢⎢⎢⎢⎣
0 0 0 0 . . . 0
0 1 1 1 . . . 1
0 1 2 2 . . . 2
· · ·
0 1 2 3 . . . 2n − 1

⎤⎥⎥⎥⎥⎦
contains a forbidden submatrix. In fact, Mfmin is not monochromatic and for
every x < 2n − 1 we have fmin(x, x) = fmin(x+ 1, x) = fmin(x, x + 1) = x and
fmin(x+ 1, x+ 1) = x+ 1 what implies that all its rows (columns, resp.) are in
the same equivalence class.

We show also some rather strange properties of the measures for revealed
information Ic, Ii, and Ic-i. For example, we show that Ic(AND) = Ic(XOR):
the revealed information required for computing AND is the same as for XOR
contradictory to the fact that XOR can be computed privately but AND cannot.
The similar property holds for the remaining measures as well.

Furthermore, we introduce an alternative measure for the minimum revealed
information, which is based on the information source defined in [4]. The revealed
information of a protocol to a player is merely the logarithm of the number of
different probability distributions on the communication strings a player can
observe. For this measure we will show that f is a privately computable function
if and only if the amount of the minimum revealed information is zero. We give
some tight bounds of concrete functions and show a general lower bound for
arbitrary two n-bit inputs functions.

We show that for our measure the minimal leakage of information for ran-
domized and deterministic protocols are equal. Finally, we present some relations
between the information gain of an optimal protocol and the communication
complexity of a function. More precisely, we will give a lower bound for the leak-
age of information that is logarithmic on the communication complexity. We will
show that for some specific functions this general bound is tight.

The paper is organized as follows. In the next section we give some pre-
liminaries for communication complexity. In Section 3 we present the model of
Bar-Yehuda et al. and we give there our analysis of their results. In Section 4 we
discuss our measure for reviling additional information. The relation of the gain
of additional information in randomized protocols and deterministic protocols is
investigated in Section 5. Finally, in Section 6 we give a general relation between
communication complexity and the additional information.

2 Communication Protocols

Let f be a function of two n-bit inputs x and y that are known to two par-
ties A and B, respectively, each having unlimited computing power. The aim
is to determine f(x, y) by alternate transmitting messages over a noiseless bi-
nary channel according to a communication protocol. We consider two kinds
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of protocols: deterministic and randomised. In deterministic case each message
is determined by the input known to the party and by the previously received
messages. We require that in every round of communication, the set of all possi-
ble messages is prefix-free. A protocol computes f if for every (x, y) each party
deduces correctly the value f(x, y). Let P(x, y) denote the concatenation of all
communication messages of a protocol P exchanged between A and B during
the computation on an input (x, y). Let communication complexity of proto-
col P , denoted by CP , be the maximum length of P(x, y), and let the com-
munication size CSP be the number of different strings P(x, y), over all in-
puts (x, y). Define the deterministic communication complexity of f , denoted by
CD(f), as the smallest CP over all deterministic protocols P computing f and
analogously let the communication size CSD(f) be the smallest CSD(f) over
all P .

For the randomised protocol P on an input (x, y), to determine communica-
tion messages A and B can use additionally random bit strings. In this paper we
consider randomised protocols where each party A and B has access to a private
random strings RA and RB, respectively. In this case the communication string
P(x, y), defined again as the concatenation of all messages transmitted during
an execution of P on (x, y), is a random string.

For a general survey of communication complexity see e.g. Kushilevitz and
Nisan [7].

3 Additional Information - The Model of Bar-Yehuda
et al.

In this section we will discuss the measuring of additional information defined
in [1]. First we give the definitions and the results of [1] and we show next that
some of the results are false, the measures are somehow inconsistent, and they
have rather unexpected and strange properties.

3.1 The Results

Let us first present the definition of privacy cost in the combinatorial setting.
Next the information-theoretic measure and the measure that includes both
combinatorial and information-theoretic aspects will be considered.

To define the combinatorial measure Ic(f) for a function f Bar-Yehuda et al.
introduce a weak and a stronger definition of privacy cost. However, since the
notions are equivalent to each other, we will recall the definition of Ic using the
notion of strong privacy only. To measure information leakage during compu-
tation of f we use an auxiliary function h, which like f , is a function of two
n-bit strings. The ranges of both functions can be different. Intuitively speak-
ing, a protocol P for f leaks at most h, or equivalently is h-private, if dur-
ing the computation of P on (x, y) the information learned by a party about
the input of the other party can be deduced from its own input and the value
h(x, y).
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Definition 1 ([1]). A protocol P for f is strongly h-private for A if

1. for every x, y ∈ {0, 1}n P computes the value f(x, y) correctly with probability
1 and

2. for every x, y1, y2 ∈ {0, 1}n, h(x, y1) = h(x, y2) implies that for all random
choices r of A, P(x, y1) and P(x, y2) have the same distribution, namely,
for every communication string s,

Pr[s = P(x, y1)|r] = Pr[s = P(x, y2)|r],

where the probability is taken over the random choices of B.

Strong h-privacy for B is defined analogously. To give more intuition let us
consider the Boolean function fequ defined on two n-bit strings:

fequ(x, y) =

{
1 if x = y,
0 otherwise.

(2)

Furthermore, let us consider the (deterministic) protocol of [1] for computing
fequ on two n-bit strings x = x1x2 . . . xn and y = y1y2 . . . yn:

Protocol 1. For all i = 1, 2, . . . n do:
1. A sends xi to B;
2. If xi �= yi then B transmits 0 and exit; else if xi = yi then B transmits 1.

The protocol is strongly hequ-private for both A and B, where hequ is defined as
follows: hequ(x, y) = min{i : xi �= yi} if x �= y and hequ(x, y) = n+ 1 otherwise.
To see this, note that for the protocol P above and for every input (x, y) and
(x, y′) it holds that P(x, y) = P(x, y′) if and only if hequ(x, y) = hequ(x, y′). An
analogous equivalence holds for every (x, y) and (x′, y). Recall that P(x, y) for
the deterministic protocol P denotes just the concatenation of all communication
messages sent between A and B during the computation of P on (x, y).

Definition 2 ([1]). Let h1 and h2 be functions of two n-bit inputs. A protocol
P is strongly (h1;h2)-private if it is strongly h1-private for A and strongly h2-
private for B. A protocol P is strongly h-private if it is strongly (h, h)-private.
A function f is strongly h-private if it has a strongly h-private protocol.

For example, fequ is strongly hequ-private. The revealed information Ic(f) and
the additional information E(f) required for computing f are defined by

Ic(f) = min{log2 | range(h)| : f is strongly h-private }
E(f) = Ic(f)− log2 | range(f)|.

Hence, for the the function fequ we have:

Ic(fequ) ≤ log2(n+ 1) and E(f) ≤ log2(n+ 1)− 2. (3)

In [1] Bar-Yehuda et al. observe the following claim which is false as we will see
in the next section.
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Claim 1 ([1], p. 1932). A function f is privately-computable if and only if
Ic(f) = log2 | range(f)|, i.e., if and only if E(f) = 0.

For the min function:

fmin(x, y) =

{
x if x ≤ y,
y otherwise,

(4)

where x and y are interpreted as integers from {0, 1, . . . , 2n − 1}, the authors
claim that

Claim 2 ([1], p. 1933]). 0 < E(fmin) ≤ 1.

This is not true, as we will see in the next section.
Now, we recall the definition of information-theoretic measure Ii and a mea-

sure that includes both combinatorial and information-theoretic aspects Ic-i. In
this paper we will discuss only the deterministic counterpart of these measures
(denoted by Idet

i and Idet
c-i ) that refer to the leakage of information if the proto-

cols are restricted to deterministic ones.
To define Idet

i and Idet
c-i one has implicitly to assume a probability distribution

for the input x and y. Let us consider the input strings as a pair (X,Y ) of random
variables drawn from some specified distribution which is known to both parties.
For a deterministic protocol P define

IP(X,Y ) = max{I(X ;P(X,Y )|Y ), I(Y ;P(X,Y )|X)}

to be the maximum of the information gained by A or B about the input of
the other party that can be deduced from the complete communication strings
P(X,Y ) and its own input. Here I(X ; Y |Z) denotes the conditional mutual
information. The information-theoretic measure Idet

i of additional information
is defined as follows

Idet
f (X,Y ) = min{IP (X,Y ) : P is a deterministic protocol computing f}
Idet

i (f) = sup{Idet
f (X,Y ) : (X,Y ) is distributed over {0, 1}n × {0, 1}n}.

Finally define the combinatorial-information-theoretic measure Idet
c-i by

IP = sup{IP(X,Y ) : (X,Y ) is distributed over {0, 1}n × {0, 1}n}
Idet

c-i (f) = min{IP : P is a deterministic protocol computing f}.

3.2 Mistakes and Inconsistencies

In the following we show that some claims of [1] are false. We start our analysis
showing the following useful lemma:

Lemma 1. For every function f of two n-bit inputs the revealed information
required for computing f is bounded by n, i.e. Ic(f) ≤ n.
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Note that the lemma does not follow from the simple relation between Ic and
deterministic communication complexity that Ic(f) ≤ CD(f), since CD(f) can
be equal to n + | range(f)|. On the other hand the bound stated in the lemma
seems to be quite natural: One party cannot gain more than n bit of information
about the input of the other party in the sense of Shannon.

Proof. Let f be a two-argument function f over {0, 1}n × {0, 1}n and let P
be an arbitrary protocol which computes f correctly with probability 1. De-
fine the function g(x, y) = (x + y) mod 2n considering x and y as integer in
{0, . . . , 2n−1}. It is easy to verify that P is strongly g-private. In fact, for every
x1, x2, y1, y2 ∈ {0, 1}n with x1 �= x2 and y1 �= y2 we have g(x1, y1) �= g(x1, y2)
and g(x1, y1) �= g(x2, y1). Hence, Condition (2) of Definition 1 is fulfilled. Be-
cause | range(g)| = 2n, we get

Ic(f) = min{log2 | range(h)| : f is strongly h-private } ≤ log2 | range(g)| = n.

�

As a counterexample of the characterisation given in Claim 1 consider the func-
tion ϕ : {0, 1}n × {0, 1}n → {0} ∪ {0, 1}n defined for any n ≥ 2:

ϕ(x, y) =

{
y if x = 0n,
0 otherwise.

(5)

Proposition 1. Function ϕ can be computed privately but E(ϕ) �= 0.

Proof. Note that 0 �= 0n, hence the communication matrix Mϕ does not contain
a forbidden submatrix: Mϕ is not monochromatic and the first row of Mϕ is not
equivalent with any other row of the matrix. Hence by the characterisation by
Kushilevitz and Beaver (Theorem 1) we know that ϕ can be computed privately.
On the other hand according to the definition of the additional information
required for computing ϕ and by Lemma 1 we can conclude that

E(ϕ) = Ic(ϕ)− log2 | range(ϕ)| ≤ n− log2(2
n + 1) < 0.

�

Therefore Claim 1 is false: For privately-computable function ϕ we have both
Ic(ϕ) < log2 | range(ϕ)| and E(ϕ) �= 0. This example shows a strange property
of the definition of E(ϕ): The additional information required for computing a
function can be negative.

Using again Lemma 1 one can show that Claim 2 is false:

Proposition 2. For the function fmin defined in (4) it holds that

Ic(fmin) = n and E(fmin) = 0.
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Proof. By Lemma 1 we get

E(fmin) = Ic(fmin)− log2 | range(fmin)| ≤ n− log2(2
n) = 0.

It is not difficult to show that E(fmin) ≥ 0. In fact, if Ic(fmin) < n then there
exists a function h such that fmin is strongly h-private and log2 | range(h)| < n.
Consider x = 2n−1, then for any pair y1, y2 ∈ {0, 1, . . . , 2n−1} with y1 �= y2 we
have fmin(x, y1) �= fmin(x, y2). This implies the inequality h(x, y1) �= h(x, y2),
contradicting the assumption that log2 | range(h)| < n. �

Note that the communication matrix Mfmin of fmin contains a forbidden
submatrix (see a discussion in Section 1). Hence by Theorem 1, fmin is not
privately-computable. By Propositions 1 and 2 one can conclude

Theorem 2. There exists a privately-computable function ϕ, with E(ϕ) �= 0 and
another function f , with E(f) = 0 that is not privately-computable.

Now we will discuss some inconsistencies of the definitions for additional informa-
tion. We will show that in fact none of these definitions suits well for measuring
additional information properly. In Section 4 we will give a new definition for
additional information.

For the function ϕ, defined in (5), let us consider two (deterministic) protocols
P1 and P2 that compute ϕ. The protocol P1 works on x, y as follows: A sends 0
if x = 0n and 1 otherwise. If B receives 0 then he sends y to A and otherwise B
stops the computation. In protocol P2, A sends 0 if x = 0n and 1 otherwise and
then B sends y to A. Obviously in both cases each party can determine correctly
the value of the function at the end of the communication. Note that P1 is
private protocol in a common sense (more precisely 1-private, see e.g. [6] for the
definition) while P2 is not private. We can say even more: Using P2 A gains full
information about the input of B. On the other hand, both P1 and P2 are optimal
with respect to Ic. To see this, consider the function g(x, y) = (x + y) mod 2n

used in the proof of Lemma 1. We get that both P1 and P2 are strongly g-private
and the optimality follows from the obvious fact that

Ic(ϕ) = n = | range(g)|.

Idet
i and Idet

c-i measure the additional information wrong, as well. According
to the definition of IP we have for both protocols P1,P2

IPi = sup(X,Y )IPi(X,Y )
= sup(X,Y ) max{ H(X |Y )−H(X |Pi(X,Y ),Y ),

H(Y |X)−H(Y |Pi(X,Y ),X)}
= H(Y )

and therefore IP1 = IP2 . Hence neither Idet
i nor Idet

c-i measures the additional
information which can be gain by a party during the computation.

Finally, let us consider the two argument functions AND and XOR. We have:

Idet
c-i (AND) = Idet

c-i (XOR) = 1.
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But XOR can be computed privately and therefore no additional information
can be gained during a computation of XOR. On the other hand, AND cannot be
computed privately.

4 Additional Information - New Measure

In the following we will present an alternative measure for additional informa-
tion, that is based on the information source defined in [4].

Definition 3. Let P be a protocol for a function f which for every x, y ∈ {0, 1}n
computes the value f(x, y) correctly with probability 1. Let x ∈ {0, 1}n, z ∈
range(f) and let r be a random string provided to A. Define the information
source of A on x, z, and r as the set of different probability distributions on the
communication strings A, holding x and r, can observe during all computations
of P that give the result z:

SP,A(x, z, r) = {(μx,y(s1), μx,y(s2), . . .) : y ∈ {0, 1}n, f(x, y) = z}

where μx,y(sk) = Pr[P(x, y) = sk|r]. Define the size of the information source
as

sP,A(x, z) = max
r
|SP,A(x, z, r)|.

Analogously we define SP,B(y, z, r) - the information source of B on y, z, and
r and the size sP,B(y, z).

If P is a deterministic protocol then we will omit r in SP,A(x, z, r) and write
just SP,A(x, z). Now we are ready to define a new combinatorial measure for the
additional information, analogy of Ic, that we will denote by Jc.

Definition 4. The additional information of P revealed to A is defined as

JP,A = max{log2 sP,A(x, z) : x ∈ {0, 1}n, z ∈ range(f) } .

Analogously we define JP,B. The additional information that can be deduced
running a protocol P is JP = max{JP,A, JP,B}. The additional information
required for computing f is

Jc(f) = min{JP : P is a protocol computing f}.

We have the following characterisation of privately computable functions:

Theorem 3. A function f is privately computable if and only if Jc(f) = 0.

The proof of the theorem is straightforward and we skip it here.
We can redefine the measure Jc in term of h-privacy used by Bar-Yehuda

et al. (see Definition 2).

Definition 5. Let h be a function of two n-bit inputs and let protocol P for a
function f be strongly h-private. Analogously to Definition 3 and 4 let

shP,A(x, z) = |{h(x, y) : y ∈ {0, 1}n, f(x, y) = z}|
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and
JhP,A = max{log2 s

h
P,A(x, z) : x ∈ {0, 1}n, z ∈ range(f) } .

Analogously define shP,B and JhP,B for B. Then JhP = max{JhP,A, JhP,B}.

Theorem 4. For every function f it holds

Jc(f) = min{JhP : P is strongly h-private protocol for f}.

Our measure modifies the definition of Bar Yehuda et al. [1] by considering the
result of the function. The proof Theorem 4 uses some facts that we get from the
derandomisation of an optimal protocol. We will present such a derandomisation
in the next section.

Proof (of Theorem 4). Let f be a function. We show first that

Jc(f) ≤ min{JhP : P is strongly h-private protocol for f}. (6)

Assume h is function and P is a strongly h-private protocol for computing f
such that JhP is minimum among all such functions h and protocols P . By the
definition of h-privacy we have that for every x, y1, y2 ∈ {0, 1}n, h(x, y1) =
h(x, y2) implies that for all random choices r of A, P(x, y1) and P(x, y2) have
the same distribution. Hence, for every x ∈ {0, 1}n and z ∈ range(f) we have

sP,A(x, z) ≤ |{h(x, y) : y ∈ {0, 1}n, f(x, y) = z}| = shP,A(x, z).

Similarly we have: sP,B(y, z) ≤ shP,B(y, z). Hence both JP,A ≤ JhP,A and JP,B ≤
JhP,B are true and thereforewe getJP ≤ JhP . This implies that Inequality (6) is true.

To see that the inverse inequality to (6) is also true, we apply Theorem 6. Let
P be a protocol for f such that JP is minimal among all protocols computing
f . By Theorem 6 there exists a deterministic protocol P ′ for f such that

JP′ ≤ JP = Jc(f).

Since P ′ is deterministic, we can define a function h for every x, y ∈ {0, 1}n as
follows: h(x, y) = P ′(x, y). Obviously, P ′ is strongly h-private and it is true that
JhP′ = JP′ . Hence, by the inequality above one can conclude:

min{JhP : P is strongly h-private protocol for f} ≤ JhP′ = JP′ ≤ Jc(f).

This completes the proof. �

Using Theorem 4 we get that Jc(f) ≤ Ic(f) for every function f . However
the difference can be very big: e.g. for fmin we have by Proposition 2 that
Ic(fmin) = n. On the other hand using the protocol given in [1]:

Protocol 2. For all i = 0, 1, . . . 2n − 1 or until the first 1 is transmitted do:
1. A transmits bit 1 if x = i and 0 otherwise;
2. B transmits bit 1 if y = i and 0 otherwise.
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we get that Jc(fmin) ≤ 1. Since fmin cannot be computed privately, we obtain
the equality Jc(fmin) = 1.

For the equality function fequ (see (2)), we get Ic(fequ) ≤ log2(n+ 1) (com-
pare the inequalities (3)). By the fact shown in [1] that for any deterministic
protocol P which computes fequ there is v ∈ {0, 1}n such that the size of the set

{P(x, v) : x ∈ {0, 1}n} ∪ {P(v, y) : y ∈ {0, 1}n}

has at lest n+2 elements, we obtain for z = 0: sP,A(v, z)+sP,B(v, z) ≥ n+2 and
finally that Jc(fequ) ≥ log2(n + 2)/2 > log2 n − 1. Hence we get the following
bounds: log2 n− 1 < Jc(fequ) ≤ Ic(fequ) ≤ log2(n+ 1).

We close the section by giving a general lower bound for Jc. Recall that a rec-
tangle in {0, 1}n×{0, 1}n is a Cartesian product R = V ×H with V,H ⊆ {0, 1}n.
The rectangle R is f -constant if f is constant over R. Obviously, every protocol
for P partitions the communication matrix Mf into f -constant rectangles. Let
rf be the largest width of an f -constant rectangle.

Theorem 5. For every Boolean function f of two n-bit inputs

Jc(f) ≥ n− log2 rf − 2.

The proof of Theorem 3 of [1] works for our Theorem.
Using the general bound given in the Theorem above one can find lower

bounds for Boolean functions f communication matrix of which is of the Hadamard
type (see [1]). From this characterisation we get e.g. that for the n-variable inner
product mod 2 function defined as

fin(x, y) =
n∑
i=1

xi · yi mod 2 (7)

it holds that Jc(fin) ≥ n/2− 2.

5 Derandomisation

In this section we will show that every randomized protocol P that computes
the function f correctly with probability 1 can be simulated by a deterministic
protocol P ′ such that the additional information that can be deduced running
protocol P ′ is bounded by the additional information that can be deduced run-
ning protocol P , i.e. JP′ ≤ JP . We will start by the derandomisation of the part
of A.

Let us assume that A performing P starts the communication and let 
 be
an upper bound for the number of random bits used by A. In the algorithm
below A simulates the t-th round of the computation of P , with t = 1, 2, 3, . . .
as follows: On a given input x A computes iteratively string ct and a subset
Rt ⊆ {0, 1}≤� of all binary strings of lengths less or equal to 
, such that ct is a
complete communication string of a computation during the first t rounds and
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Rt is a subset of all possible random strings that can be used by A. A string r
is in Rt if there exists a computation of P such that the first t rounds of the
computation are consistent with ct when A on x and r. Define R0 = {0, 1}≤�
and let c0 be the empty string.

1. If t is odd then for every r ∈ Rt−1 A simulates (deterministically) the t-th
round of the computation of P on input x with the random string r that is
consistent with the communication string ct−1 and computes a communica-
tion string for the tth round. Let wt be lexicographically smallest among all
such strings. Then A computes Rt := {r ∈ Rt−1 | A sends wt on x, r, ct−1 }
and ct := ct−1 ◦wt and sends wt to B. For two strings v and v′, by v ◦ v′ we
denote concatenation of v and v′.

2. If t is even and ut is a message received by A from B in tth round, then
ct := ct−1 ◦ ut.

Assume that the protocol stops in round T , then it is easy to see that for every
input y, every possible result z, and every random string of B, A chooses for
every pair of inputs x, x′ the communication string s such that it is the lexico-
graphically smallest string with Pr[P(x, y) = s|r],Pr[P(x′, y) = s|r] > 0. Hence,
inputs x, x′ that gives the same distribution on y, z, r when running P gives also
the same distribution when running the deterministic protocol P ′.

Note that we can derandomize the part of B’s protocol analogously. Hence,
we can conclude:

Lemma 2. For every protocol P there exists a deterministic protocol P ′ com-
puting the same function, such that for every choice of x, y, z sP′,A(x, z) ≤
sP,A(x, z) and sP′,B(y, z) ≤ sP,B(y, z).

Theorem 6. For every protocol P there exists an deterministic protocol P ′ com-
puting the same function, such that JP′ ≤ JP .

This result generalises the result of Kushilevitz [6] that a protocol can be com-
puted privately in the two party scenario iff it can be computed privately by a
deterministic protocol.

Using our simulation result, we can directly deduce some bounds for the size
of a minimal information source. Let sf be the minimum size of the information
source of a protocol computing f , i.e. let

sf = min
P

max
x,y,z

{sP,A(x, z), sP,B(y, z)}

(note that Jc(f) = log2 sf ).

Corollary 1. sf ≤ CSD(f).

Proof. Assume that sf > CSD(f) and let P be a deterministic protocol that
achieve sf and P ′ be a deterministic protocol that achieve CSD(f). Assume
that sf = sP,A(x, z) for appropriate chosen values x, z. Then the number of
communication strings seen by A on input x and result z when running P is
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even higher then the number of communication strings seen by both parties
when running P ′ on arbitrary inputs. Hence, the size of the information source
when running P ′ is smaller than the size of the information source when running
P – contradicting the assumption that P achieves the minimum size of the
information source. �

Corollary 2. CSD(f) = mindeterministic P computes f |
⋃
x,z SP,A(x, z)|.

Proof. Let P be a deterministic protocol for f such that∣∣∣⋃x,zSP,A(x, z)
∣∣∣ = min

deterministic P′ computes f

∣∣∣⋃x,zSP′,A(x, z)
∣∣∣ .

Since P is deterministic every distribution in the set
⋃
x,z SP,A(x, z) rates ex-

actly one communication string with a strictly positive probability. Furthermore,
the set determines all communication strings used when running P . The claim
follows from the observation, that P is chosen such that the number of used
communication strings is minimal. �

6 Lower Bounds on Size of the Information Source

Corollary 1 gives a general upper bound on the minimum size of the information
source sf . This bound is not tight. In fact, it is well known (see e.g [7]) that for the
equality function fequ it holds that CSD(fequ) ≥ 2n and CD(fequ) = n. On the
other hand from the Protocol 1 it follows that for any optimal protocol P we get
sP,A(x, z), sP,B(y, z) ≤ n for every x, y, z. Hence sfequ ≤ n < 2n ≤ CSD(fequ).
In this section we will prove a linear lower bound for the size of the information
source with respect to the communication complexity, i.e. we show that for any f
sf ∈ Ω(CD(f)/| range(f)|). In particular for fequ we get CD(fequ)/4−1 ≤ sfequ .

For a node v of the communication tree let Xv and Yv denote the sets of input
strings of A and B, respectively, such that on the input pairs (x, y) ∈ Xv × Yv
the protocol reaches v. Let sP,A,v(x, z) denote the size of the information source
of the subprotocol of P starting in v and restricting the inputs to Xv × Yv. Let
sP,B,v(y, z) be defined analogously. Finally, define

range(v) = { f(x, y) | (x, y) ∈ Xv × Yv } .

Without loss of generality let us restrict ourselves only to the protocols P
sending no unnecessary bits for computing the function. Formally assume that
all internal nodes of a communication tree of P have degree at least 2. We start
with the following observation:

Lemma 3. Let P be a deterministic protocol computing a function f and let
v1, . . . , vt be a leaf-to-root path in the communication tree of P. Then for all
i ∈ {1, . . . , t} there exists x ∈ Xvi , y

′ ∈ Yvi , and z, z′ ∈ range(f) such that

max{sP,A,vi(x, z), sP,B,vi(y
′, z′)} ≥

⌈
i

2 · |range(vi)|

⌉
− 1 .
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Proof. The proof follows for i = 1 since for every leaf v1 of the communication
tree we have sP,A,v1(x, z) = sP,B,v1(y, z) = 0.

Consider now an internal node vi, with i > 1. Let u1, . . . , ud be all successors
of vi in the communication tree. Obviously, vi−1 is one of the nodes uj. Let us
assume, that A has to send some message in vi, then for all x ∈ Xvi−1 ⊂ Xvi ,
y ∈ Yvi−1 = Yvi , and z = f(x, y):

sP,A,vi(x, z) = max{1, sP,A,vi−1(x, z)}.

On the other hand one can prove that for the information source of B we have

sP,B,vi(y, z) =
∑

j∈{1,...,d} with z∈range(uj)

max{1, sP,B,uj(y, z)}.

Therefore we can bound the quantity as follows

sP,B,vi(y, z) ≥
{

1 + max{1, sP,B,vi−1(y, z)} if z ∈ range(uj) for some uj �= vi−1

max{1, sP,B,vi−1(y, z)} else.

Assume that there are k nodes on the sub-path v1, . . . , vi where A sends a
message to B. Then there exists z′ ∈ range(vi) such that for at least⌈

k

|range(vi)|

⌉
− 1

of these nodes vj it holds that z′ ∈ range(vj−1) ∩ range(u) for some direct
successor u �= vj−1 of vj . Note that we can show simular bounds for sP,A,vi(x, z)
and sP,B,vi(y, z) if Bob sends a message. The claim follows immediately since
either A or B has to send some message in at least !i/2" of the nodes v1, . . . , vi.

�

As a corollary we obtain:

Corollary 3. For every function f of two n-bit inputs it is true

CD(f)
2 · |range(f)| − 1 ≤ sf .

Combining the corollary above with Theorem 6 we can conclude the following
lower bound on the additional information:

Theorem 7. For every function f of two n-bit inputs we have

Jc(f) ≥ log2 CD(f)− log2 | range(f)| −O(1).

7 Conclusions

In this paper measures for revealed information required for computing f have
been considered. We have analysed the measures given by Bar-Yehuda et al.
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and have showed that some results presented in [1] are wrong. Moreover we
have observed some unnatural properties of the measures. We have introduced
a new definition for the additional information for two party protocols and have
given some bounds for concrete functions for the additional information. We
get e.g. that for the n-variable inner product mod 2 function it is true that
Jc(fin) ≥ n/2 − 2. An interesting open problem is to show lower and upper
bounds on Jc for another specific functions. A further task to do is to investigate
a tradeoff between the additional information and the number of rounds for
communication protocols.
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in Non-Private Environments. Proceedings of the 10th Annual International Cryp-
tology Conference on the Theory and Application of Cryptology and Information
Security (Asiacrypt), 2004, 137-151.
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Abstract. We propose Gate Evaluation Secret Sharing (GESS) – a new
kind of secret sharing, designed for use in secure function evaluation
(SFE) with minimal interaction. The resulting simple and powerful GESS
approach to SFE is a generalization of Yao’s garbled circuit technique.

We give efficient GESS schemes for evaluating binary gates and prove
(almost) matching lower bounds. We give a more efficient information-
theoretic reduction of SFE of a boolean formula F to oblivious transfer.
Its complexity is ≈ d2

i , where di is the depth of the i-th leaf of F .

1 Introduction

The main motivation for this work is one-round secure function evaluation (SFE).
SFE is one of the core problems of cryptography. We consider the following one-
round two semi-honest parties setting. Alice and Bob wish to compute a function
f of their inputs x and y respectively: Alice sends the first message to Bob, Bob
replies, and Alice computes f(x, y). Both parties follow the prescribed protocol,
but try to infer additional information from the messages they receive. This
problem has been extensively studied, and very efficient solutions (with cost
linear in the circuit representing f) exist (Yao’s garbled circuit [3,21,24,25,27]),
when Alice is polytime bounded. When Alice is computationally unlimited, only
much less efficient algorithms are known [4,9,18,19,20,26].

One-round SFE is particularly interesting for several reasons. Firstly, from
a practical point of view, interaction necessarily involves latencies in message
deliveries, and in many practical situations waiting for messages dominates the
entire computation time. Secondly, a large volume of research, e.g. [8,12,18,19],
aims specifically at reducing round complexity of multiparty protocols. Inves-
tigating the two-party one-round model may help increase our understanding
of general secure multiparty computation. Finally, the recently popular area of
secure autonomous agent computing (see, e.g. [1,8]) relies on one-round proto-
cols, commonly implemented via encrypted circuit constructions. A variety of
very useful mobile agents computing simple functions may benefit from our im-
provements. One such example, discussed in [1], is that of a shopping agent that
would accept a sales offer if it is below a certain threshold.

We approach the problem in a general way by reducing SFE to oblivious
transfer (OT). OT is a powerful primitive, and is the subject of a vast amount of

B. Roy (Ed.): ASIACRYPT 2005, LNCS 3788, pp. 136–155, 2005.
c© International Association for Cryptologic Research 2005
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research. It has been studied in many settings; for example, OT is instantiable
with information-theoretic (IT) security (e.g. with noisy and quantum channels
or a distributed sender [23]). Our SFE constructions automatically apply to all
of the above (and many other) settings and will benefit from future OT research.

1.1 Our Contributions and Outline of the Work

Our main idea is a new simple way of evaluating circuit gates securely by using a
new type of secret sharing, which we call Gate Evaluation Secret Sharing (GESS).
Our method can be viewed as a generalization of Yao’s garbled gate evaluation
procedure, offering a simple and powerful approach for designing efficient SFE
protocols. Our method is flexible, and not limited to ∨,∧,¬ gates. Circuits with
special purpose (e.g. non-binary) gates may be designed and implemented via
GESS to achieve better efficiency for specific functions (see, e.g., Sect. 2.6).

We show how a composition of GESS schemes can be used to efficiently re-
duce SFE to (parallel executions of) 1-out of-2 OT. Given a boolean formula,
we obtain a one-round reduction, meaning that an instantiation of OT results in
a SFE protocol, the security and round complexity of which are that of the un-
derlying OT. Our reduction is very efficient. Previous approaches in part suffer
from the exponential (in depth) cost of evaluation of a gate, which has intu-
itievely appeared necessary. We break this intuition by providing a scheme for
gate evaluation whose cost is only quadratic in the depth of the gate. Further, in
our reduction, we don’t “pay” for the internal gates of the formula. For a depth
d circuit, this results in a factor of approximately 2O(

√
d) improvement over pre-

vious solutions: O(2dd2) vs Θ(2d2Θ(
√
d)). (Like all other approaches, ours suffers

from the fact that the number of gates may be exponential in depth. Thus, we of-
fer polytime reduction of only NC1 circuits.) We prove non-trivial lower bounds,
showing that our constructions are almost optimal in the GESS framework.

The GESS approach is especially efficient on small circuits, since it does not
use encryption. In Sect. 2.6, we demonstrate this by a new efficient protocol
for the Two Millionaires problem. This protocol also serves as an example of
designing and implementing custom GESS gates.

We start with describing previous approaches and giving conceptual and
performance comparisons to our work (Sect. 1.2). We then present intuition for
our approach and introduce the necessary formal definitions in Sect. 2 and 2.1.
We present our constructions, lower bounds and performance analysis in Sect.
2.3 – 2.5. In Sect. 2.6 we present a new solution of the Two Millionaires problem.

In Sect. 3, we show how to use GESS to allow polytime SFE of polysize
circuits, when Alice is polytime. In effect, we obtain another implementation
of Yao’s garbled circuit approach for the model with polytime Alice, offering
essentially the same computational and communication complexity as its best
implementations. The natural and efficient handling of the computational setting
demonstrates the generality of the GESS approach. We mention that the effi-
ciency of Yao’s garbled circuit technique in the standard model can be (slightly)
improved by using IT GESS on “the bottom part” of the circuit (see discussion
in Sect. 3).
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1.2 Comparisons with Related Previous Work

General discussion. Note the frequent use of a variety of secret sharing schemes
in secure multiparty computation. They are always used, however, to share se-
crets among players. We contrast this with our novel use, where secrets are
shared among wires and given to the player who performs reconstruction.

We note that some of the previous approaches (e.g. [9,18,19,20]) are applica-
ble to more general representations of functions (e.g. by arithmetic formulas or
branching programs (BP)). Many functions may have especially efficient repre-
sentations when not restricted to boolean formulas (the setting we consider);
such functions may not benefit from our constructions.

Although our reductions are efficient for polysize boolean formulas of ar-
bitrary depth, they perform better on balanced formulas. For the latter, the
complexity is quasi-linear (vs. cubic for highly unbalanced formulas) in the size
of the formula. Note that it is possible ([7,6]) to rebalance any formula to obtain
an equivalent log-depth balanced formula, at the cost of small increase in its size
(see end of Sect. 2.4 for more discussion).

Therefore, for the remainder of this section, assume that we are given a
boolean formula (or an NC1 circuit, which can be viewed as one), which is
rebalanced if it benefits the approach considered.

Let d be the depth of the formula or the circuit.

Comparing our reduction to previous constant-round approaches.
Kilian [20] was the first to show a one-round IT reduction (of complexity

Θ(4d)) of SFE to OT. Kilian relies on Barrington’s [2] representation of NC1

circuits as permutation BPs. It is possible to replace Barrington’s representation
in Kilian’s construction with a more efficient construction of Cleve [9] (see, e.g.
Cramer et al. [10]). The resulting complexity is Θ(2d2Θ(

√
d)), which is the best

previously known for NC1 circuits and (re)balanced formulas.
Ishai and Kushilevitz [18,19] suggested a way of representing a circuit

as a predicate on a vector of degree 3 (degree of the input variables xi is 1)
randomizing polynomials. Their construction assigns an (exponential in d in size)
polynomial representation to each wire of the corresponding fan-out 1 circuit,
and implies a one-round SFE-to-OT reduction, of complexity Θ(4d). They also
previously suggested a related Private Simultaneous Messages (PSM) model [17]
of computation. They showed how to evaluate functions computed by BPs in
the PSM model (and also in our SFE-to-OT reduction model) with resources
quadratic in the size of the BP. (Recall, BPs are more powerful than permutation
BPs or formulas.) For our setting, their approach implies a one-round SFE-to-
OT reduction of cost Θ(4d), using an (almost) linear in size transformation of a
formula to a BP [14].

Our reduction of boolean formulas is simpler and more efficient (costing
O(2dd2)) than the above approaches.

Yao’s garbled circuit approach can also be used for such reduction (see,
e.g. [19]). The idea is to use an IT-secure two-time encryption scheme (e.g. using
one-time pad) in Yao’s garbled circuit. The keys of such a scheme must be more
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than twice the size of the secret, causing an exponential (in d) growth of the size
of secrets, even in fan-in 1 circuits1. The complexity of such a scheme is about
Θ(4d) (up to 2d leaves, each of size up to 2d). Our approach is a generalization
and an improvement of this approach.

Sander, Young and Yung (SYY) ([26]) present a “fully homomorphic”
encryption scheme and apply it to SFE. The encryption size grows exponen-
tially with the number of the applied OR operations, resulting in Θ(8d) cost of
SFE. Beaver [4] suggests an optimization of the SYY pyramid and extends the
approach to the multiparty setting, achieving complexity Θ(4d). Further, using
the representation of Feige, Kilian and Naor [11] of NLOGSPACE as a product
of polysize matrices, he shows how to compute it in one round, bootstrapping the
SYY approach, also achieving complexity Θ(4d). Our approach is conceptually
different, simpler, more composable, uses fewer assumptions, and offers complex-
ity of at most O(2dd2). Also, unlike SYY, we do not have the requirement of a
layered circuit, which further increases our performance improvement.

Finally, we mention (but do not discuss) a variety of non-constant round
solutions (e.g. [22] and [16]).

1.3 Our Setting

We are working in a setting with two semi-honest participants who use ran-
domness in their computation. A large part of our work concerns reductions of
various problems to the OT oracle. In the semi-honest model, secure reductions
result in secure protocols when the called oracles are replaced by their secure
implementations. Further, the oracles’ implementations may be run in parallel,
which, with natural OT implementations, results in secure one-round protocols.
See Goldreich [15] for definitions, discussion and the composition theorem.

2 The GESS Approach

The intuition behind the GESS approach. Suppose first that the circuit C
consists of a single binary gate G with two inputs, one held by Alice, and one
by Bob. To transfer the value of the output wire to Alice, Bob encodes possi-
ble values of each of the two input wires and transfers to Alice two of the four
encodings – one for each wire. Encoding of Alice’s wire value is sent via OT.
Each pair of encodings that can be possibly sent, has to allow the recovery of
the corresponding to G value of the output wire, and cannot carry any other
useful information. Consider the following example.

s′1 s′′1s′0 s′′0

0
G

1
1 Note the distinction between this flavour of Yao’s approach and its standard version

for evaluation of polysize circuits (e.g. [3,25,24,21]). The latter is not a reduction to
OT; e.g, it cannot be used to construct one-round protocols IT-secure against Alice.



140 V. Kolesnikov

Given the possible output values 0, 1 and the semantics of the gate G, Bob
generates encodings of the input wires’ values (s′0, s

′
1), (s

′′
0 , s

′′
1), such that each

possible pair of encodings s′i, s
′′
j , where i, j ∈ {0, 1}, allows to reconstruct G(i, j),

and carries no other information. Now, if Bob sends Alice shares corresponding
to their inputs, Alice would be able to reconstruct the value of the output wire,
and nothing else.

This mostly corresponds to our intuition of secret sharing schemes. Indeed,
the possible gate outputs play the role of secrets, which are shared and then
reconstructed from the input wires encodings (shares).

Our next observation is that Bob need not share the values of the out-
put wire, but instead can share their encodings, which, in turn, may be input
shares of another gate. Thus, Alice and Bob can recursively apply the GESS
approach to multi-gate circuits. For each wire, Alice will only be able to obtain
one secret – the one corresponding the the value of the wire on the parties’
inputs.

2.1 The Definition of Gate Evaluation Secret Sharing

We now formally state the desired properties of the secret sharing scheme. While
the idea of the definition is quite simple, it is somewhat burdened with notation
due to the necessary level of formalism. For simplicity, we present the definition
for the case of a gate with two binary inputs and a binary output, postponing
the presentation of its most general form to Appendix A (Def. 2). A simple
instructive example of a GESS scheme is Constr. 2 in Sect. 2.3.

Let G be a gate with two binary inputs and a binary output. Also denote
by G : {0, 1} × {0, 1} �→ {0, 1} the function computed by gate G. Let SEC
be the domain of secrets. Suppose we’ve associated a secret si ∈ SEC with
each of the two possible values i of the output wire of G. In general, distri-
butions of s0 and s1 may be dependent, so we talk about a tuple of secrets
〈s0, s1〉 from a domain of tuples TSEC ⊂ SEC2 associated with the output
wire. We want to assign a share to each value of the two input wires, such that
each combination of shares allows reconstruction of (only) the “right” secret.
As do secrets, shares on a wire form a tuple: 〈sh10, sh11〉 ∈ TSH1 ⊂ (SH1)2

on wire 1, and 〈sh20, sh21〉 ∈ TSH2 ⊂ (SH2)2 on wire 2. In our notation,
shij ∈ SHi is the share of the i-th input wire (i ∈ {1, 2}), corresponding to the
value j ∈ {0, 1}.
Definition 1. (Gate evaluation Secret Sharing) A gate evaluation secret shar-
ing scheme (GESS) for evaluating G as above (we also say GESS implementing
G) is a pair of algorithms (Shr,Rec) (with implicitly defined secrets domain
SEC, secrets tuples domain TSEC, two share domains SH1 and SH2 and two
share tuples domains TSH1,TSH2), such that the following holds.

The probabilistic share generation algorithm Shr takes as input a two-tuple
of secrets 〈s0, s1〉 ∈ TSEC and outputs two tuples of shares (one for each wire),
where, ∀i ∈ {1, 2}, the i-th tuple ti ∈ TSHi consists of two shares shij ∈ SHi.
The deterministic share reconstruction algorithm Rec takes as input two ele-
ments sh1 ∈ SH1 and sh2 ∈ SH2 and outputs s ∈ SEC.
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Let v = 〈v1, v2〉 ∈ {0, 1} × {0, 1} be a selection vector. Define the selection
function Sel(〈sh10, sh11〉, 〈sh20, sh21〉, v) = 〈sh1v1 , sh2v2〉. Write V1 ≡ V2 to de-
note that V1 and V2 are distributed identically.

Shr and Rec satisfy the following conditions:

– correctness: for all random inputs of Shr and secrets tuples 〈s0, s1〉 ∈ TSEC,
∀v ∈ {0, 1}2,Rec(Sel(Shr(〈s0, s1〉), v)) = sG(v)

– privacy (selected shares contain no information other than the value sG(v)):
There exists a simulator Sim, such that ∀〈s0, s1〉 ∈ TSEC and any v ∈
{0, 1}2: Sim(sG(v)) ≡ Sel(Shr(〈s0, s1〉), v)

Observation 1. A simple generalization of this definition (required for discus-
sion in Sect. 2.3 and 2.4) considers the identity gate GI with a four-valued output
wire, where each output corresponds to a pair of inputs. In this case, the secrets
form a 4-tuple 〈s00, ..., s11〉, while there are still two two-tuples of shares. Note
that we can convert GESS implementing GI into GESS implementing any other
binary gate by simply restricting some of the secrets to be equal. Denote the cor-
respondence between a secret s ∈ SEC and the wire value v ∈ {0, 1} by s ↔ v.
Then setting s01 = s10 = s11 ↔ 1, s00 ↔ 0 gives the implementation of the OR,
and s00 = s01 = s10 ↔ 0, s11 ↔ 1 – of the AND gates. NOT gates can be imple-
mented “for free” by simply eliminating them and inverting the correspondence
of the appropriate wire’s values and secrets.

Observation 2. We note that, in contrast with the traditional approach of multi-
secret sharing schemes, our definition allows the possibility that a single share
gives out some information about a secret. It is easy to see, however, that this
information must be common to every secret, since otherwise it is possible to
determine whether a corresponding combination of secret/share occurred, which
allows to easily construct a distinguisher breaking the privacy requirement of
GESS. Further, shares of the same wire, corresponding to different values, must
be distributed identically (otherwise a distinguisher exists).

The definition is given for specific input and output domains, and therefore
we do not talk about polynomial bounds on Shr and Rec. However, in practice,
we are interested in ensembles of schemes and want them to be uniform polytime
algorithms. We won’t insist on an ensemble of efficient simulators, because an
efficient simulator exists if any one exists. Indeed, an efficient simulator can
simply output Sel(Shr(〈s0, s1〉), v), where at least one of the secrets si is equal
to s, and v is any selection vector, such that G(v) = i.

2.2 Reduction of SFE to OT Using GESS

Suppose Alice and Bob have a circuit C, consisting of fan-out 1 gates G1, G2, ....
We formally describe a reduction of securely evaluating C on their inputs to calls
to OT, resulting in a one-round protocol. Again, for simplicity of presentation
we assume that all gates Gi are fan-in 2 binary gates.

Assume that for every gateG of C, there exists a GESSGESSG :(ShrG,RecG)
of Def. 1 with appropriate secret domains (as described below). We give explicit
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constructions (e.g. Constr. 2 in Sect. 2.3) of such schemes for all gates with two
binary inputs. We note that GESS for every other gate can be constructed (e.g.
from Constr. 1 instantiated with GESS of Constr. 2).

Construction 1. (Reducing SFE to OT) Bob’s precomputation. Bob starts
with the output gate. He sets the secrets domain SEC of it to be {0, 1} and sets
the secrets tuple to 〈0, 1〉. He proceeds through gates of C recursively as follows.

Consider a gate G. Let TSEC and a secrets tuple t = 〈s0, s1〉 ∈ TSEC are
given for G. Let GESSG be a GESS scheme implementing G with secrets tuples
domain TSEC ⊂ SEC2. Bob runs ShrG on the secrets tuple t and obtains two
tuples of shares t1 ∈ TSH1 and t2 ∈ TSH2, corresponding to the first and second
input wires of G respectively. Let G′i be the i-th input gate of G (i ∈ {0, 1}). Then
Bob processes G′i as follows. He treats the tuple of shares ti ∈ TSHi of G’s input
wire as the tuple of secrets of G′i, and TSHi – as the secrets tuples domain of
G′i. Bob now applies the algorithm of this paragraph to G′i.

Eventually, Bob obtains secrets tuples for all input wires of C. Note that
Bob’s choices of instances of GESS schemes for the gates of C are deterministic
and built into the protocol; this explicates the corresponding Rec procedures.

Interaction. For each input wire associated with Alice, she and Bob make
(parallel) calls to OT oracles. Alice has the wire’s input and Bob has the tuple
of secrets as their inputs of each of the calls. For each input wire associated with
Bob, Bob sends Alice the corresponding secret from that wire’s tuple of secrets2.

Alice’s computation. Alice obtains results of the OT and the secrets cor-
responding to Bob’s inputs. Alice proceeds, from the top down on the circuit C,
as follows. For each gate, Alice knows the secrets corresponding to the inputs of
the gate, and the corresponding Rec procedure. She runs Rec on the input secrets
and obtains the output secret. She proceeds in this manner until she obtains the
secret corresponding to the output wire. Alice outputs this secret.

Theorem 1. Constr. 1 is a non-cryptographic reduction (thus unconditionally
secure against both Alice and Bob) of SFE of C to OT, in the semi-honest model.

The proof of Theorem 1 is intuitive and is presented in Appendix B.

Observation 3. A circuit C with fan-out greater than 1 can be converted into a
corresponding (potentially very large) tree-circuit C′ by duplicating C’s subtrees
where appropriate. Equivalently, one can view the secrets as being computed and
propagated by Bob in parallel on the same wire. Note that we, however, need not
increase the number of corresponding OT instances due to the growth of C′ rel-
ative to C (until a certain efficiency threshold is reached). Rather, Bob’s inputs
to OT will be longer (without the increase in the total number of bits trans-
ferred). This will often result in significant computational and communication
savings.

2 This message is appended to Bob’s messages of the n-round instantiations of OT
oracles to form an n-round protocol.
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2.3 GESS for Gates with Two Binary Inputs

We now present an efficient ensemble of GESS schemes (indexed by the secrets
domains) implementing any binary gate with two binary inputs. This construc-
tion is a building block of a more efficient Constr. 3. We present GESS for the
1-to-1 gate function G : {0, 1}2 �→ {00, 01, 10, 11}, where G(0, 0) = 00, G(0, 1) =
01, G(1, 0) = 10, G(1, 1) = 11 (see Observation 1 for justification).

Let the secrets domain be SEC = {0, 1}n, and four (not necessarily distinct)
secrets s00, ...s11 ∈ SEC are given; the secret sij corresponds to the value G(i, j)
of the output wire. Note that |SEC| ≥ 4 need not hold; our scheme is interesting
even when |SEC| ≥ 2.

The intuition for the design of the GESS scheme is as follows. We first
randomly choose two strings R0,R1 ∈R SEC to be the shares sh10 and sh11

(corresponding to 0 and 1 of the first input wire). Now consider sh20 – the share
corresponding to 0 of the second input wire. We want this share to produce either
s00 (when combined with sh10) or s10 (when combined with sh11). Thus, the
share sh20 = B00B10 will consist of two blocks. One, B00 = s00⊕R0, is designed
to be combined with R0 and reconstruct s00. The other, B10 = s10 ⊕ R1, is
designed to be combined with R1 and reconstruct s10. Share sh21 = B01B11 is
constructed similarly, setting B01 = s01 ⊕ R0 and B11 = s11 ⊕ R1. Note the
indexing notation – the secret sij is always reconstructed using Bij .

Both leftmost blocks B00 and B01 are designed to be combined with the same
share R0, and both rightmost blocks B10 and B11 are designed to be combined
with R1. Therefore, we append a 0 to R0 to tell Rec to use the left block of the
second share for reconstruction, and append a 1 to R1 to tell Rec to use the
right block of the second share for reconstruction. Finally, to hide information
leaked by the order of blocks in shares, we perform the following. We randomly
choose a bit b; if b = 1, we reverse the order of blocks in both shares of wire 2
and invert the appended pointer bits of the shares of wire 1. More formally:

Construction 2. (GESS ensemble for gates with two binary inputs.) Let SEC =
{0, 1}n and TSEC = SEC4 be the secrets domains. Let the secrets tuple
〈s00, ..., s11〉 ∈ TSEC be given. The domains of shares are: SH1 = {0, 1}×SEC
and SH2 = SEC2. Note that TSH1 = SH2

1 and TSH2 = SH2
2 .

Shr chooses b ∈R {0, 1},R0,R1 ∈R SEC and sets blocks
B00 = s00 ⊕R0, B01 = s01 ⊕R0, B10 = s10 ⊕R1, B11 = s11 ⊕R1.
Shr sets the tuples of shares 〈sh10, sh11〉 ∈ SH1, 〈sh20, sh21〉 ∈ SH2 as follows

wire 1 wire 2, if b = 0 wire 2, if b = 1
wire value 0 sh10 = bR0 sh20 = B00B10 sh20 = B10B00

wire value 1 sh11 = b̄R1 sh21 = B01B11 sh21 = B11B01

Rec proceeds as follows. On input Sh1 = b′r, Sh2 = a0a1, Rec outputs r ⊕ ab′ .

Theorem 2. For each n ∈ IN, Constr. 2 is a GESS scheme.

Proof. (Sketch): To prove correctness, we need to show that no matter what the
random choices of Shr and the wire values i1, i2 are, Rec always reconstructs
sG(i1,i2). Verification of correctness is simple and is moved to Appendix D.
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We now prove security. Suppose secrets s00, ..., s11 are given. This determines
the distribution on the Shr generated shares. Let the input wire values i1, i2 be
given. Then the distribution P on the corresponding pair of shares 〈sh1i1 , sh2i2〉
and the secret s = sG(i1,i2) shared by the pair are determined. The goal of the
simulator is, given only s, to generate a pair of shares distributed identically to
P . Note that this exactly corresponds to the privacy condition Sim(sG(i1,i2)) ≡
Sel(Shr(s00, ..., s11), 〈i1, i2〉) of Def. 1.

The following natural simulator Sim(s) suffices. On input s ∈ SEC, Sim
chooses a random bit d ∈R {0, 1} and random strings p, q ∈R SEC. If d = 0,
he outputs (〈d, p〉, 〈p⊕ s, q〉), otherwise he outputs (〈d, p〉, 〈q, p⊕ s〉). The simple
proof by case analysis is presented in Appendix D. �

The Permute and Point (PP) Technique. We note the application of the
following technique: we permuted the blocks of the shares of the second wire, and
appended pointers to the shares of the first wire, hiding information contained
in the order of blocks. We use the same idea in all other constructions in this
paper (of Sect. 2.4 and 2.6). We believe this technique is likely to be useful in
many other GESS constructions; it may also have other applications.

Observation 4. We note that the simulator Sim of Theorem 2 is the same for
every gate function – it is only the secrets semantics that defines the semantics
of the gate. Therefore, Sim can simulate gates without knowing what they are.
Therefore, when this secret sharing scheme is plugged into the protocol of Sect.
2.2, semantics of all gates are unconditionally hidden from Alice - she only knows
the wire connections of C.

2.4 The Main Construction – GESS for AND/OR/NOT Circuits

Note the inefficiency of Constr. 2, causing the shares corresponding to the second
input wire be double the size of the gate’s secrets. While, in some circuits, we
could avoid the exponential (in depth) secret growth by balancing the direction of
greater growth toward more shallow parts of the circuit, a more efficient solution
is desirable. We discuss only AND/OR circuits, since NOT gates are given for
“free” (see Observation 1).

Recall, in Constr. 2 each of the two shares of the second wire consists of two
blocks. Observe that in the case of OR and AND gates either left or right blocks
of these two shares are equal. We use this property to reduce (relative to Constr.
2) the size of the shares when the secrets are of the above form. Our key idea is
to view the shares of the second wire as being equal, except for one block.

Suppose each of the four secrets consists of n blocks and the secrets differ
only in the jth block, as follows:

s00 = ( t1 . . . tj−1 t00j tj+1 . . . tn ), ...

s11 = ( t1 . . . tj−1 t11j tj+1 . . . tn ),

where ∀i = 1..n: ti, t00j , t
01
j , t

10
j , t

11
j ∈ D, for some domain D of size k. It is
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convenient to consider the columns of blocks, spanning across the shares. Every
column (with the exception of the j-th) consists of four equal blocks. We stress
that the index j is only determined by the secrets, and must not be recovered
at reconstruction.We construct a GESS for gates with two binary inputs, where
the size of each share of the first wire is n(k + !log(n + 1)") and of the second
wire is (n + 1)k. Further, each share of the first wire consists of n blocks of
size |D| + !log(n + 1)", and all but one pair of corresponding blocks are equal
between the shares. Each share of the second wire consists of n+1 blocks of size
|D| and, for OR and AND gates, all but one pair of corresponding blocks are
equal between the shares. Since the generated shares satisfy the above conditions
on secrets, repeated application of this GESS for OR and AND gates is possible.

The scheme’s intuition. For simplicity of presentation, we do not present
the GESS scheme in full generality here (this is postponed to Appendix C). We
show its main ideas by considering the case where the four secrets consist of
n = 3 blocks each, and j = 2 is the index of the column of distinct blocks.

Our idea is to share the secrets “column-wise”, that is to treat each of the
three columns of blocks of the secrets as a tuple of subsecrets and share this
tuple separately, producing the corresponding subshares. Consider sharing the
1-st column. All four subsecrets are equal (to t1 ∈ D), and we share them trivially
by setting both subshares of the first wire to a random string R1 ∈R D, and both
subshares of the second wire to be R1 ⊕ t1. Column 3 is shared similarly. We
share column 2 as in Constr. 2 (highlighted on the diagram), omitting the last
step of appending the pointers and permutation. This preliminary assignment of
shares (still leaking information due to order of blocks) is shown on the diagram.

R1 ⊕ t1 R3 ⊕ t3R2 ⊕ t012 R′
2 ⊕ t112

sh20 =

sh21 =

s00 =
s01 =
s10 =
s11 =

G

R2R1

R3

R3

R1 R′
2

R1 ⊕ t1 R2 ⊕ t002 R3 ⊕ t3R′
2 ⊕ t102

t1

t1

t1
t1

t002
t012

t102
t112

t3

t3

t3

t3

= sh10

= sh11

Note that the reconstruction of secrets is done by XOR’ing the corresponding
blocks of the shares, and, importantly, the procedure is the same for both types
of sharing we use. For example, given sh10 and sh21, we reconstruct the secret
(R1 ⊕ (R1 ⊕ t1), R2 ⊕ (R2 ⊕ t012 ), R3 ⊕ (R3 ⊕ t3)) = s01.

The remaining (PP) step (not shown on the diagram) is to randomly permute
the order of the four columns of both shares of wire 2 and to append (log 4)-bit
pointers to each block of the shares of wire 1, telling Rec which block of the
second share to use. Note that the pointers appended to both blocks of column
1 of wire 1 are the same. The same holds for column 3. Pointers appended to
blocks of column 2 are different. For example, if the identity permutation was
applied, then we will append “1” to both blocks R1, “2” to R2, “3” to R′2, and
“4” to both blocks R3. Because G is either an OR or an AND gate, both tuples
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of shares maintain the property that all but one pairs of corresponding blocks
are equal between the shares of the tuple. Note that it is not a problem that the
index of the column with different entries on input wire 1 is the same as that
on the output wire: since the adversary never sees both shares of any wire, this
index remains unconditionally hidden.

Construction 3. (GESS for AND/OR gates) The presented construction can
be naturally generalized for an arbitrary number of blocks n of size k and for
arbitrary index j of the column with differing blocks. The formal presentation of
this general construction is postponed to Appendix C (Constr. 6).

Theorem 3. For each n, k, j ∈ IN, Constr. 3 is a GESS scheme as defined by
(a generalization of) Def. 1.

We give the intuition of the proof and refer the reader to Appendix C for details.
First, the correctness of the reconstruction is easily verifiable. Further, each of the
four pairs of shares, reconstructing their corresponding secret s ∈ {s00, .., s11},
has the following structure. Let s = (t1, ..., tn). The second share in each pair
of shares is a sequence of n + 1 randomly chosen blocks ri from D: sh2 =
(r1, ..., rn+1). The first share in each pair is a sequence of n “blocks with pointers”
sh1 = (B1, ...,Bn), as follows. ∀i ∈ {1..n},Bi = 〈pi, bi〉, where p1, ..., pn is a
random permutation of a random n-element subset of {1..n + 1}, and bi =
ti ⊕ rpi ∈ D. This implies the simulator Sim(s), required by Def. 1.

GESS’ performance. From above, if the secrets of the output wire of G
consist of n blocks of size k, then the secrets of G’s inputs consist of no more
than n+1 blocks of size k+!log(n+1)". Similarly, d levels deeper, wires’ secrets
consist of no more than n+ d blocks of size k +

∑
i=1..d!log(n+ i)". Therefore,

starting with one-bit secrets (n = 1, k = 1), a tree circuit will have at depth d
secrets of size at most (d+1)(d log(d+1)+1) = d2 log(d+1)+d log(d+1)+d+1.
The shares grow very slowly: as d → inf, the “share expansion factor” — the
ratio of sizes of shares to sizes of secrets of a GESS scheme for a gate G at depth
d — approaches 1. Since the gates have exactly two inputs, there are at most 2d

input wires to the circuit, and the total size of Bob’s secrets to be sent to Alice
is 2d(d2 log(d+1)+ d log(d+1)+ d+1) ≈ 2dd2 log d, dominated by the 2d term.

Rebalancing C prior to applying the above reduction may result in sub-
stantial performance improvement. Bonet and Buss [6] and Bshouty, Cleve and
Eberly [7] prove the following fact (and exhibit the rebalancing procedure).

Let C be a {∨,∧,¬}-formula of leaf size m. Then for all k ≥ 2, there is
an equivalent {∨,∧,¬}-formula C′, such that depth(C′) ≤ (3k ln 2) · logm, and
leafsize(C′) ≤ mα, where α = 1 + 1

1+log(k−1) .
Consider a highly unbalanced C of size m. Direct application of our reduc-

tion costs Θ(m3), more than BP based approaches [17,18,19] of cost O(m2).
Rebalancing C as above, even suboptimally setting k = 9, results in a formula
C′ of size m1.25 and depth ≈ 18.5 logm. Applying the reduction to C′ yields
a much better cost O(m1.25 log2m). An optimal (w.r.t. the cost of the GESS
reduction) choice of k or better rebalancing will further improve our (but not
BP’s) performance.
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2.5 Lower Bounds for GESS – The Optimality of Our Constructions

Let i, j ∈ {0, 1}. Denote by Ai (resp. Bi) the random variable of the share
corresponding to the wire value i of the first (resp. second) input wire. Denote
by Sij the random variable of the secret corresponding to the gate output value
G(i, j). Let H(·) be Shannon entropy. We start with proving a technical lemma.

Lemma 1. For any GESS scheme implementing a gate with binary inputs,
H(Ai)+H(Bj)≥H(Si(1-j)|B1-j)+H(S(1-i)j |A1-i)+H(Sij |Si(1-j)S(1-i)jS(1-i)(1-j)).

Proof. For simplicity, prove the lemma for i = j = 0, i.e that H(A0) +H(B0) ≥
H(S01|B1) +H(S10|A1) +H(S00|S01S10S11). Other cases are analogous.

First, since H(S01|A0B1) = 0, and using the chain rule twice, obtain
H(A0|B1) = H(A0S01|B1) − H(S01|A0B1) = H(A0S01|B1) = H(S01|B1) +
H(A0|B1S01). Similarly, H(B0|A1) = H(S10|A1) +H(B0|A1S10).

By definition, A1,B1 do not reveal anything about S00 (other than what’s
implied by S11), and, further, A0,B0 recover S00. Then H(S00|S01S10S11) ≤
H(S00|A1B1S01S10) ≤ H(A0B0|A1B1S01S10) ≤ H(A0|A1B1S01S10)+
H(B0|A1B1S01S10) ≤ H(A0|B1S01) +H(B0|A1S10).

Thus,H(A0)+H(B0)≥H(A0|B1)+H(B0|A1) ≥ H(S01|B1)+H(A0|B1S01)+
H(S10|A1) +H(B0|A1S10) ≥ H(S01|B1) +H(S10|A1) +H(S00|S01S10S11). �

Because all shares corresponding to the same wire must be distributed iden-
tically (Observation 2), their entropies must be equal. Thus Lemma 1 implies
that ∀i1, i2 ∈ {0, 1} : H(Ai1) + H(Bi2) ≥ MAXi,j∈{0,1}(H(Si(1−j)|B1−j) +
H(S(1−i)j |A1−i) +H(Sij |Si(1−j)S(1−i)jS(1−i)(1−j))).

Consider non-trivial gates – those that depend on both (binary) inputs. Note
that the gate output need not be binary. We show the optimality of constructions
for the natural case when the secrets are drawn independently at random from
the same domain (with only the restrictions of secrets equality imposed by the
semantics of G). In that case, by Observation 2, H(Si(1−j)|B1−j) = H(Si(1−j))
and H(S(1−i)j |A1−i) = H(S(1−i)j). Consider the two possible cases.

Case 1: there exist gate inputs i, j, s.t. G(i, j) is not equal to the gate
value on any other inputs. This is the case for most non-trivial gates (including
AND and OR). In this case, H(Sij |Si(1−j)S(1−i)jS(1−i)(1−j)) = H(Sij) and thus
∀i1, i2 ∈ {0, 1} : H(Ai1 ) + H(Bi2) ≥ H(Si(1−j)) + H(S(1−i)j) + H(Sij). This
matches (within 1 bit) the upper bound given by Constr. 2.

Case 2: such i, j don’t exist. Then the only non-trivial gates are XOR and
¬ XOR. GESS of Constr. 4 implements XOR and matches the lower bound of
H(Si(1−j)) +H(S(1−i)j) for this case.

Construction 4. (GESS ensemble for XOR gates.) Let SEC = {0, 1}n and
TSEC = SEC2 be the secrets domains. Let the secrets tuple 〈s0, s1〉 ∈ TSEC
be given. The domains of shares are set as follows: SH1 = SH2 = SEC.

Shr chooses R ∈R SEC and sets sh10 = R, sh11 = s0 ⊕ s1 ⊕ R, sh20 =
s0 ⊕R, sh21 = s1 ⊕R.

Rec proceeds as follows. On input sh1, sh2, Rec outputs sh1 ⊕ sh2.
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Theorem 4. For each n ∈ IN, Constr. 4 is a GESS as defined by Def. 1.

The proof of Thm. 4 is very simple and is omitted.
In conclusion, for the shares Ai and Bj of the two input wires, we proved

Theorem 5. For every GESS scheme implementing an OR or an AND gate,
when all secrets are chosen at random from the same domain SEC and each has
entropy HS, ∀i, j ∈ {0, 1} : H(Ai) +H(Bj) ≥ 3HS.

Of course, the entropy of each share must be at least HS . Then all possible gates
with two binary inputs are (almost) optimally implemented by either Constr. 2
or 4. Our Constr. 3 beats the above lower bound by exploiting common informa-
tion among secrets. We leave open the question of exact lower bounds for this
interesting case. We stress that the share-size-to-secret-size ratio approaching 1,
achieved by Constr. 3, is “near optimal”.

2.6 Application of GESS: Efficient Practical Two Millionaires

We apply the GESS approach to give a new efficient solution to the two mil-
lionaires problem. We design a GESS scheme for a new type of gate and use it
to compute the Greater Than (GT) predicate. We use the intuitive circuit C
(below) that compares bits of the parties’ inputs x and y, starting with the most
significant, and sets the answer bit when it encounters the difference.

xn

T

0
y1x1

Tyn
where T (j, xi, yi) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
j, ifj ∈ {−1, 1},
−1, ifj = 0 ∧ xi < yi,

0, ifj = 0 ∧ xi = yi,

1, ifj = 0 ∧ xi > yi.

Here j is ternary input and xi and yi are bits. It is easy to see that C indeed
computes GT: once a ternary wire is set to −1 or 1, that value is propagated to
the output wire. We aim to minimize the expansion of the share corresponding
to the input j. Note the double application of permute and point in Constr. 5.

Construction 5. (GESS ensemble for T -gates.) Let SEC={0, 1}n and TSEC=
SEC3 be the secrets domains. Let the secrets tuple 〈s−1, s0, s1〉 ∈ TSEC is
given. The domains of shares are set as follows: SH1 = {0, 1} × SEC, SH2 =
({0, 1}2 × SEC)2 and SH3 = SEC3.

Shr chooses R0,R1, r1, r2, r3 ∈R SEC, a ∈R {0, 1} and b = {b1, b2, b3} - a
random permutation of {0, 1, 2}, where each bi is suitably represented by 2 bits.
Shr sets the shares sh1i = Ai, sh2i = 〈Bi0,Bi1〉, sh3i = 〈Ci0,Ci1,Ci2〉, as shown
on the following diagram.

r1
r3

s1 ⊕ r1 ⊕ r2
r2

r2

r1b2
B1a B1ā

B0āB0a

R1

R0

b3

b3
a

ā

aA1

A0

A-1 s-1 ⊕ r1 ⊕ r2
b1

C0b1

C1b1

C0b2

C1b2

C0b3

C1b3

s0 ⊕ R0 ⊕ r3
s-1 ⊕ R0 ⊕ r3

s1 ⊕ R1 ⊕ r3
s0 ⊕ R1 ⊕ r3

Rec, on input Sh1 = a′r, Sh2 = p0 b0 p1 b1, Sh3 = c0c1c2, outputs r⊕ ba′ ⊕ cpa′ .
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Theorem 6. For each n ∈ IN, Constr. 5 is a GESS as defined by Def. 1.

Proof. (Sketch): Correctness of the scheme is easily verified. The simulator
Sim(s) chooses random α ∈R {0, 1}, r′0, ..., r′4 ∈R SEC, β0, β1 ∈R {0, 1, 2}, where
β0 �= β1. Let β′i be suitable 2-bit representations of βi. Sim outputs shares 〈(αr′2),
(β′0r

′
0β
′
1r
′
1), (γ0γ1γ2)〉, where γβα = s⊕r′2⊕r′α, and the other two γi are assigned

r′3 and r′4. The proof of equality of the generated distribution to the real execu-
tion is similar to that of previous two theorems, and is omitted. �

Performance. Let n be the length in bits of the compared numbers. The se-
crets corresponding to the T -gate at level i are of length i, and thus the secrets
corresponding to the corresponding xi and yi are of lengths 3i and 2i+ 4. Thus,
Bob needs to send

∑
i=1..n 3i = 1.5n(n+ 1) bits and perform n 1-out of-2 OT’s

with secrets of sizes 2 + 4, ..., 2n+ 4.
The asymptotic complexity of this GT solution is worse than that of the best

currently known for either setting with limited Alice (Yao’s approach, see, e.g.
[24]) or unlimited Alice [5,13]. Still, our solution performs better for comparing
smaller numbers (n ≈ 60..70), since we do not use encryption3.

We note that a reduction with a complexity similar to ours (quadratic) can
be obtained by using BP-based techniques of [19].

3 Extension to Evaluating Polysize Circuits

When Alice is assumed to be polynomially bounded, all polytime computable
functions can be efficiently evaluated. Beaver, Micali and Rogaway [3,25], Naor,
Pinkas and Sumner [24] and Lindell and Pinkas [21] suggested one-round proto-
cols following Yao’s [27] garbled circuit approach.

As discussed, the OT reduction does not allow polytime evaluation of gen-
eral polysize circuits, due to the exponential growth of combined secrets size
for each level of general circuits. We now informally describe a natural exten-
sion that handles this problem in the standard model. This demonstrates the
generality and applicability of the GESS approach. The resulting solution is
conceptually very clean, although slightly less efficient than the best known ap-
proach.

The protocol is essentially Constr. 1, with the following amendment. Bob
will not propagate the secrets “up the circuit”. Instead, for a gate G with out-
put wires w1, ...,wn and their (already computed) corresponding secrets tuples
(s10, s11), ..., (sn0 , sn1 ), he encrypts all the secrets corresponding to each gate value
together. More formally, he chooses two random keys k′, k′′ of a semantically se-
cure private-key encryption scheme E. He computes e0 = Ek′(〈s10, ..., sn0 〉), e1 =
Ek′′ (〈s11, ..., sn1 〉) and assigns G’s labels to be a random permutation of e0, e1.
He then treats the keys as the secrets to be propagated, letting k′ and k′′ cor-
respond to wire values 0 and 1 respectively. When Bob is done, he will have

3 This advantage is minute with standard (public-key primitive based) OT implemen-
tations; it may be significant in other settings.
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assigned secrets to each of the input wires and associated labels with each of the
gates. He sends the secrets to Alice as before, additionally sending her the gate
labels.

Alice obtains the secret shares for the input wires and proceeds evaluation
similarly to the previous solution. The difference now is that, after having re-
covered a gate’s secret (which is the key for one of the associated encryptions),
she decrypts the corresponding encryption to recover the outgoing wires’ secrets.
To ensure that only one decryption succeeds, we impose an additional require-
ment on the encryption scheme. Informally, we need the ranges of encryptions
under different keys be distinct, and that Alice is able to tell which decryption
succeeded. This is a rather weak requirement, satisfied, for example, by schemes
with elusive and efficiently verifiable ranges, formalized in [21]. Alice then uses
the recovered secrets as shares in computing the child gate’s secrets, and so on.
Finally, she outputs the value of the output wire.

Theorem 7. The above construction securely (against computationally unlim-
ited Bob and limited Alice) reduces SFE of polysize circuits to OT, in the semi-
honest model.

The proof of the theorem is rather intuitive and is presented in Appendix E.
The performance of the resulting approach is very similar to that of the

currently best known solutions (e.g. [21,24]). Indeed, our wire secrets are of the
same size as theirs, and thus the only difference in performance is caused by the
size of the gate labels. In [24], each gate has four labels of size N each4, where
N is the security parameter. It is easy to see that each gate of our solution
adds up to 6N bits to the collection of all gate labels (two secrets of length N
expand into two shares of length N +1 and two shares of length 2N , which then
are encrypted and stored as labels.). Some optimization of this number is also
possible. For example, we need not encrypt (and thus add the corresponding
labels) for the secrets that are just larger than N . This can reduce the gate
induced label size gate by up to 2N bits.

We further note that in our scheme we only need to use encryptions once
the secret sizes grow too large (i.e some threshold larger than encryption keys).
Thus our method improves the performance of the evaluation of “the bottom
part” of every circuit, and can be combined with Yao’s garbled circuit imple-
mentations.
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A The General Definition of GESS

We give a general definition of a GESS scheme that allows to share a tuple of
secrets. Let G be a gate with k inputs from domain DI = DI1 × ... ×DIk

and
one output from domain DO. We also denote by G : DI �→ DO the function
computed by gate G. Let SEC be the domain of secrets and TSEC ⊂ SEC|DO|

be the domain of tuples of secrets to be shared. For simplicity of presentation
and without loss of generality, assume that all domains DIi and DO are initial
sequences of non-negative numbers, e.g. DI1 = {0, 1, 2, ..., |DI1| − 1}.

Definition 2. (Gate evaluation Secret Sharing) A gate evaluation secret shar-
ing scheme (GESS) for evaluating G (we also say GESS implementing G) is a
pair of algorithms (Shr,Rec) (with implicitly defined secrets domain SEC, se-
crets tuples domain TSEC, k share domains SH1, ..., SHk and k share tuples
domains TSH1, ...,TSHk), such that the following holds.

The probabilistic share generation algorithm Shr takes as input a dO = |DO|-
tuple of secrets
〈s0, ..., sdO−1〉 ∈ TSEC and outputs a sequence of k tuples of shares, where the
i-th tuple ti ∈ TSHi consists of |DIi | shares shij ∈ SHi. The deterministic share
reconstruction algorithm Rec takes as input a sequence of k elements shi ∈ SHi,
one from each domain, and outputs s ∈ SEC.

Let b = 〈b1, ..., bk〉 ∈ DI be a selection vector. Define the selection function
Sel(〈sh10, ..., sh1|DI1 |−1〉, ..., 〈shk0, ..., shk|DIk

|−1〉, b) = {sh1b1 , ..., shkbk
}.

Shr and Rec satisfy the following conditions:
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– correctness: for all random inputs of Shr and secrets tuples 〈s0, ..., sdO−1〉 ∈
TSEC, ∀b ∈ DI ,Rec(Sel(Shr(〈s0, ..., sdO−1〉), b)) = sG(b)

– privacy (selected shares contain no information other than the value sG(b)):
There exists a simulator Sim, such that ∀〈s0, ..., sdO−1〉 ∈ TSEC and any
b ∈ DI : Sim(sG(b)) ≡ Sel(Shr(〈s0, ..., sdO−1〉), b)

B Proof of Theorem 1

Proof. (Sketch): Security against Bob is trivial since he does not receive any
messages. The intuition for the scheme’s security against Alice is that none of
the GESS implementations leak any information. To prove security, we show how
to construct SimA, perfectly simulating the following ensemble (view of Alice):
VIEWA(x, a) = {x,mOT ,m}, where x and a are Alice’s input and output, mOT

is the sequence of messages received from the OT oracles and m is the message
received from Bob directly.

SimA first simulates wire secrets assignment as follows. He starts with the
output wire, assigns its value to be a, and proceeds through gates from the
bottom up as follows. Given gateG, itsGESSG, simulator SimG, andG’s output
wire value v, SimA assigns values to G’s input wires according to SimG(v).

Eventually, SimA assigns secrets to all input wires of C. SimA outputs
{x,m′OT ,m′}, where x is Alice’s input, m′OT and m′ are (proper representa-
tions of) the sequences of C’s input wires assignments corresponding to Alice
and to Bob respectively.

It is intuitive that the proposed simulator perfectly simulates Alice’s view. In-
deed, the vector of inputs to C defines a value assignment to eachwire of the circuit,
which, in turn, defines a distribution on shares/secrets obtained (received or com-
puted) by Alice for each wire. We prove that wire assignment of SimA perfectly
simulates the obtained secret for each wire. It is clear that SimA perfectly assigns
the secret corresponding to the output wire by setting it to the output of the com-
putation he obtained as its input. Further, SimA assigns secrets to the input wires
of the output gate G. These secrets are distributed identically to the secrets that
Alice reconstructs for these wires, because of the perfect simulation of SimG. Pro-
ceeding upward to the input wires, it is clear that SimA perfectly simulates all the
wire assignments that Alice sees and reconstructs in the real execution. �

C The General Construction of GESS for AND/OR
Gates

Construction 6. (Improved GESS for gates with two binary inputs.) Let D =
{0, 1}k and SEC = Dn. Let secrets s00, ..., s11 ∈ SEC consist of n blocks of
length k, and differ only in the j-th block. That is, let

s00 = ( t1 . . . tj−1 t00j tj+1 . . . tn ),
...
s11 = ( t1 . . . tj−1 t11j tj+1 . . . tn ),
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where ∀i = 1..n: ti, t00j , t
01
j , t

10
j , t

11
j ∈ D, and the index j is determined only by

the secrets. Let TSEC ⊂ SEC4 be the space of all tuples of the above form.
Shr chooses R1, ...Rn,R

′
j ∈R D and a random permutation5 π : {1..n+1} �→

{1..n+ 1}. Let τ = π−1 be the inverse of π. For m ∈ {0, 1}, Shr sets the shares
sh1m = 〈Bm1, ...,Bmn〉 and sh2m = 〈Cm1, ...,Cmn+1〉, as shown on the following
diagram.

... ... ...

... ... ...

... ...

... ...

Rτ(n+1) ⊕ tτ(n+1)

C11 C1π(j) C1n+1C1π(n+1)

Rτ(n+1) ⊕ tτ(n+1)

C01 C0π(j) C0π(n+1) C0n+1

Rτ(1) ⊕ tτ(1)

Rτ(1) ⊕ tτ(1) Rj ⊕ t00j R′
j ⊕ t

10
j

R′
j ⊕ t11jRj ⊕ t01j

π(1)R1

B11 B1j B1n

π(n)Rn

π(1)R1

B0nB0jB01

π(n)Rnπ(j)Rj

π(n+1)R′
j

More specifically, the blocks of both shares of the first wire will be assigned
R1, . . . ,Rn, with the exception of the jth block of the share corresponding to
1, which will be assigned R′j. Shr then, for all i, prepends π(i) to the ith block
of both shares of the first wire, with the exception of the jth block of the second
share, which gets prepended π(n+ 1).

Each π(i)-th block of both shares of the second wire will be set to Ri ⊕ ti, with
the exception of blocks π(j),π(n + 1). Those blocks assignment is motivated by
Construction 2. Specifically, we set the π(j)-th block of the share corresponding to
0 to Rj ⊕ t00j and that block of the share corresponding to 1 – to Rj ⊕ t01j . We set
the π(n+ 1)-st block of the share corresponding to 0 to R′j ⊕ t10j and that block of
the share corresponding to 1 – to Rj ⊕ t11j . This completes the description of Shr.

Rec proceeds as follows. He obtains two shares sh1 = (ind1, r1, ..., indn, rn)
and sh2 = (a1, ..., an+1). He reconstructs the secret s = (σ1, ..., σn) by setting
σi = ri ⊕ aindi .

Theorem 8. For each n, k, j ∈ IN, Construction 6 is a GESS scheme as defined
by Def. 1. (Note that security and correctness hold w.r.t. TSEC.)

Proof. (Sketch): The correctness of the reconstruction is easily verifiable. To
prove security, we construct a simulator Sim(s). On input s = σ1, ..., σn, Sim(s)
does the following. He chooses random r′1, ..., r

′
n+1 ∈R D and a random permuta-

tion ρ : {1..n+1} �→ {1..n+1}. He outputs the shares sh1 = (ρ(1)r′1, . . . , ρ(n)r′n)
and sh2 = (σρ−1(1) ⊕ r′ρ−1(1), . . . , σρ−1(n+1) ⊕ r′ρ−1(n+1))

We now prove that Sim perfectly simulates the real-life generated shares.
The first share is distributed identically to both of the real-life generated shares
of the first vector. Indeed, each ri is distributed identically to each Ri, Rj and R′j
and ρ(1), ..., ρ(n) is distributed identically to π(1), ...,π(n) and to π(1), ...,π(j−
1),π(n+ 1),π(j + 1), ...,π(n), for any j.

As for the second share, all blocks (and their positions) are generated iden-
tically to the real execution, with the exception of blocks in positions ρ(j) and
ρ(n+ 1). Proof of the equality of their distribution to the corresponding blocks
of the real distribution closely follows that of Construction 2 and is omitted. �
5 This permutation specifies which block of the second tuple is XOR’ed with the ith

block of the first tuple to obtain the ith block of the reconstructed secret.
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D Case Analysis for the Proof of Theorem 2

Proof. (Sketch): We need to consider the four possible combinations of gate in-
put values i1, i2 ∈ {0, 1}. We show that Sim perfectly simulates the correspond-
ing truly generated shares. Denote random variables 〈sh1, sh2〉 = 〈b′r, a0a1〉 =
Sel(Shr(s00, ..., s11), 〈i1, i2〉). We write out only one case; others are analogous.

Case i1 = 0, i2 = 0. Thus s = sG(0,0).
Correctness: If b = 0, then b′ = 0, sh1 = 0R0, sh2 = (s00 ⊕ R0, s10 ⊕ R1).
Rec(sh1, sh2) = R0 ⊕ (s00 ⊕ R0) = s00 = s. If b = 1, then b′ = 1, sh1 =
1R0, sh2 = (s10 ⊕R1, s00 ⊕R0). Rec(sh1, sh2) = R0 ⊕ (s00 ⊕R0) = s00 = s.
Security: Clearly, Sim(s) perfectly simulates sh1. Further, sh2 consists of two
blocks B00 = s ⊕ R0 and B10 = s10 ⊕ R1. Observe that B10 = s10 ⊕ R1 is dis-
tributed uniformly randomly on SEC (since R1 is random on SEC and secret).
Therefore, sh2 consists of two blocks from SEC, where one block is random on
SEC and the other is equal to s ⊕ R0, where the non-random block is pointed
by the bit b′ of sh1, Therefore Sim(s) also perfectly simulates sh2 and the pair
〈sh1, sh2〉, since d is distributed identically to b′. �

E Proof of Theorem 7

Proof. (Sketch): The reduction is trivially secure against Bob, since he does not
receive any messages from Alice. To prove security against Alice, we will show
how to simulate the input wires’ secrets and gate labels that Bob sends to Alice,
given the output of the computation. We present the proof for binary fan-in 2
circuits; a more general argument is readily obtained by natural generalization.

The simulator Sim(x, b) proceeds as follows. First, it (perfectly) simulates
the secret of the output wire by s.

Then, for each level of the circuit, starting from the bottom, for each gate G
of the current level: given the (previously simulated) G’s output wires’ secrets
s0, ..., sk−1, it simulates G’s input wires’ secrets and gate labels as follows. It
chooses two random keys s′, s′′ from the key domain of the employed encryption
scheme. Then it computes e0 = Encs′(〈s0, ..., sk−1〉), e1 = Encs′′(〈0, ..., 0〉) and
assigns G’s labels to be a random permutation of e0, e1. Then Sim runs the
the simulator SG(s′) of the secret sharing scheme of G. The simulator SG(s′)
produces two shares (distributed identically to real execution), each of which is
the simulation of the secret of the corresponding wire.

Sim runs the above procedure on C “from the bottom up”, and eventually
obtains the simulations of the input wires and gate labels, which he outputs,
suitably formatted.

We note the true randomness of all encryption keys and the perfect simu-
lations of secret sharing schemes. Intuitively, the only way for an adversary to
distinguish the simulation from the real execution is by distinguishing the sets
of non-decrypted gate labels. However, learning anything “substantial” that way
would mean breaking the semantic security of the employed encryption scheme,
which can be shown by a simple hybrid argument. �
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Abstract. As an extension of multi-party computation (MPC), we pro-
pose the concept of secure parallel multi-party computation which is
to securely compute multi-functions against an adversary with multi-
structures. Precisely, there are m functions f1, ..., fm and m adversary
structures A1, ...,Am, where fi is required to be securely computed
against an Ai-adversary. We give a general construction to build a paral-
lel multi-party computation protocol from any linear multi-secret sharing
scheme (LMSSS), provided that the access structures of the LMSSS al-
low MPC at all. When computing complicated functions, our protocol
has more advantage in communication complexity than the “direct sum”
method which actually executes a MPC protocol for each function. The
paper also provides an efficient and generic construction to obtain from
any LMSSS a multiplicative LMSSS for the same multi-access structure.

1 Introduction

The secure multi-party computation (MPC) protocol is used for n players to
jointly compute an agreed function of their private inputs in a secure way, where
security means guaranteeing the correctness of the output and the privacy of the
players’ inputs, even when some players cheat. It is fundamental in cryptography
and distributed computation, because a solution of MPC problem implies in
principle a solution to any cryptographic protocol problem, such as the voting
problem, blind signature, and so on. After it was proposed by Yao [11] for two-
party case and Goldreich, Micali, Wigderson [6] for multi-party case, it has
become an active and developing field of information security.

In the MPC problem, it is common to model cheating by considering an ad-
versary who may corrupt some subset of the players. The collection of all subsets
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that an adversary may corrupt is called the adversary structure, denoted by A,
and this adversary is called an A-adversary. So the MPC problem is to securely
compute a function with respect to an adversary structure. But in practice it
is sometimes needed to simultaneously compute several different functions with
respect to different adversary structures, respectively. For example, in the voting
problem n = 2t+1 (t > 1) voters are to select a chairman and several fellows for
a committee at the same time from m candidates. Because the position of the
chairman is more important than that of fellows, the voting for the chairman is
required to be secure against a (t, n) threshold adversary, while the voting for
the fellows is required to be secure against a (2, n) threshold adversary. Hence it
makes us to propose parallel multi-party computation or extend MPC to parallel
MPC. Precisely, in the problem of parallel multi-party computation, there are m
functions f1, ..., fm and m adversary structures A1, ...,Am, where fi is required
to be securely computed against an Ai-adversary.

Obviously, secure parallel multi-party computation can be realized by de-
signing for each function a MPC protocol with respect to the corresponding
adversary structure, and then running all the protocols in a composite way.
We call this the “direct sum” method. In this paper, we propose another way
to realize parallel multi-party computation. It is well known that secret shar-
ing schemes are elementary tool for studying MPC. Cramer, Damgard, Mau-
rer [3] gave a generic and efficient construction to build a MPC protocol from
any linear secret sharing scheme (LSSS). As an extension of secret sharing
schemes, Blundo, De Santis, Di Crescenzo [2] proposed the general concept
of multi-secret sharing schemes which is to share multi-secrets with respect to
multi-access structures, and Ding, Laihonen, Renvall. [4] studied linear multi-
secret sharing schemes. Based on Xiao and Liu’s work [10] about linear multi-
secret sharing schemes (LMSSS) and the construction in [3], we give a generic
and efficient construction to build a parallel multi-party computation proto-
col from any LMSSS, provided that the access structures of the LMSSS al-
low MPC at all [7]. We only deal with adaptive, passive adversaries in the in-
formation theoretic model. When computing complicated functions, our proto-
col has more advantage in communication complexity than the “direct sum”
method.

The paper is organized as follows: in Section 2 we review some basic concepts,
such as LSSS, monotone span programs (MSP) and LMSSS. In Section 3 we give
a clear description for the problem of secure parallel multi-party computation,
and then obtain a generic protocol for it from any LMSSS. Furthermore we com-
pare our protocol with the “direct sum” method in communication complexity.
In the last section, a specific example is displayed in detail to show how our
protocol works as well as its advantage.

2 Preliminaries

Since secret sharing schemes are our primary tool, first we review some ba-
sic concepts and results about them, such as linear secret sharing schemes,
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multi-secret sharing schemes, monotone span programs, and so on. Suppose that
P = {P1, ..., Pn} is the set of participants and K is a finite field throughout this
paper.

2.1 LSSS vs MSP

It is well-known that an access structure, denoted by AS, is a collection of subsets
of P satisfying the monotone ascending property: for any A′ ∈ AS and A ∈ 2P

with A′ ⊂ A, it holds that A ∈ AS; and an adversary structure, denoted by A, is
a collection of subsets of P satisfying the monotone descending property: for any
A′ ∈ A and A ∈ 2P with A ⊂ A′, it holds that A ∈ A. In this paper, we consider
the complete situation, i.e. A = 2P −AS. Because of the monotone property, for
any access structure AS it is enough to consider the minimum access structure
ASm defined as ASm = {A ∈ AS | ∀B � A⇒ B �∈ AS}.

Suppose that S is the secret-domain, R is the set of random inputs, and
Si is the share-domain of Pi where 1 ≤ i ≤ n. A secret sharing scheme with
respect to an access structure AS is composed of the distribution function Π :
S × R → S1 × · · · × Sn and the reconstruction function: for any A ∈ AS,
Re = {ReA : (S1 × · · · × Sn)|A → S | A ∈ AS}, such that the following two
requirements are satisfied.

(i) Correctness requirement: for any A ∈ AS, s ∈ S and r ∈ R, it holds
that ReA(Π(s, r)|A) = s, where suppose A = {Pi1 , ..., Pi|A|} and Π(s, r) =
(s1, ..., sn), then Π(s, r)|A = (si1 , ..., si|A|).

(ii) Security requirement: for any B �∈ AS, i.e., B ∈ A = 2P \ AS, it holds
that 0 < H(S|Π(S,R)|B) ≤ H(S), where H(·) is the entropy function.
In the security requirement, if H(S|Π(S,R)|B) = H(S), we call it a perfect
secret sharing scheme which we are interested in. Furthermore, a perfect secret
sharing scheme is linear (LSSS for short), if S, R, Si are all linear spaces over K
and the reconstruction function is linear [1].

Karchmer and Wigderson [8] introduced monotone span programs (MSP) as
linear models computing monotone Boolean functions. Usually we denote a MSP
byM(K,M,ψ), where M is a d×l matrix overK and ψ : {1, ..., d} → {P1, ..., Pn}
is a surjective labelling map which actually distributes to each participant some
rows of M . We call d the size of the MSP. For any subset A ⊆ P , there is a
corresponding characteristic vector

−→
δA = (δ1, ..., δn) ∈ {0, 1}n where for 1 ≤

i ≤ n, δi = 1 if and only if Pi ∈ A. Consider a monotone Boolean function
f : {0, 1}n → {0, 1} which satisfies that for any A ⊆ P and B ⊆ A, f(

−→
δB) = 1

implies f(
−→
δA) = 1. We say that a MSP M(K,M,ψ) computes the monotone

Boolean function f with respect to a target vector −→v ∈ Kl \ {(0, ..., 0)}, if it
holds that −→v ∈ span{MA} if and only if f(

−→
δA) = 1, where MA consists of the

rows i of M with ψ(i) ∈ A and −→v ∈ span{MA} means that there exists a
vector −→w such that −→v = −→wMA. Beimel [1] proved that devising a LSSS with
respect to an access structure AS is equivalent to constructing a MSP computing
the monotone Boolean function fAS which satisfies fAS(

−→
δA) = 1 if and only if

A ∈ AS.
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2.2 LMSSS vs MSP

Multi-Secret sharing schemes [2] are to share multi-secrets with respect to multi-
access structures. Precisely, let AS1, ...,ASm be m access structures over P ,
S1× · · ·×Sm be the secret-domain,S1, ..., Sn be the share-domain and R be the
set of random inputs. Without loss of generality, we assume that S1 = · · · =
Sm = K. A linear multi-secret sharing scheme (LMSSS for short) realizing the
multi-access structure AS1, · · · ,ASm is composed of the distribution function

Π : Km ×R −→ S1 × · · · × Sn

Π(s1, · · · , sm, r) = (Π1(s1, · · · , sm, r), · · · , Πn(s1, · · · , sm, r)), (1)

and the reconstruction function Re = {ReiA : (S1 × · · · × Sn)A → K|1 ≤ i ≤
m, A ∈ ASi}, such that the following three conditions hold:

(i) S1, · · · , Sn and R are finitely dimensional linear spaces over K, i.e., there
exist positive integers dk, 1 ≤ k ≤ n, and l such that Sk = Kdk and R = Kl.
Precisely, in the equality (1), we have that Πk(s1, · · · , sm, r) ∈ Kdk for 1 ≤ k ≤
n. Furthermore, denote

Πk(s1, · · · , sm, r) = (Πk1(s1, · · · , sm, r), · · · , Πkdk
(s1, · · · , sm, r))

where Πkj(s1, · · · , sm, r) ∈ K and 1 ≤ j ≤ dk. Usually d =
∑n

i=1 di is called the
size of the linear multi-secret sharing scheme.

(ii) The reconstruction function is linear. That is, for any set A ∈ ASi, 1 ≤
i ≤ m, there exists a set of constants {αikj ∈ K|1 ≤ k ≤ n, Pk ∈ A, 1 ≤ j ≤ dk}
such that for any s1, ..., sm ∈ K and r ∈ R, si = ReiA(Π(s1, ..., sm, r)|A) =∑

pk∈A
∑dk

j=1 α
i
kjΠkj(s1, · · · sm, r).

(iii) Security requirement: For any set B ⊂ {P1, · · · , Pn},T ⊂ {S1, · · · , Sm}\
{Si|B ∈ ASi, 1 ≤ i ≤ m}, it holds that H(T |B) = H(T ) , where H(·) is the
entropy function.
Similar to the equivalence relation of LSSS and MSP, Xiao and Liu [10] studied
a corresponding relation between LMSSS and MSP computing multi-Boolean
functions. Let M(K,M,ψ) be a MSP with the d × l matrix M and f1, ..., fm :
{0, 1}n → {0, 1} be m monotone Boolean functions. Suppose −→v1 , ...,−→vm are m
linear independent l-dimension vectors over K, then it follows that m ≤ l. In
practice, we always havem < l in order to use randombits. ThenM can compute
the Boolean functions f1, ..., fm with respect to −→v1 , ...,−→vm if for any 1 ≤ k ≤ m
and 1 ≤ i1 < · · · < ik ≤ m, the following two conditions hold:

(i) For any A ⊆ P , fi1(
−→
δA) = · · · = fik(

−→
δA) = 1 implies that −→vij ∈ span{MA}

for 1 ≤ j ≤ k.

(ii) For any A ⊆ P , fi1(
−→
δA) = · · · = fik(

−→
δA) = 0 implies that Rank

⎛⎜⎜⎜⎝
MA−→vi1

...
−→vik

⎞⎟⎟⎟⎠ =

Rank MA + k.
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After a proper linear transform, any MSP computing the multi-Boolean func-
tion fAS1 , · · · , fASm with respect to −→v1 , ...,−→vm can be converted into a MSP
computing the same multi-Boolean function with respect to −→e1 , · · · ,−→em, where
−→ei = (0, ..., 0,

i
1, 0, ..., 0) ∈ Kl for 1 ≤ i ≤ m. So without loss of generality we

always assume the target vectors are −→e1 , · · · ,−→em.

Theorem 1. [10] Let AS1,· · · ,ASm be m access structures over P and fAS1 , · · · ,
fASm be the corresponding characteristic functions. Then there exists a linear
multi-secret sharing scheme realizing AS1, · · · ,ASm over a finite field K with
size d if and only if there exists a monotone span program computing monotone
Boolean functions fAS1, · · · , fASm with size d.

Actually, let M(K,M,ψ) be a MSP computing monotone Boolean functions
fAS1 , · · · , fASm with respect to −→e1 , · · · ,−→em, where M is a d × l matrix. Then
the corresponding LMSSS realizing AS1, · · · ,ASm over K is as follows: For any
multi-secret (s1, ..., sm) ∈ Km and random input −→ρ ∈ Kl−m, the distribution
function is defined by

Π(s1, · · · , sm,−→ρ ) = ((s1, · · · , sm,−→ρ )(MP1)
τ , · · · , (s1, · · · , sm,−→ρ )(MPn)τ ),

where “τ” denotes the transpose and MPk
denotes M restricted to those rows

i with ψ(i) = Pk, 1 ≤ i ≤ d, 1 ≤ k ≤ n. As to reconstruction, since −→ei ∈
span{MA} for any A ∈ ASi, i.e., there exists a vector −→v such that −→ei = −→v MA,
then

si=(s1, · · · , sm,−→ρ )−→ei τ = (s1, · · · , sm,−→ρ )(−→v MA)τ = (s1, · · · , sm,−→ρ )(MA)τ−→v τ ,

where (s1, · · · , sm,−→ρ )(MA)τ are the shares held by players in A and −→v can be
computed by every participant.

3 Parallel Multi-party Computation

3.1 Concepts and Notations

The problem of secure MPC for one function has been studied by many people
and it can be stated as follows: n players P1, ..., Pn are to securely compute
an agreed function f(x1, ..., xn) = (y1, ..., yn) against an A-adversary, where Pi
holds private input xi and is to get the output yi. The security means that
the correctness of the outputs and the privacy of players’ inputs are always
guaranteed no matter which set in A is corrupted by the adversary. In fact the
function f can be represented as f = (f1, ..., fn) where fi(x1, ..., xn) = yi for
1 ≤ i ≤ n. As the general way of treating the MPC problem, we assume that the
functions involved thereafter are all of the form of fi. So the MPC problem can
be seemed as securely computing n functions with respect to the same adversary
structure. As a natural extension, it is reasonable to consider securely computing
multi-functions with respect to multi-adversary structures. Thus we propose the
concept of secure parallel multi-party computation.
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Precisely, there are m functions f1(x1, ..., xn), ..., fm(x1, ..., xn) and m corre-
sponding adversary structures A1, ...,Am. For 1 ≤ i ≤ n, player Pi has private
input (x(1)

i , x
(2)
i , ..., x

(m)
i ), where x(j)

i is Pi’s input to the function fj(x1, ..., xn).
So the final value of fj is fj(x

(j)
1 , x

(j)
2 , ..., x

(j)
n ). An (A1, ...,Am)-adversary can

corrupt any set in A1 ∪ · · · ∪ Am. The n players are to securely compute the
multi-function f1, ..., fm against an (A1, ...,Am)-adversary, that is, for any cor-
rupted set B ∈ Ai1∩· · ·∩Aik , where 1 ≤ i1 < · · · < ik ≤ m and k ≤ m, functions
fi1 , ..., fik are securely computed, which includes the following two aspects:

(i) Correctness: For 1 ≤ i ≤ n, Pi finally gets the correct outputs of the
functions fi1 , ..., fik .

(ii) Privacy: The adversary gets no information about other players’ (players
out of B) inputs for functions fi1 , ..., fik , except what can be implied from the
inputs and outputs held by players in B.

The problem of secure parallel multi-party computation for the multi-function
f1, ..., fm against an (A1, ...,Am)-adversary is essentially a direct composition of
problems of secure MPC for fj against an Aj-adversary where 1 ≤ j ≤ m. So it
can be resolved by designing for each function and the corresponding adversary
structure a secure MPC protocol and running them in a composite way. We
call this a “direct sum” method. One of the results in [7] tells us that in the
information theoretic model, every function can be securely computed against
an adaptive, passive A-adversary if and only if A is Q2, where Q2 is the condi-
tion that no two of the sets in the structure cover the full player set. Thus we
evidently have the following proposition.

Proposition 1. In the information theoretic model, there exists a parallel multi-
party computation protocol computing m functions securely against an adaptive,
passive (A1, ...,Am)-adversary if and only if A1, ...,Am are all Q2.

Cramer et al. [3] build a secure MPC protocol for one function based on the mul-
tiplicative MSP computing one Boolean function. Here we extend it to the mul-
tiplicative MSP computing multi-Boolean functions. Precisely, let M(K,M,ψ)
be a MSP described in Section 2. Given two vectors −→x = (x1, ..., xd), −→y =
(y1, ..., yd) ∈ Kd, we let −→x ) −→y be the vector containing all entries of the form
xi·yj with ψ(i) = ψ(j), and < −→x ,−→y > denote the inner product. For example, let

−→x = (x11, ..., x1d1 , ..., xn1, ..., xndn), −→y = (y11, ..., y1d1 , ..., yn1, ..., yndn),

where
∑n

i=1 di = d and xi1, ..., xidi , as well as yi1, ..., yidi are the entries distrib-
uted to Pi according to ψ. Then −→x )−→y is the vector composed of the

∑n
i=1 d 2

i en-
tries xijyik, where 1 ≤ j, k ≤ di, 1 ≤ i ≤ n, and < −→x ,−→y >=

∑n
i=1

∑di

j=1 xijyij .
Using these notations, we give the following definition.

Definition 1. A monotone span program M(K,M,ψ) computing Boolean func-
tions f1, ..., fm with respect to −→e1 , · · · ,−→em is called multiplicative, if for 1 ≤ i ≤
m, there exists a

∑n
i=1 d 2

i -dimensional recombination vector −→ri , such that for
any two multi-secrets (s1, ..., sm), (s′1, ..., s′m) ∈ Km and any −→ρ ,−→ρ ′ ∈ Kl−m, it
holds that
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sis′i =< −→ri , (s1, ..., sm,−→ρ )M τ ) (s′1, ..., s′m,−→ρ ′)M τ > .

In fact, when m = 1 the definition is the same as that of [3]. In the appendix
we give an efficient and generic construction to build from any MSP a multiplica-
tive MSP computing the same multi-Boolean function. Hence in the following
we assume that the based MSP in Section 3.2 is already multiplicative.

3.2 Construction from Any LMSSS

In this section, assuming the adversary is passive and adaptive, we give a generic
and efficient construction to obtain from any LMSSS a paralel multi-party com-
putation protocol in the information theoretic model, provided that the access
structures of the LMSSS allow MPC at all. Since LMSSS and MSP are equiva-
lent, it turns out to be convenient to describe our protocol in terms of MSP’s.
We only describe the protocol in the case m = 2 and it is a natural extension
for m > 2.

Suppose A1 and A2 are two adversary structures over P and they are both
Q2. For 1 ≤ i ≤ n, player Pi has private input (x(1)

i , x
(2)
i ) and they are to jointly

compute functions f1(x1, ..., xn) and f2(x1, ...xn). Let AS1 = 2P \ A1, AS2 =
2P \ A2, and M(K,M,ψ) be a multiplicative MSP computing Boolean func-
tions fAS1 and fAS2 with respect to target vectors −→e1 ,

−→e2 , where M is a d × l
matrix over K. How to construct such a MSP is out of concern in this paper.
Next we describe our protocol in three phases: input sharing, computing and
outputting.

Input Sharing. First each player shares his private input by using the MSP
M(K,M,ψ), i.e., for 1 ≤ i ≤ n, player Pi secretly and randomly selects −→ρi in
the set of random inputs R = Kl−2 and sends (x(1)

i , x
(2)
i ,−→ρi )(MPj )τ to player

Pj , where 1 ≤ j ≤ n and j �= i.

Computing. Since any function that is feasible to compute at all can be
specified as a polynomial size arithmetic circuit over a finite field K with ad-
dition gates and multiplication gates, it is enough for us to discuss how to do
additions and multiplications overK. Different from computing a single function,
in parallel multi-party computation, we compute the functions simultaneously
other than one after another.

Precisely, suppose f1 contains p multiplications and f2 contains q multiplica-
tions, where p ≤ q and the multiplication considered here is operation between
two elements. Then in each of the first p steps, we compute two multiplications
coming from the two functions, respectively. In each the following q − p steps,
we continue to compute a multiplications of f2 and do nothing for f1. So after
q steps we complete all the multiplications of both functions and get the inter-
mediate results needed. Finally we compute all additions of both functions in
one step. By doing so, we need less communication and random bits than the
“direct sum” method. Furthermore, in order to guarantee security, all inputs and
outputs of each step are multi-secret shared during computing and we call this
condition the “invariant”.



Parallel Multi-party Computation from Linear Multi-secret Sharing Schemes 163

Example 1. Let P = {P1, P2, P3}, and f1 = x2
2x3, f2 = x1x2 +x3. For 1 ≤ i ≤ 3,

Pi has private input (x(1)
i , x

(2)
i ) which is multi-secret shared in the Input Sharing

phase. Since f1 contains two multiplications and f2 contains one multiplication,
the computing phase consists of three steps. The following table shows the com-
puting process. Note that in the table, x(j)

i denotes an input value for the function
fj held by Pi, z

(j)
i denotes an intermediate value held by an imaginary player

Ii, xi and zi are variables and zij is the function to be computed at each step,
where 1 ≤ i ≤ 3 and 1 ≤ j ≤ 2.

input to compute output

(x(1)
1 , x

(2)
1 )

Step 1 (x(1)
2 , x

(2)
2 ) (z11 = x2x3, z12 = x1x2) (z(1)

1 = x
(1)
2 x

(1)
3 , z

(2)
1 = x

(2)
1 x

(2)
2 )

(x(1)
3 , x

(2)
3 )

(x(1)
2 , x

(2)
2 )

Step 2 (z(1)
1 , z

(2)
1 ) (z21 = x2z1, z22 = z1) (z(1)

2 = x
(1)
2 z

(1)
1 , z

(2)
2 = z

(2)
1 )

(x(1)
3 , x

(2)
3 )

Step 3 (z(1)
2 , z

(2)
2 ) (z31 = z2, z32 = z2 + x3) (z(1)

3 = z
(1)
2 , z

(2)
3 = z

(2)
2 + x

(2)
3 )

In Step 1 we do two multiplications x2x3 and x1x2 for f1 and f2, respectively;
in Step 2 we do a multiplication x2z1 for f1 and do nothing for f2; in Step
3, we do an addition z2 + x3 for f2 and do nothing for f1. It is evident that
z
(1)
3 = x

(1)
2 x

(1)
2 x

(1)
3 and z(2)

3 = x
(2)
1 x

(2)
2 + x

(2)
3 . The invariant here means that for

1 ≤ i ≤ 3, (x(1)
i , x

(2)
i ), (z(1)

i , z
(2)
i ) all keep multi-secret shared by M(K,M,ψ)

during computing.
Next we discuss how to do multiplications or additions at each step. Accord-

ing to the type of operations we execute respectively for the two functions at
each step (e.g. Step 1 of Example 1), there are four cases to be considered as
follows, where “ \ ” means that no operation is actually done and the output is
one of the inputs. Without loss of generality, in the following we assume that
P = {P1, P2, P3, P4}.

Case 1: (+,+). First suppose that we are to compute g1 = x1 + x2 and
g2 = x3 + x4. The inputs (x(1)

i , x
(2)
i ) are multi-secret shared such that each

player Pj holds (x(1)
i , x

(2)
i ,−→ρi )(MPj )τ = (s(j)i1 , ..., s

(j)
idj

) ∈ Kdj distributed by Pi

where 1 ≤ i ≤ 4. The output is to be multi-secret shared (x(1)
1 +x

(1)
2 , x

(2)
3 +x

(2)
4 ).

Then Pj locally computes:

(x(1)
1 , x

(2)
1 ,−→ρ1)(MPj )

τ + (x(1)
2 , x

(2)
2 ,−→ρ2)(MPj )

τ

= (x(1)
1 + x

(1)
2 , x

(2)
1 + x

(2)
2 ,−→ρ1 +−→ρ2)(MPj )

τ

= (s(j)11 + s
(j)
21 , ..., s

(j)
1dj

+ s
(j)
2dj

) , (2)
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(x(1)
3 , x

(2)
3 ,−→ρ3)(MPj )

τ + (x(1)
4 , x

(2)
4 ,−→ρ4)(MPj )

τ

= (x(1)
3 + x

(1)
4 , x

(2)
3 + x

(2)
4 ,−→ρ3 +−→ρ4)(MPj )

τ

= (s(j)31 + s
(j)
41 , ..., s

(j)
3dj

+ s
(j)
4dj

) . (3)

Actually, through (2) Pj gets shares for (x(1)
1 + x

(1)
2 , x

(2)
1 + x

(2)
2 ) and through (3)

Pj gets shares for (x(1)
3 + x

(1)
4 , x

(2)
3 + x

(2)
4 ). In order to guarantee security, we

need to multi-secret share (x(1)
1 + x

(1)
2 , x

(2)
3 + x

(2)
4 ), each player must reshare his

present shares. Precisely, by the reconstruction algorithm of the LMSSS, there
exist −→a ,−→b ∈ K n

i=1 di , such that

x
(1)
1 +x

(1)
2 =

n∑
j=1

dj∑
k=1

ajk(s
(j)
1k + s

(j)
2k ), x

(2)
3 +x

(2)
4 =

n∑
j=1

dj∑
k=1

bjk(s
(j)
3k + s

(j)
4k ) . (4)

So each player Pj reshares (
∑dj

k=1 ajk(s
(j)
1k + s

(j)
2k ),

∑dj

k=1 bjk(s
(j)
3k + s

(j)
4k )) through

(
∑dj

k=1 ajk(s
(j)
1k +s(j)2k ),

∑dj

k=1 bjk(s
(j)
3k +s(j)4k ),−→ρj ′)M τ and sends each of other play-

ers a share. Finally Pj adds up all his shares obtained from the resharing, i.e.,

n∑
i=1

(
di∑
k=1

aik(s
(i)
1k + s

(i)
2k ),

di∑
k=1

bik(s
(i)
3k + s

(i)
4k ),−→ρi ′)(MPj )

τ

= (
n∑
i=1

di∑
k=1

aik(s
(i)
1k + s

(i)
2k ),

n∑
i=1

di∑
k=1

bik(s
(i)
3k + s

(i)
4k ),

n∑
i=1

−→ρi ′)(MPj )
τ

= (x(1)
1 + x

(1)
2 , x

(2)
3 + x

(2)
4 ,

n∑
i=1

−→ρi ′)(MPj )
τ ,

which is actually Pj ’s share for (x(1)
1 + x

(1)
2 , x

(2)
3 + x

(2)
4 ).

Note that if we are to compute (x(1)
1 + x

(1)
2 , x

(2)
1 + x

(2)
2 ) at this step, the

equality (2) is enough and we do not need resharing any more. Although we
only discuss adding up two items here, we can add up more items once in the
same way. Furthermore, it is trivial to deal with multiplications with constants
in K, since the constant is public.

Case 2: (×,×). Suppose we are to compute (g1 = x1x2, g2 = x3x4). Since
M(K,M,ψ) is assumed to be multiplicative, there exist recombination vectors
−→r ,−→t ∈ K n

i=1 d
2

i , such that

x
(1)
1 x

(1)
2 =< −→r , (x(1)

1 , x
(2)
1 ,−→ρ1)M τ ) (x(1)

2 , x
(2)
2 ,−→ρ2)M τ >, (5)

x
(2)
3 x

(2)
4 =<

−→
t , (x(1)

3 , x
(2)
3 ,−→ρ3)M τ ) (x(1)

4 , x
(2)
4 ,−→ρ4)M τ > . (6)

Pj computes (x(1)
1 , x

(2)
1 ,−→ρ1)(MPj )τ ) (x(1)

2 , x
(2)
2 ,−→ρ2)(MPj )τ = (αj1, ..., αjd 2

j
) ∈

Kd 2
j and (x(1)

3 , x
(2)
3 ,−→ρ3)(MPj )τ ) (x(1)

4 , x
(2)
4 ,−→ρ4)(MPj )τ = (βj1, ..., βjd 2

j
) ∈ Kd 2

j .
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From (5) and (6) we have

x
(1)
1 x

(1)
2 =

n∑
j=1

d 2
j∑

k=1

rjkαjk, x
(2)
3 x

(2)
4 =

n∑
j=1

d 2
j∑

k=1

tjkβjk. (7)

Pj reshares (
∑d 2

j

k=1 rjkαjk,
∑d 2

j

k=1 tjkβjk) by (
∑d 2

j

k=1 rjkαjk,
∑d 2

j

k=1 tjkβjk,
−→ρj ′)M τ .

Finally, Pj computes

n∑
i=1

(
d 2

i∑
k=1

rikαik,

d 2
i∑

k=1

tikβik,
−→ρi ′)(MPj )

τ

= (
n∑
i=1

d 2
i∑

k=1

rikαik,
n∑
i=1

d 2
i∑

k=1

tikβik,
n∑
i=1

−→ρi ′)(MPj )
τ

= (x(1)
1 x

(1)
2 , x

(2)
3 x

(2)
4 ,

n∑
i=1

−→ρi ′)(MPj )
τ ,

which is Pj ’s share for (x(1)
1 x

(1)
2 , x

(2)
3 x

(2)
4 ).

Case 3: (+, \) or (\,+). Suppose we are to compute (g1 = x1 + x2, g2 = x3).
Similar to (4), we have x(2)

3 =
∑n
j=1

∑dj

k=1 bjks
(j)
3k . So each player Pj reshares

(
∑dj

k=1 ajk(s
(j)
1k + s

(j)
2k ),

∑dj

k=1 bjks
(j)
3k ) through

(
dj∑
k=1

ajk(s
(j)
1k + s

(j)
2k ),

dj∑
k=1

bjks
(j)
3k ,
−→ρj ′)M τ

and finally computes

n∑
i=1

(
di∑
k=1

aik(s
(i)
1k +s

(i)
2k ),

di∑
k=1

biks
(i)
3k ,
−→ρi ′)(MPj )

τ = (x(1)
1 +x

(1)
2 , x

(2)
3 ,
∑
i=1

−→ρi ′)(MPj )
τ ,

which is Pj ’s share for (x(1)
1 + x

(1)
2 , x

(2)
3 ).

Case 4: (×, \) or (\,×). It is similar to the above cases and details are omitted
here.

Outputting. At the end of computing phase, we can see the final value
(f1(x

(1)
1 , ..., x

(1)
n ), f2(x

(2)
1 , ..., x

(2)
n )) is multi-secret shared by using M. If every

player is allowed to get the value, in the last phase Pi publics his share for
(f1(x

(1)
1 , ..., x

(1)
n ), f2(x

(2)
1 , ..., x

(2)
n )) where 1 ≤ i ≤ n, then every player can com-

pute (f1(x
(1)
1 , ..., x

(1)
n ), f2(x

(2)
1 , ..., x

(2)
n )) by the reconstruction algorithm.

If f1(x
(1)
1 , ..., x

(1)
n ) is required to be held only by P1 and f2(x

(2)
1 , ..., x

(2)
n )

is to be held only by P2, all shares cannot be simply transmitted to P1 and
P2. Because by doing so, P1, resp. P2 will also know f2(x

(2)
1 , ..., x

(2)
n ), resp.

f1(x
(1)
1 , ..., x

(1)
n ). Fortunately, by the reconstruction algorithm, f1(x

(1)
1 , ..., x

(1)
n )



166 Z. Zhang, M. Liu, and L. Xiao

and f2(x
(2)
1 , ..., x

(2)
n ) are linear combinations of the shares that all players finally

hold, so they can be computed through a simple MPC protocol [9] as follows,
while keeping the privacy of the shares thus guaranteeing security for parallel
MPC.

Since (f1(x
(1)
1 , ..., x

(1)
n ), f2(x

(2)
1 , ..., x

(2)
n )) is multi-secret shared through M,

suppose Pi’s share for it is (si1, · · · , sidi) ∈ Kdi where 1 ≤ i ≤ n. Similar to the
equality (4), we have that

f1(x
(1)
1 , ..., x(1)

n ) =
n∑
i=1

di∑
k=1

aiksik, f2(x
(2)
1 , ..., x(2)

n ) =
n∑
i=1

di∑
k=1

biksik .

In order to securely compute f1(x
(1)
1 , ..., x

(1)
n ) such that only P1 learns the value

and other players get nothing new, we need a simple MPC protocol. Precisely,
for 1 ≤ i ≤ n, Pi randomly selects ri1, ri2, · · · , ri(n−1) ∈ K and sets rin =∑di

k=1 aiksik −
∑n−1

j=1 rij . Then Pi secretly transmits rij to Pj , 1 ≤ j ≤ n, j �= i.
After that Pj locally computes λj =

∑n
i=1 rij and transmits rj to P1 where

1 ≤ j ≤ n. The process can be displayed as follows.

P1 · · · Pn
P1 :

∑d1
k=1 a1ks1k → r11 · · · r1n

∑d1
k=1 a1ks1k =

∑n
j=1 r1j

P2 :
∑d2

k=1 a2ks2k → r21 · · · r2n
∑d2
k=1 a2ks2k =

∑n
j=1 r2j

· · · · · · · · · · · · · · · · · ·
Pn :

∑dn

k=1 anksnk → rn1 · · · rnn
∑dn

k=1 anksnk =
∑n

j=1 rnj
λ1 =

∑n
i=1 ri1 · · · λn =

∑n
i=1 rin

(8)
Finally, P1 computes

n∑
j=1

λj =
n∑
j=1

n∑
i=1

rij =
n∑
i=1

n∑
j=1

rij =
n∑
i=1

di∑
k=1

aiksik = f1(x
(1)
1 , ..., x(1)

n ) .

Similarly, f2(x
(2)
1 , ..., x

(2)
n ) can be securely computed and only P2 gets the final

value.

3.3 Comparing with the “Direct Sum” Method

Since the “direct sum” method (in Section 3.1) is a natural way to realize secure
parallel multi-party computation, we compare our protocol (in Section 3.2) with
it. As to the security issue, note that in our protocol all inputs and outputs for
every step is multi-secret shared during the protocol. For any B ∈ Ai1∩· · ·∩Aik ,
it follows that {Si1 , ..., Sik} ⊆ {S1, ..., Sm} \ {Si | B ∈ ASi, 1 ≤ i ≤ m}.
By the security requirement of the LMSSS, players in B get no information
about {Si1 , ..., Sik} from the shares they hold, that is, the intermediate com-
munication data held by players in B tells nothing about other players’ in-
puts for functions fi1 , ..., fik . So an adversary corrupting players in B gets
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no information about other players’ (players out of B) inputs for functions
fi1 , ..., fik , except what can be implied from the inputs and outputs held by
players in B. Hence our protocol and the “direct sum” method are of the same
security.

The communication complexity is an important criterion to evaluate a pro-
tocol. By using a “ non-direct sum” LMSSS, our protocol may need less com-
munication than the “direct sum” method, and this advantage becomes more
evident when computing more complicated functions, i.e., the functions essen-
tially contain more variables and more multiplications. In the next section,
we show the advantage of communication complexity through a specific
example.

4 Example

Suppose that P = {P1, P2, P3, P4, P5} is the set of players and |K| > 5. Let
AS1 = {A ⊂ P | |A| ≥ 2 and {P1, P2} ∩ A �= ∅} and AS2 = {A ⊂ P | |A| ≥
2 and {P4, P5} ∩ A �= ∅} be two access structures over P . The corresponding
minimum access structures are as follows:

(AS1)m = {{P1, P2}, {P1, P3}, {P1, P4}, {P1, P5}, {P2, P3}, {P2, P4}, {P2, P5}} ,

(AS2)m = {{P4, P5}, {P1, P4}, {P2, P4}, {P3, P4}, {P1, P5}, {P2, P5}, {P3, P5}} .

Obviously, the two corresponding adversary structures A1 = 2P \AS1 and A2 =
2P \ AS2 are both Q2. The players are to securely compute multi-functions
f1 = x1 + x2x3, f2 = x1x2 against an (A1,A2)-adversary. For 1 ≤ i ≤ 5, player
Pi has private input (x(1)

i , x
(2)
i ).

By the “direct sum” method, we need to design for fi a MPC protocol against
an Ai-adversary where 1 ≤ i ≤ 2. From [3] we know that the key step is to devise
LSSS with respect to AS1 and AS2, respectively. let

M1 =

⎛⎜⎜⎜⎜⎝
1 1
2 1
0 1
0 1
0 1

⎞⎟⎟⎟⎟⎠ , M2 =

⎛⎜⎜⎜⎜⎝
0 1
0 1
0 1
1 1
2 1

⎞⎟⎟⎟⎟⎠ ,

and ψ1,ψ2 : {1, 2, · · · , 5} → P be defined as ψ1(i) = ψ2(i) = Pi for 1 ≤ i ≤ 5. It
is easy to verify thatMi(K,Mi,ψi) is a multiplicative MSP computing fASi with
respect to (1, 0) ∈ K2 where 1 ≤ i ≤ 2. Then the MPC protocol follows. Note
that the MPC protocol for computing a single function also has input sharing
phase, computing phase and outputting phase.
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By the protocol in Sec3.2, first we need to design a LMSSS with respect to the

multi-access structure AS1,AS2. Let M =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 1
0 0 0 1
0 0 0 1
2 0 1 1
0 0 1 1
0 0 1 0
0 1 −2 −1
0 0 2 1
0 1 −1 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and ψ : {1, 2, ..., 9} →

P be defined as ψ(1) = ψ(2) = P1, ψ(3) = ψ(4) = P2, ψ(5) = P3, ψ(6) =
ψ(7) = P4, ψ(8) = ψ(9) = P5. It can be verified that M(K,M,ψ) is a MSP
computing fAS1 and fAS2 with respect to the target vectors −→e1 ,

−→e2 , and later we
are to verify that M(K,M,ψ) is multiplicative.

Input Sharing. First for 1 ≤ i ≤ 3, Pi multi-secret share his private input
(x(1)
i , x

(2)
i ) by randomly choosing αi, βi ∈ K and sending (x(1)

i , x
(2)
i , αi, βi)(MPj )τ

to player Pj , where 1 ≤ j ≤ n. The following table shows the shares each player
holds for (x(1)

i , x
(2)
i ) after the phase.

(x(1)
1 , x

(2)
1 ) (x(1)

2 , x
(2)
2 ) (x(1)

3 , x
(2)
3 )

P1 x
(1)
1 + α1 + β1, β1 x

(1)
2 + α2 + β2, β2 x

(1)
3 + α3 + β3, β3

P2 β1, 2x(1)
1 + α1 + β1 β2, 2x(1)

2 + α2 + β2 β3, 2x(1)
3 + α3 + β3

P3 α1 + β1 α2 + β2 α3 + β3

P4 α1, x
(2)
1 − 2α1 − β1 α2, x

(2)
2 − 2α2 − β2 α3, x

(2)
3 − 2α3 − β3

P5 2α1 +β1, x
(2)
1 −α1 − β1 2α2 + β2, x

(2)
2 − α2 − β2 2α3 + β3, x

(2)
3 − α3 − β3

Denote (x(1)
i , x

(2)
i , αi, βi)M τ = (s(1)i1 , s

(1)
i2 , s

(2)
i1 , s

(2)
i2 , s

(3)
i1 , s

(4)
i1 , s

(4)
i2 , s

(5)
i1 , s

(5)
i2 ), that

is, Pj holds s(j)ik for (x(1)
i , x

(2)
i ) where 1 ≤ k ≤ di, 1 ≤ j ≤ 5.

It can be verified that

x
(1)
1 = (x(1)

1 +α1+β1)−(α1+β1), x
(2)
1 = (α1+β1)+α1+(x(2)

1 −2α1−β1). (9)

x
(1)
2 x

(1)
3 = −(x(1)

2 + α2 + β2)(x
(1)
3 + α3 + β3) +

1
2
(2x(1)

2 + α2 + β2)(2x
(1)
3 + α3 + β3) +

1
2
(α2 + β2)(α3 + β3) ,(10)

x
(2)
1 x

(2)
2 = (α1 + β1)(α2 + β2)− α1α2 + (x(2)

1 − 2α1 − β1)(x
(2)
2 − 2α2 − β2) +

(2α1 + β1)(x
(2)
2 − α2 − β2) + (x(2)

1 − α1 − β1)(2α2 + β2). (11)

The equality (9) gives the reconstruction algorithms for {P1, P3} to recover x(1)
1

and for {P3, P4} to recover x(2)
1 , so as in the equality (4), we can set

−→a = (1, 0, 0, 0,−1, 0, 0, 0, 0) ,
−→
b = (0, 0, 0, 0, 1, 1, 1, 0, 0) .
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The equalities (10) and (11) show the MSP M(K,M,ψ) is multiplicative. Pre-
cisely, if we have

(x(1)
1 , x

(2)
1 , α1, β1)M τ ) (x(1)

2 , x
(2)
2 , α2, β2)M τ

= (s(1)11 s
(1)
21 , s

(1)
11 s

(1)
22 , s

(1)
12 s

(1)
21 , s

(1)
12 s

(1)
22 , s

(2)
11 s

(2)
21 , s

(2)
11 s

(2)
22 , s

(2)
12 s

(2)
21 , s

(2)
12 s

(2)
22 , s

(3)
11 s

(3)
21 ,

s
(4)
11 s

(4)
21 , s

(4)
11 s

(4)
22 , s

(4)
12 s

(4)
21 , s

(4)
12 s

(4)
22 , s

(5)
11 s

(5)
21 , s

(5)
11 s

(5)
22 , s

(5)
12 s

(5)
21 , s

(5)
12 s

(5)
22 ) ,

then as in the equality (7) the recombination vectors are as follows:

−→r = (−1, 0, 0, 0, 0, 0, 0,
1
2
,
1
2
, 0, 0, 0, 0, 0, 0, 0, 0) ,

−→
t = (0, 0, 0, 0, 0, 0, 0, 0, 1,−1, 0, 0, 1, 0, 1, 1, 0) .

We transmit 22 log |K| bits of information in this phase. For simplicity, the
functions computed in this example involve a few variables. If all variables are
involved in each function, i.e., variables x1, ..., x5 all appear in each function,
then we need to transmit 36 log |K| bits in the input sharing phase, while by the
“direct sum” method 40 log |K| bits need to be transmitted in this phase.

Computing. This phase consists of two steps.
Step 1: (×,×). The output of this step is to be the multi-secret shared

(x(1)
2 x

(1)
3 , x

(2)
1 x

(2)
2 ). From (10) and (11), we can see that in the recombination

vector −→r only P1, P2 and P3 has nonzero coefficients, and in the recombi-
nation vector

−→
t only P3, P4 and P5 has nonzero coefficients, so P1 reshares

(u1, v1) = (−(x(1)
2 +α2 +β2)(x

(1)
3 +α3 +β3), 0), P2 reshares (u2, v2) = (1

2 (2x(1)
2 +

α2 + β2)(2x
(1)
3 + α3 + β3), 0), P3 reshares (u3, v3) = (1

2 (α2 + β2)(α3 + β3), (α1 +
β1)(α2+β2)), P4 reshares (u4, v4) = (0,−α1α2+(x(2)

1 −2α1−β1)(x
(2)
2 −2α2−β2))

and P5 reshares (u5, v5) = (0, (2α1+β1)(x
(2)
2 −α2−β2)+(x(2)

1 −α1−β1)(2α2+β2)).
After resharing, as shares of (ui, vi), P1 gets ui+α′i+β

′
i, β

′
i; P2 gets β′i, 2ui+

α′i+β
′
i; P3 gets α′i+β

′
i; P4 gets α′i, vi−2α′i−β′i and P5 gets 2α′i+β

′
i, vi−α′i−β′i,

where 1 ≤ i ≤ 5. Finally
P1 computes

∑5
i=1(ui + α′i + β′i) = x

(1)
2 x

(1)
3 +

∑5
i=1(α

′
i + β′i), and

∑5
i=1 β

′
i;

P2 computes
∑5
i=1 β

′
i, and

∑5
i=1(2ui+α′i+β′i) = 2x(1)

2 x
(1)
3 +

∑5
i=1(α

′
i+β′i);

P3 computes
∑5

i=1(α
′
i + β′i);

P4 computes
∑5
i=1 α

′
i, and

∑5
i=1(vi−2α′i−β′i) = x

(2)
1 x

(2)
2 −

∑5
i=1(2α

′
i+β′i);

P5 computes
∑5

i=1(2α
′
i+β

′
i), and

∑5
i=1(vi−α′i−β′i) = x

(2)
1 x

(2)
2 −

∑5
i=1(α

′
i+

β′i).
It can be verified that they are the shares for (x(1)

2 x
(1)
3 , x

(2)
1 x

(2)
2 ) generated from

M(x(1)
2 x

(1)
3 , x

(2)
1 x

(2)
2 ,
∑5

i=1 α
′
i,
∑5
i=1 β

′
i)
τ .

Step 2: (+, \). The output of this step is to be multi-secret shared (x(1)
1 +

x
(1)
2 x

(1)
3 , x

(2)
1 x

(2)
2 ). Since (x(1)

2 x
(1)
3 , x

(2)
1 x

(2)
2 ) is multi-secret shared after Step 1 and

(x(1)
1 , x

(2)
1 ) is multi-secret shared in the Input Sharing phase, then each player

adds his shares for (x(1)
2 x

(1)
3 , x

(2)
1 x

(2)
2 ) to his shares for (x(1)

1 , x
(2)
1 ). By the linear
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combinations given in (9), P1 reshares (p1, q1) = ((x(1)
1 + α1 + β1) + x

(1)
2 x

(1)
3 +∑5

i=1(α
′
i+β

′
i), 0), P3 reshares (p3, q3) = (−(α1 +β1)−

∑5
i=1(α

′
i+β

′
i),
∑5

i=1(α
′
i+

β′i)) and P4 reshares (p4, q4) = (0,
∑5
i=1 α

′
i+x

(2)
1 x

(2)
2 −

∑5
i=1(2α

′
i+β′i)). Finally,

P1 computes
∑

i=1,3,4

(pi + α′′i + β′′i ) = x
(1)
1 + x

(1)
2 x

(1)
3 +

∑
i=1,3,4

(α′′i + β′′i ), and∑
i=1,3,4

β′′i ;

P2 computes
∑

i=1,3,4

β′′i , and
∑

i=1,3,4

(2pi + α′′i + β′′i ) = 2(x(1)
1 + x

(1)
2 x

(1)
3 ) +∑

i=1,3,4

(α′′i + β′′i );

P3 computes
∑

i=1,3,4

(α′′i + β′′i );

P4 computes
∑

i=1,3,4

α′′i , and
∑

i=1,3,4

(qi−2α′′i−β′′i ) = x
(2)
1 x

(2)
2 −

∑
i=1,3,4

(2α′′i +β
′′
i );

P5 computes
∑

i=1,3,4

(2α′′i + β′′i ), and
∑

i=1,3,4

(qi − α′′i − β′′i ) = x
(2)
1 x

(2)
2 −∑

i=1,3,4

(α′′i + β′′i ).

It can be verified that they are the shares for (x(1)
1 +x

(1)
2 x

(1)
3 , x

(2)
1 x

(2)
2 ) generated

from M(x(1)
1 + x

(1)
2 x

(1)
3 , x

(2)
1 x

(2)
2 ,
∑

i=1,3,4 α
′′
i ,
∑
i=1,3,4 β

′′
i )τ .

In each step dealing with multiplications, our protocol transmits at most
36 log |K| bits of information. By the “direct sum” method, each time we do
a multiplication it need to transmit 28 log |K| bits. Assume that f1 contains p
multiplications and f2 contains q multiplications, where p ≤ q. Then our protocol
need transmit 36q log |K| bits to complete all multiplications, while the “direct
sum” method transmits 20(p+ q) log |K| bits. If p = q, we see that our protocol
transmits 4p log |K| bits less than the “direct sum” method.

In the last step of this phase, that is, when we do additions, from the recon-
struction algorithm given by (9) only P1, P3 and P4 need to reshare their shares.
But by the “direct sum” method, no resharing is needed when doing additions.
So our protocol transmits at most 22 log |K| bits more than the “direct sum”
method when dealing with additions. However, when both functions essentially
contain large numbers of multiplications, our protocol has great advantage in
communication complexity.

Outputting. Assume that all players are allowed to get the final value of both
functions. Then every player publics his share for (x(1)

1 + x
(1)
2 x

(1)
3 , x

(2)
1 x

(2)
2 ) and

can compute the final value by the reconstruction algorithms. If x(1)
1 + x

(1)
2 x

(1)
3

is assumed to be held by P1 and x(2)
1 x

(2)
2 is assumed to be held by P2, then our

protocol transmits at most 20 log |K| bits more than the “direct sum” method
according to (8). Fortunately, this disadvantage is fixed, that is, it does not
depend on the functions we compute.
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As a whole, our protocol needs less communication than the “direct sum”
method when computing complicated functions.
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Appendix: Construct Multiplicative MSP

Let M(K,M,ψ) be a MSP computing fAS1 and fAS2 with respect to {−→e1,
−→e2}.

For simplicity, we use −→e1 , resp. −→e2 , to denote vectors with the form (1, 0, · · · , 0),
resp. (0, 1, 0, · · · , 0), without distinguishing the dimensions, and the dimension
can be determined from context. From [5] we can assume that the columns of M
are linear independent and so d ≥ l. Compute −→w1,

−→w2 be such that −→w1M = −→e1

and −→w2M = −→e2 , and compute −→v1 , ...,−−→vd−l as a basis of the solution space to the
linear functions −→v M =

−→
0 . Then construct a matrix

M̃ =

⎛⎜⎜⎜⎜⎜⎝
m11 · · · · · · m1l

...
. . . . . .

...
md1 · · · · · · mdl−→w1

τ −→v1τ · · · −−→vd−lτ−→w2
τ −→v1τ · · · −−→vd−lτ

⎞⎟⎟⎟⎟⎟⎠ ,
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where

⎛⎜⎝m11 · · · m1l

...
. . .

...
md1 · · · mdl

⎞⎟⎠ = M , and the blanks in M̃ denote zero elements. So M̃

is a 3d× (2d− l) matrix over K. Define a function ψ̃ : {1, ..., 3d} → {1, ..., n} as
follows: For 1 ≤ k ≤ d, ψ̃(k) = ψ(k); For d < k ≤ 2d, ψ̃(k) = ψ(k − d); For
2d < k ≤ 3d, ψ̃(k) = ψ(k − 2d). Therefore we get a MSP M̃(K, M̃ , ψ̃).

Proposition 2. The monotone span program M̃(K, M̃ , ψ̃) constructed above is
a multiplicative MSP computing Boolean functions fAS1 and fAS2 with respect
to target vectors {−→e1 ,

−→e2}.
Proof: Let M∗

1 , resp. M∗
2 be the matrix composed of rows from the (d + 1)

th to the 2d th row of M̃ , resp. from the (2d + 1) th to the 3d th row of M̃ .

Then M∗
1 and M∗

2 are two d× (2d− l) matrices, and M̃ =

⎛⎝M0
M∗

1

M∗
2

⎞⎠, where M0

denotes the d × (2d − l) matrix generated by adding 2(d − l) all zero columns
to the right of the original d × l matrix M. Let AS∗1 = {B ⊂ P | B �∈ AS1}
and AS∗2 = {B ⊂ P | B �∈ AS2}. From [5], the MSP M∗

1(K,M∗
1 ,ψ), resp.

M∗
2(K,M∗

2 ,ψ) computes the Boolean function fAS∗
1
, resp. fAS∗

2
with respect to

the target vector −→e1, resp. −→e2.
In order to prove that M̃(K, M̃ , ψ̃) computes Boolean functions fAS1 and

fAS2 with respect to target vectors {−→e1 ,
−→e2}, we need to prove: (1) −→e1 ∈ span{M̃A}

iff A ∈ AS1; (2) −→e2 ∈ span{M̃A} iff A ∈ AS2; (3) If A �∈ AS1 ∪ AS2, then M̃

rejects A with respect to {−→e1 ,
−→e2}, ie. Rank

⎛⎝M̃A−→e1−→e2

⎞⎠ = Rank M̃A + 2 .

(1)Suppose that A ∈ AS1. Because M(K,M,ψ) computes fAS1 with respect
to −→e1 , −→e1 ∈ span{(M0)A} ⊂ span{M̃A}. On the other hand, suppose that −→e1 ∈
span{M̃A}. If −→e1 ∈ span{(M0)A}, then A ∈ AS1 becauseM computes fAS1 with
respect to −→e1. Otherwise (M∗

1 )A or (M∗
2 )A must contribute to the generation of

−→e1. If (M∗
1 )A contributes, it is easy to see that its contribution must be span{−→e1}.

So −→e1 ∈ span{(M∗
1 )A}. Because M∗

1(K,M∗
1 ,ψ) computes the Boolean function

fAS∗
1

with respect to the target vector −→e1, −→e1 ∈ span{(M∗
1 )A} implies that A ∈

AS∗1 . By the assumption A1 = 2P −AS1 is Q2, AS∗1 ⊂ AS1 and then A ∈ AS1.
Similarly, if (M∗

2 )A contributes, its contribution must be span{−→e2}. So −→e2 ∈
span{(M∗

2 )A}, and thus A ∈ AS2. Because M(K,M,ψ) computes fAS2 with
respect to −→e2, then −→e2 ∈ span{MA}. As a result, the contribution of (M∗

2 )A is
included in that of (M0)A. Thus we can disregard (M∗

2 )A when generating −→e1,
and we have proved that −→e1 ∈ span{(M0)A, (M∗

2 )A} implies A ∈ AS1.
(2)By the discussion similar to (1), −→e2 ∈ span{M̃A} iff A ∈ AS2;
(3)Suppose that A �∈ AS1 ∪AS2. It follows that

span{(M0)A,−→e1 ,
−→e2} ∩ span{(M∗

1 )A} = span{(M0)A,−→e1 ,
−→e2} ∩ span{(M∗

2 )A}
= span{(M∗

1 )A} ∩ span{(M∗
2 )A} = 0 . (12)
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So

Rank

⎛⎝ M̃A−→e1−→e2

⎞⎠ = Rank

⎛⎝ (M0)A−→e1−→e2

⎞⎠+ Rank (M∗
1 )A + Rank (M∗

2 )A (13)

= Rank (M0)A + 2 + Rank (M∗
1 )A + Rank (M∗

2 )A (14)

= Rank M̃A + 2 , (15)

where the equality (13) and (15) come from the equality (12), and the equal-
ity (14) comes from the fact that M computes fAS1 and fAS2 with respect to
{−→e1,

−→e2}.
Then we prove that M̃(K, M̃ , ψ̃) is multiplicative. For any s1, s′1∈S1, s2, s

′
2∈

S2, and −→ρ ,−→ρ ′ ∈ K2d−l−2, denote

(s1, s2,−→ρ )M̃ τ = (s1, s2,−→ρ )((M0)τ , (M∗
1 )τ , (M∗

2 )τ ) = (−→u ,−→v ,−→w ) ,

where −→u = (s1, s2,−→ρ )(M0)τ ∈ Kd, −→v = (s1, s2,−→ρ )(M∗
1 )τ ∈ Kd and −→w =

(s1, s2,−→ρ )(M∗
2 )τ ∈ Kd. Then using the operation notations in Section 3.1, we

have the following:

< −→u ,−→v ′ >= −→u−→v ′τ = (s1, s2,−→ρ )M τM∗
1

⎛⎝ s′1
s′2−→ρ ′τ

⎞⎠

= (s1, s2,−→ρ )

⎛⎜⎜⎜⎝
1 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

⎞⎟⎟⎟⎠
⎛⎝ s′1

s′2−→ρ ′τ

⎞⎠ = s1s
′
1 ,

< −→u ,−→w ′ >= −→u−→w ′τ = (s1, s2,−→ρ )M τM∗
2

⎛⎝ s′1
s′2−→ρ ′τ

⎞⎠

= (s1, s2,−→ρ )

⎛⎜⎜⎜⎜⎜⎝
0 0 0 · · · 0
0 1 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

⎞⎟⎟⎟⎟⎟⎠
⎛⎝ s′1

s′2−→ρ ′τ

⎞⎠ = s2s
′
2 .

Hence M̃(K, M̃ , ψ̃) is multiplicative.



Updatable Zero-Knowledge Databases

Moses Liskov

Computer Science Department,
The College of William and Mary,

Williamsburg, Virginia, USA
mliskov@cs.wm.edu

Abstract. Micali, Rabin, and Kilian [9] recently introduced zero-
knowledge sets and databases, in which a prover sets up a database
by publishing a commitment, and then gives proofs about particular val-
ues. While an elegant and useful primitive, zero-knowledge databases
do not offer any good way to perform updates. We explore the issue
of updating zero-knowledge databases. We define and discuss transpar-
ent updates, which (1) allow holders of proofs that are still valid to
update their proofs, but (2) otherwise maintain secrecy about the
update.

We give rigorous definitions for transparently updatable zero-
knowledge databases, and give a practical construction based on the
Chase et al [2] construction, assuming that verifiable random functions
exist and that mercurial commitments exist, in the random oracle model.
We also investigate the idea of updatable commitments, an attempt to
make simple commitments transparently updatable. We define this new
primitive and give a simple secure construction.

Keywords: zero-knowledge databases, zero-knowledge sets, transparent
updates, zero-knowledge, protocols, commitments, updatable commit-
ments.

1 Introduction

Recently, zero-knowledge databases were introduced by Micali, Rabin, and Kilian
[9]. A zero-knowledge database is a finite partial function D mapping binary
strings to binary strings (i.e., a set of pairs of strings (x, y) such that no two pairs
have equal first entries but different second entries).1 The database owner chooses
D and “publishes” the zero-knowledge database in the form of a commitment
that pins down the database but leaks nothing, not even its size. Once the
database is committed, the set owner acts as a prover: on a query x, the prover
gives a proof that either x lies outside D or D(x) = y, while still not revealing
any further information about D. Commitments and proofs in a zero-knowledge
database are non-interactive and done in the common random string model.

1 Micali, Rabin, and Kilian call these simple databases “elementary” databases. All
databases in this paper are of this simple type.

B. Roy (Ed.): ASIACRYPT 2005, LNCS 3788, pp. 174–198, 2005.
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Zero-knowledgeness is shown by exhibiting a polynomial-time simulator that
produces a full transcript distribution (i.e., the commitment and the proofs to
all query strings) identical to that of the real prover, knowing only “D(x) = y”
or “x is not in D” for each query and at the last possible moment. While it
is conceptually simpler to deal with computational zero-knowledge (and in fact
computationally zero-knowledge databases were provided in earlier versions of
their paper [5,8]), the Micali-Rabin-Kilian solution is more desirable because it
is perfect zero-knowledge. Further, it is much more efficient as it does not involve
complex general purpose non-interactive zero-knowledge proofs.

Zero-knowledge databases are a powerful primitive, but they have a major dis-
advantage in that they are static. This seems like an undesirable property in most
applications. For example, if the database were a list of people under investigation
for criminal activities, updates would be a critical part of the system. Naively, the
only way to update a zero-knowledge database would be to commit to its new
version from scratch. However, this is undesirable in two significant ways.

– First, the running time of such an update depends on the size of D, which
may be huge, even though the newest version may differ only on a single
pair (x, y).

– Second, it may be that those who have seen proofs of membership or non-
membership in the original set may be entitled to, or may request again,
the same proofs in the new set (for example, if proofs are given due to
subscription to some service). If this is the case, the owner would have to
reissue old proofs, which could be a huge additional expense.

The second of these points brings up a question that is of interest: when up-
dating such a database, should the proofs be updated as well, or should the new
set be private even against those with old proofs?2 Depending on the application
in which the zero-knowledge set is used, either one may be the desirable kind of
update. We distinguish these two types of updates by giving them different names:

– opaque updates make the updated commitment indistinguishable from a new
commitment (hence, the database becomes “opaque” to the users after the
update);

– transparent updates allow the users to determine whether their proofs are
still valid, and provide a mechanism to update proofs (hence, “transparent”
to proof holders).

We focus on the problem of transparent updates for two reasons: first, we
believe it is the more desirable of the two, as the idea of a subscription service
of some type seems to naturally fit the idea of a zero knowledge database, and
second, an inefficient but adequate method exists for opaquely updatable zero-
knowledge sets, namely, reconstructing the updated commitment from scratch,
while no method exists for transparently updatable zero-knowledge sets.

2 It is possible that neither will hold, but it seems natural that we should want one of
these.
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In this paper, we define the notion of transparently updatable zero-knowledge
databases, and show how to construct efficient transparently updatable zero-
knowledge databases both based specifically on the Micali-Rabin-Kilian con-
struction and on the more general construction of Chase et al [2], under the
additional assumption that verifiable random functions exist in the random or-
acle model. We also define the notion of an updatable commitment and give a
computationally hiding, perfectly binding secure updatable commitment scheme.

In appendix B, we discuss the problem of opaquely updatable zero-knowledge
databases.

1.1 Related Work

Zero knowledge sets were introduced in the work of Micali, Rabin, and Kilian
[9]. Important precursors to zero knowledge sets appeared in earlier papers by
those authors [5,8]. Chase, Healy, Lysyanskaya, Malkin, and Reyzin [2] describe
the notion of mercurial commitments, that is, commitments that can be “hard”
or “soft,” an abstraction of the type of commitments used in the Micali-Rabin-
Kilian construction, and show that any mercurial commitment scheme can be
used to construct zero-knowledge databases. Recent work by Ostrovsky, Rackoff,
and Smith [11] greatly enlarges the functionality of zero-knowledge databases
by allowing more complex queries (e.g., “does the database’s support intersect
a given string interval?”). They first design a data structure that, without any
privacy concerns, efficiently handles complex queries, and then augment it with
zero-knowledge proofs so as to provide privacy, constructing zero-knowledge sets
under general assumptions.

1.2 Structure of the Paper

In section 2, we give notation to be used in the rest of the paper. In section 3, we
define the security properties needed for updatable zero-knowledge databases. In
section 4, we summarize various primitives and previous work, and introduce the
notion of updating commitments. In section 5, we give a construction for transpar-
ently updatable zero-knowledge databases. In section 6, we discuss the efficiency
of our construction. We conclude and discuss open problems in section 7.

2 Notation

We shall follow in our notation from many previous papers, particularly from [9,1].

Probabilistic assignments and experiments. By x ← M we indicate that the vari-
able x is assigned according to M . If M is a finite set, we assume x is drawn from
the uniform distribution onM . The notation x1 ← M1; x2 ← M2; . . . denotes the
probability distribution that arises when we first assign x1 from distribution M1,
thenx2, et cetera. If p is a predicate, then the notationPr[x1 ← M1; x2 ← M2; . . . :
p(x1, x2, . . .)] denotes the probability that p is true given that distribution.
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Databases. A database D is a set of pairs {(x1, y1), . . . , (xn, yn)} such that for
any database key x there is at most one y such that (x, y) ∈ D. Each xi and each
yi is a string of unbounded size. We denote by [D] the support of D, that is, the
set {x1, . . . , xn}. To indicate that x /∈ [D] we write D(x) =⊥. If x ∈ [D] we write
D(x) = y to indicate the unique string y such that (x, y) ∈ D. By D(x) ← y we
mean that D shall be changed so that D(x) = y. This may involve exchanging
one pair (x, y′) for (x, y), or adding (x, y) to the set, or if y =⊥, removing the
pair (x, y′) if any such pair is present.

Polynomial-time adversaries. For the purposes of our definitions, adversaries are
specified as Turing machines that repeatedly make outputs of the form (wi, si),
where wi is some query and si is state information the adversary will use to
make the subsequent query. When we assume that such an A is a polynomial-
time adversary, we assume that not only is A a polynomial-time algorithm, but
that A will ultimately make only polynomially many queries before halting.

Adversary views. If A is an adversary, we define ViewA{x1 ← M1, . . . , xn ← Mn}
to be a random variable representing the randomness, inputs, and outputs of the
adversary A through the computation of the values x1, . . . , xn according to the
given probabilistic experiment. Presumably, some of the probabilistic assignment
sources Mi involve the adversary A, or the view would be trivial.

Binary trees. We use string notation to specify nodes in a binary tree. ε will be
the root of the tree. If v is a node in the tree, v0 will be the left child of v while
v1 will be the right child. Values that are stored in a tree at each node will have
this string as a subscript; for example, aε would be the value of a stored at the
root node ε. If the depth of the tree is bounded by k, the longest strings that
refer to nodes in the tree will be of length k. We mean by a prefix of a string s
any string ω (including s) such that there is a string s′ such that ωs′ = s. Note
that if ω is a prefix of s, then ω will be a node that lies on the path from ε to s
in a binary tree.

3 Definitions

Our goal in this section is to rigorously define transparently updatable zero-
knowledge databases.

3.1 Mechanics

As with zero-knowledge databases, updatable zero-knowledge databases rely on
a public random string σ, the reference string. This string must have length
polynomial in k, the security parameter.

There are three types of tasks the prover will have to be able to perform.
First of all, she will have to be able to commit to the database initially. Second,
she will have to be able to issue proofs of membership or non-membership in the
database for any key. Finally, she will have to be able to issue updates to the
database.

A verifier should be able to verify proofs and to update proofs.
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Transparently Updatable Database Systems. We say that a quintuple of
Turing machines, (Commit, Prove, DBUpdate, Verify, PUpdate), constitute a
transparently updatable database system or TUDB system if none of the ma-
chines retain state information after an execution and their computation on
common inputs 1k, a unary string called the security parameter, and σ, a binary
string called the reference string, proceeds as follows:

– The database commitment algorithm is Commit. On input (D, 1k, σ), Commit
produces two outputs: (1) a string PK, called D’s public key (or commit-
ment), and (2) a string SK, called D’s secret key.

– The database proof algorithm is Prove. On input (D, 1k, σ, PK, SK), and
an additional input x ∈ {0, 1}∗, Prove outputs a string πx, called D’s proof
about x.

– The database update algorithm is DBUpdate. On input (D, 1k, σ, PK, SK),
an additional input x ∈ {0, 1}∗, and a value y ∈ {0, 1}∗ ∪ {⊥}, DBUpdate
computes a new public key PK ′ and a new secret key SK ′ for the updated
database in which D(x) = y, and a string U called the update information
about x and y, which will be used to update proofs.

– The proof verifying algorithm is Verify. On input (1k, σ, PK) and an addi-
tional x ∈ {0, 1}∗ together with its proof πx, Verify outputs either a string
y ∈ {0, 1}∗ (meaning that it believes y = D(x), ⊥ (meaning that it believes
that x is outside D’s support), or reject (meaning that it detected cheating).

– The proof update algorithm is PUpdate. On input (1k, σ, PK, PK ′, U), and
an additional x ∈ {0, 1}∗ together with its proof πx, PUpdate outputs either
a new proof π′x, which will be called the updated proof about x, ⊥ (meaning
that the update given by PK ′, U was about x and so the proof cannot be
updated), or reject (meaning that it detected cheating).

3.2 Security Properties

Updatable zero-knowledge databases must satisfy certain security properties:
completeness, soundness, and zero-knowledge. We first describe the desired prop-
erties informally, and then formalize our definitions.

Completeness dictates that if the prover and verifier are honest, then for any
database, if the prover updates the database any number of times, then gives
the verifier a proof about x, and then updates the database any number of times,
the verifier may update their proof and obtain a valid one, except with negligible
probability, so long as D(x) was not updated after the proof was issued.

Soundness guarantees that the prover is in fact committed to a particular
database. That is, given the reference string σ it should be hard for any prover
to come up with a PK and any element for which it can prove two different
values.

The zero-knowledge property of updatable zero-knowledge databases is trickier
to describe. Ideally, the adversary should learn nothing more than the values of
elements for which a proof has been obtained (and possibly updated), and that
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updates have occurred. However, we have not been able to realize this full level
of security, and instead offer a weaker but acceptable notion of security. Each key
x that might be included in the database will have a pseudonym N(x). Instead
of revealing only that an update has occurred, we reveal that an update has
occurred about the key relating to a particular pseudonym. Thus, the pattern
of updates is revealed (since the pseudonym is constant for a constant x, so
repeated updates on keys can be discovered). In addition, the link between a
value x and its pseudonym N(x) will be revealed by Prove. However, we require
that no information beyond this be revealed.

This alone does not constitute a high enough level of security: N(x) could
reveal information about x. One particular N that is desirable is one that an-
swers 1 to its first input, 2 to its second distinct input, and so on. We call
this pseudonym the pattern pseudonym NP , as revealing NP (x) for many x is
equivalent to revealing the pattern of values.

To say this more clearly, a system is zero-knowledge with respect to
pseudonym N if, even given any adversary A and any database D the views
of A in each of the following two experiments are indistinguishable.

1. First, a random reference string σ is chosen. Then, D is chosen by A and
given to the prover, who creates an updatable zero-knowledge database based
on D and σ, committing to it with PK while keeping SK private. Then the
adversary adaptively chooses a sequence of strings x1, x2, . . . where either
xi = Query(x) or xi = Update(x, y). When xi is a query, the prover returns
a proof πi that either x is in the database or that x is not in the database.
When xi is Update(x, y), the prover updates so that D(x) = y and sends
PKi, Ui to the adversary.

2. The simulator Sim, on input only the security parameter k, produces a string
σ of the proper length, and a public key PK. The adversary adaptively
chooses a sequence of strings x1, x2, . . ., where either xi is either Query(x)
or Update(x, y). If xi = Query(x), the simulator is told x, N(x), and D(x),
(where D is up to date, starting with the initial D), and must compute
πi. If xi is an update Update(x, y), the simulator is given N(x) and must
compute SK1, PK1, U1, while D is updated so that D(x) = y. Note that the
pseudonym function N is not part of the adversary or the simulator here, but
rather is thought of as an oracle that is only called when the game specifies.

In the first scenario, there is no pseudonym function. In the second, the
pseudonym function exists, however, the adversary is not directly aware of its
presence; the adversary specifies updates Update(x, y) which get translated into
N(x) for the simulator.

The concept of pseudonyms seems inevitable in any zero-knowledge database
construction. A zero-knowledge database is in some sense a committed tree, and a
particular element must have a unique place to reside (so that we can prove non-
membership), which can be thought of as its pseudonym. Furthermore, we cannot
use zero-knowledge proofs that reveal nothing about the data structure – the user
has to learn enough to allow them to update, but this seems to be the only way to
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avoid revealing pseudonyms. We have not been able to conceive of a system that
does not use pseudonyms, or that uses them but does not reveal them.

We say a transparently updatable database is secure if it is complete, sound,
and zero-knowledge with respect to the pattern pseudonym NP . We say it is
secure with respect toN if it is complete, sound, and zero-knowledge with respect
to N . Thus, while we may talk about security with respect to other pseudonyms,
we regard NP as the only truly acceptable one.

Efficiency Properties. In order for us to consider an updatable zero-knowledge
database efficient, we ask that:

– The running time of the procedure that generates the initial commitment
may depend on the size of the database, but all other running times must
be independent of the size.

– None of the sizes of the outputs other than SK may depend on the number
of updates.

– None of the running times of any of the verifier algorithms may depend on
the number of updates that have been performed (in a sense limiting total
performance to linear in the number of updates, since some procedures are
performed once per update).

3.3 Formal Definitions

We formalize our definitions in appendix A.

4 Preliminaries

Before we present our construction, we first review some crucial building blocks
used in our construction. Some of our text follows closely from the preliminaries
section from [9].

4.1 Updatable Commitments

Here, we define updatable commitments. In an ordinary commitment scheme,
there are two algorithms: C, which takes a message m as input and produces c
and d, where c is the commitment, and d is the information used to open the
commitment later, and V , which takes a commitment c, a message m, and a
decommitment d, and checks whether c was a commitment to m, using d. Note
that there may also be public parameters which are inputs to all algorithms, but
for clarity we simplify.

In an updatable commitment, there will be one more algorithm: U , which
takes a message m and decommitment information d, and produces a commit-
ment c, where d will be the decommitment information used to open c. The
binding property is defined in the natural way. The hiding property is essen-
tially that commitments be indistinguishable under a chosen message attack,
where the adversary may ask for commitments, updated commitments, and de-
commitments of his choice, so long as he doesn’t ask for a decommitment of the
challenge or any message derived from the challenge through updates.
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Our Construction. Our construction is quite simple. Given a secure perfectly
binding commitment scheme and a secure pseudorandom permutaiton P , we
can construct a simple computationally hiding, perfectly binding commitment
scheme as follows:

C(m): generate a key K for the pseudorandom permutation, a random string
IV , and compute c1, a commitment to K under the commitment scheme
and d1, the related decommitment information, and c2, the evaluation of the
pseudorandom permutation on m⊕ IV with key K. Output c = (c1, c2, IV ),
and d = (K, c1, d1).

V((c1, c2, IV ), m, (K, c1, d1)): check that c1 is a commitment to K using d1. If
not, reject. Then, check that c2 = PK(m⊕ IV ). If so, accept, if not, reject.

U(m, (K, c1, d1)): compute c2 = PK(m) and output c = (c1, c2).

It is clear that any commitment is a commitment to one specific value, since
c1 specifies a unique K, and given that K, c2 specifies a unique m. Furthermore,
c2 is the encryption of the one-block message m under CBC mode, so if this
scheme is not hiding, then either the PRP is not pseudorandom or the underlying
commitment scheme is not hiding. This is true even ifK is used for many different
commitments, so long as K is never revealed.

4.2 Mercurial Commitments

Mercurial commitments were introduced recently by Chase et al [2] with direct
application to zero-knowledge sets and databases. A mercurial commitment is
a commitment scheme in which there are two kinds of commitments and two
kinds of ways to decommit.

– A “hard commitment” is a commitment to a particular value. It can only be
decommitted to that value, whether the decommitment is a hard or a soft
one.

– A “soft commitment” is a commitment to no value. It can never be hard-
decommitted, but it can be soft-decommitted to any value.

A mercurial commitment scheme is secure when it is hiding (in the sense that
the type of a commitment is kept secret as well as the value if the commitment
is a hard commitment) and binding (in the sense that the committer cannot
break the above rules.) Mercurial commitments have a non-interactive commit-
ment and decommitment, but require the public random string model. In fact,
they also have a trap-door property: if the public random string is chosen by a
simulator, the simulator can avoid the binding properties.

4.3 Pedersen’s Commitment Scheme

Pedersen’s commitment scheme [12] assumes the availability of a public quadru-
ple (p, q, g, h), where p and q are prime, q|p − 1 and g and h are generators for
G, the cyclic subgroup of Z∗p of order q, for which computing discrete logarithms
is assumed to be hard.
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The commitment and verification algorithms are defined as follows, where all
operations are performed modulo p:

C((p, q, g, h), m): randomly select r ∈ Zq and output (c, r), where c = gmhr is
the commitment string, and r is the (for the time being secret) proof.

V((p, q, g, h), c, m, r): If c = gmhr, then accept; else, reject.

This commitment scheme is perfectly hiding and computationally binding.
The mercurial commitment scheme used in [9] is based directly on this com-

mitment scheme. Instead of using g as the base to compute gm directly, we use
a different base for each commitment: ge for a hard commitment or he for a
soft commitment, and publish the base that we use as part of the commitment
(where e is random). A soft decommitment consists of publishing r; then, it can
be checked that c = bmhr where b is the base being used. A hard decommitment
involves publishing r as well as e, so that it can also be checked that ge = b.

4.4 CHLMR Zero-Knowledge Databases

The following is a summary of the general zero-knowledge database construction
of Chase, Healy, Lysyanskaya, Malkin, and Reyzin [2].

ZK databases. The construction works in the public random string model, that
is, there is a common random reference string σ.

In order to force every key to be of length k, we first hash them to obtain
the database {(H(x), y)}. Every node in the tree can be labelled by a string
ω ∈ {0, 1}≤k. At each node ω there will be the following values associated:

– A value vω. If ω = H(x) for some x ∈ [D] then vω = H(D(x)). If |ω| = k
but ω �= H(x) for any x ∈ [D] then vω = H(⊥). If ω is an internal node,
the value vω is defined recursively as H(cω0cω1) where cω is defined below.
Essentially, the values vω make the tree a Merkle tree.

– A commitment cω which is either a soft commitment or a hard commitment
to vω .

– Decommitment information dω for the commitment cω.

The commitment to the database is the commitment cε from the root node ε.
In order to prove that an element x is in the database, the set owner gives a

proof consisting of:

1. D(x), so that H(D(x)) is the value vH(x).
2. For every ω that is a prefix of H(x), cω and a hard decommitment of cω, and
3. For every ω that is a sibling along the path from ε to H(x), the value cω.

The verifier uses this to construct the values vω for every ω that is a prefix
of H(x), and then checks the hard decommitments.
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In order to prove that an element x is not in the database, the set owner
gives a proof consisting of:

1. For every ω that is a prefix of H(x), cω and a soft decommitment of cω to
vω, and

2. For every ω that is a sibling along the path from ε to H(x), the value cω.

The verifier checks as before, except that the verifier uses D(x) =⊥, and that
the decommitments are soft.

The key to the efficiency of the construction is the use of mercurial com-
mitments. If ordinary commitments were to be used, the entire tree of depth
k would have to be computed, which is clearly exponential. However, the tree
is constructed so that soft commitments are used for any node that has no de-
scendents in the data set, which allows the prover to not compute those parts of
the tree ahead of time, but allows the prover to compute those parts of the tree
when necessary, and be able to decommit.

4.5 Verifiable Random Functions

Verifiable random functions or VRFs were first presented by Micali, Rabin, and
Vadhan [10], and subsequent constructions appear in [6,3]. A verifiable random
function consists of four algorithms: a key generating algorithm GenVRF that
produces a pair (PK, SK) on input 1k, an algorithm ComputeVRF that computes
fSK(x), an algorithm ProveVRF that gives proofs π that a value y = fSK(x) is
correctly generated from x, and an algorithm VerVRF that verifies proofs, with
the following informal properties:

1. If (PK, SK) are generated from GenVRF, and y is generated from
ComputeVRF(SK, x) and π is generated from ProveVRF(SK, x), then
VerVRF(PK, x, y,π) will accept.

2. fSK is a pseudorandom function, even to an adversary that may request
both outputs and outputs with proofs, so long as the two sets of queries do
not overlap.

3. No adversary can produce a (PK, SK) pair for which it can give proofs that
will be verified for incorrect values.

In particular, note that no adversary should be able to compute fSK(x) given
x and PK.

5 Our Construction

We describe our construction incrementally. First, we describe how to go about
updating a CHLMR database efficiently. Then, we go on to describe how to
provide update information that will allow proof holders to update their proofs.
Then we give a construction with an unspecified pseudonymN and prove security
relative to N . We then prove security in the random oracle model and discuss
issues that arise relative to implementing the random oracle.
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5.1 Updating a CHLMR Database

Suppose that we wish to assign a particular value y (possibly ⊥) to D(x), for a
given x, in a given CHLMR database.

Our first goal is to efficiently compute a new commitment to a CHLMR
database with the updated value. This is fairly easy to do, and natural. Essen-
tially, we just change the values at the leaf we are interested in, and update
the internal nodes of the tree to maintain the required structure. To update the
value D(x), we regenerate the commitment cH(x) and from this recompute the
values and commitments in the tree going up along the path from H(x) to ε,
leaving everything else the same. Now, for every prefix ω of H(x), the value vω
may change, so the value cω may also change. The set owner then publishes cε

anew.
In order to make this fit all the properties of a ZK database, we must be

careful when adding an element to the set that all its ancestors are hard com-
mitments. Thus, when we add an element to the set that was previously not in
the set, we must make commitments along the path hard commitments, even if
they were previously soft commitments. In fact, we can simply make all com-
mitments in any update hard commitments, to simplify.

5.2 A Simple Mechanism for Updating Proofs

Now, the updated database is a CHLMR database, just as was constructed
before.3 The next step is to determine what information is necessary to allow
proof holders to update their proofs. Since a proof is essentially a hash path
in the tree along with decommitments to the values along that path, and the
only internal nodes or commitments that have changed are the ones along the
path from ε to H(x), we could just publish all the commitments at the updated
internal nodes. However, this is not quite sufficient, because decommitments
are necessary for the proofs to be complete. To solve this, we need to modify
our mercurial commitment scheme so that it is updatable, but the requirements
are a little more complex than the requirements for an updatable commitment.
Specifically, we need to be able to update such that (1) the updated commitment
is always a hard commitment, and (2) the holder of a decommitment (soft or
hard) can update their decommitment to a new one of the same type.

Under general assumptions, the best known mercurial commitment is only
computationally hiding. In order to make an updatable one, we need to combine a
mercurial commitment scheme and an updatable commitment scheme as follows.
Instead of publishing only the mercurial commitment c, we also publish cH and
cS where cH is an updatable commitment to the hard decommitment of c (or a
random string if it is a soft commitment), and cS is an updatable commitment,
initially to a random string, but after any updates, to a soft decommitment
of c. A hard decommitment involves opening cH , while a soft decommitment
involves opening cS , and also giving a soft decommitment to c. This means a
3 Except, some commitments might be hard that don’t need to be hard commitments,

but by the properties of mercurial commitments, this is an indistinguishable change.
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verifier will notice a difference between opening an original commitment and
opening an updated one, but this will be acceptable for our means. Updating
the commitment (c, cH , cS) is done by replacing c with a fresh commitment and
updating cH and cS to be commitments to their new appropriate values.

We can also make the MRK mercurial commitment updatable in this way,
simply by reusing r. When we update a commitment, we always make it hard,
so we also publish e. It is worth noting that this is not as hiding as we might
like such a commitment to be in isolation, since (for instance) the ratio between
jm and (ge)m′

is revealed, and an unbounded adversary could learn information
from this. This costs us perfect zero-knowledge in our construction, but under
the DDH assumption, this is still hiding. We should also note that updating
commitments in this way does not give a mechanism for the verifier to determine
m′, but, in our application, m′ can be derived from other information.

5.3 Attaining Zero-Knowledge with Respect to N

Now we have a system where after an update we have a zero-knowledge database,
and proofs can be updated. However, the updates do not preserve secrecy. The
issue has to do with the pseudonym we use. Here, we use H(x) as a pseudonym.
In order to more carefully discuss the issue of our choice of pseudonym, we
specify this construction by describing it in terms of an unspecified pseudonym
N(x).

Commit(D, 1k, σ): Run the database commitment algorithm but instead of using
H(x) to define an element’s position in the tree, use N(x).

Prove(D, 1k, σ, PK, SK, x): run the database proof algorithm, looking for x at
position N(x) to obtain πx.

DBUpdate(D, 1k, σ, PK, SK, x, y): create a new commitment cN(x) to vN(x) =
H(y). Recursively, for each ω that is a prefix of N(x), update cω to be a hard
commitment of vω. Compute PK ′ = cε, update SK ′ by remembering all the
new decommitment information, and compute U = {ω, cω} for all prefixes ω
of N(x).

Verify(1k, σ, PK, x,πx): run the proof verifying algorithm to verify πx, using
N(x) instead of H(x), and check the value given as N(x) to be sure it is
correct.

PUpdate(1k, σ, PK, PK ′, U, x,πx): if U is an update about N(x), output ⊥.
(Note that N(x) would be known from πx.) Otherwise, for every ω that is
a prefix of N(x) and is included in U , we have a decommitment to the old
cω, so we update our decommitment. For every ω that is a sibling along the
path, we change our value of cω to the value of cω given in the update U .
Finally, we check our updated proof, and reject if it does not yield the same
value, otherwise we outpud π′x, our updated proof.

Theorem 1. This scheme is a secure zero-knowledge transparently updatable
database with respect to N .

Proof. Due to space constraints, we only provide a proof sketch here. A more
detailed proof may be found in appendix C.
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Completeness of this construction should be clear. Since the form of any
database commitment and proof are just as in [2] except with a different scheme
to assign database locations to database keys, soundness here follows from the
soundness of their construction and the uniqueness of the mapping x �→ N(x).

For zero-knowledgeness we must show a simulator that has the required prop-
erties. First of all, the simulator generates σ so that the mercurial commitment
simulator can be used (that is, the simulator can break the binding property of
the scheme). The simulator then generates a soft commitment cε and publishes it.

When the simulator is asked for a proof that D(x) = y and is given x and
N(x), it simply does exactly as the CHLMR database simulator does, except
that the path is a path from ε to N(x). When the simulator is asked to update a
value with a given pseudonym n, it performs an update just as DBUpdate would,
using y = ε, creating cω values for each ω that is a prefix of n for which cω was
not already determined in a proof. (Note that DBUpdate does not need to know
x if it knows N(x).)

The values given in the proofs issued by the system are just sequences of com-
mitments, decommitted to the correct values, so the distribution of the proofs
given by the simulator and those given by the real prover are indistinguishable.
The distribution of updates is also identical except that the simulator always
sets y = ε. However, the only value that depends directly on y is cN(x) which
is a (fresh) commitment, so in fact the distribution of update strings is also
indistinguishable. Thus, we achieve zero-knowledge.

5.4 Attaining Security in the Random Oracle Model

We now have a system that gives a transparently updatable zero-knowledge
database with respect to N for an unspecified N . Unfortunately, we cannot
simply specify N = NP and be done, because NP cannot be computed in a way
verifiable to the user. This problem can be solved by assuming the random oracle
model. The idea is that we use a random oracle that may be controlled by the
simulator to compute N(x). It should be clear that a random oracle computed
on x and a random oracle computed on NP (x) are identical. Thus, the simulator
simulates the random oracle on input NP (x) by evaluating a random function
on it. By doing this, the simulator may naturally compute N(x) knowing only
NP (x). Thus, such a simulator shows that if we use a random oracle as N(x),
our construction is secure.

5.5 Implementing the Random Oracle

Using the random oracle model has significant problems. First of all, random
oracles are generally implemented by collision-resistant hash functions, but this
cannot always be done securely. There is also an issue of pseudonym collisions,
which we discuss this issue in appendix D.

Most importantly, though, we cannot simply use a public hash function here,
because doing so would allow the adversary to query the pseudonym function,
but it was one of our security requirements that the adversary not be able to do
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this. Ideally, the adversary should only be able to learn if a particular update
was about x by querying the database at x.

The pseudonym function we propose to use is H∗(x) = H(f(H(x))) where
H is a hash function and f is a verifiable random function. We will still assume
that H is a random oracle, but now, even if H is a random oracle, the adversary
cannot query H∗. Before we jump into the security proof for this pseudonym,
we must modify our construction slightly, because H∗(x) cannot be computed
by the verifier.

– In Commit we also run GenVRF and make the public key PKf part of the
public key, and keep SKf as part of the secret key.

– In Prove(D, 1kσ, PK, SK, x), we also give π′x = ProveVRF(SKf , H(x)) and
z = ComputeVRF(SKf , H(x)).

– In Verify, we additionally run VerVRF(PKf , H(x), z,π′x) and check that
H∗(x) = H(z) before accepting.

This fits nicely into our original specification; we are simply expanding the
idea of what it means to check that H∗(x) is correctly computed.

Theorem 2. This construction is secure in the random oracle model.

Proof. Again, we give only a sketch of the proof, due to space constraints. See
appendix C for a full proof.

Completeness is already established by our proof of Theorem 1. To prove
soundness, we need only note that the pseudonym H∗(x) that will be verified is
unique, from the soundness property of the VRF.

Zero-knowledge is more of a challenge. We give a simulator with respect
to NP that gives us computational zero-knowledge. First, the simulator makes
σ and the database commitment cε just as the previous simulator does. The
simulator then runs GenVRF to generate (PKf , SKf), and publishes (PKf , cε)
as the database commitment.

The simulator must answer three kinds of messages: random oracle queries,
database queries, and update queries. The simulator maintains two random func-
tions, H and H ′, with the idea that H ′(NP (x)) = H(f(H(x))). When the sim-
ulator receives an update query, it computes H∗(x) = H ′(NP (x)). When the
simulator receives a database query, the simulator computes H(x), and then
computes z = fSKf

(H(x)), and then sets H(z) = H ′(NP (x)) and fakes a proof
that the value stored at H∗(x) = H ′(NP (x)) is y, just as the simulator does in
theorem 1.

The illusion that H ′(NP (x)) = H(fSKf
(H(x))) is maintained as long as H(z)

is not already defined to be something else when the simulator tries to set H(z) =
H ′(NP (x)). However, if this happens with non-negligible probability, it must be
because either we have found an f -collision with non-negligible probability, or
because the adversary has queried H(z) separately. In either case, we can use
such an adversary to break the pseudorandomness of f . Because ultimately,
the zero-knowledge property of our scheme may be defeated by defeating the
pseudorandomness of f , we only get computational zero-knowledge.
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We note that if we restrict the adversary a bit further, we can actually re-
move the random oracle assumption. Specifically, if we require that whenever
the adversary requests an update about x, that either the adversary has already
queried the database at x, or the adversary will never query the database about
x, then we can prove zero-knowledge without the random oracle. We can also
remove the random oracle if we use general NIZK proofs. We discuss this further
in appendix E.

6 Efficiency

Our proposal for the mecahnics of a transparently updatable database embeds
the idea that for each update (even of a single element) to the database, a public
update string is published, and that for each update string that is published,
each user updates each of their proofs. Given this syntax, our performance is
optimal in terms of the number of updates: each update induces additional work
for both the database owner and the user, but the amount of work per update is
independent from the number of updates. However, the total amount of work a
user must do to maintain a proof is linear in the number of updates. In appendix
F we describe some minor efficiency improvements along these lines.

7 Conclusion and Open Problems

We have given a secure construction of a transparently updatable zero-knowledge
database that is both efficient and practical in the random oracle model. For
our construction to be secure, we must assume the existence of a VRF, and
that mercurial commitments exist. The most practical construction that arises
from this work is the extension of the original Micali-Rabin-Kilian construction,
which requies the discrete logarithm assumption. These two assumptions can be
combined by using the VRF of Dodis and Yampolskiy [3], which relies on a more
restrictive assumption than the discrete logarithm assumption.

Some open problems that may be of interest would be to construct:

– Zero-knowledge transparently updatable databases with stronger security or
more general assumptions

– More efficient and/or perfect zero-knowledge opaque updates.
– Zero-knowledge databases the can be efficiently updated both transparently

and opaquely.
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Appendix A: Formal Definitions for Opaque Updates

These definitions are closely derived from [9]. Here, we formalize the definitions
described in section 3.2.

Updatable Database Simulators
Let Sim be a probabilistic polyonomial-time oracle Turing machine. We say that
Sim is an updatable database simulator (or UDB simulator) if it computes as
follows, relative to an external database D and pseudonym function N :
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1. In its first execution, SimN outputs three strings, σ, PK, and SK.
2. In a subsequent execution on input SK and a triple (x,D(x),N(x)),

SimN (SK, x,D(x),N(x)) outputs a string πx.
3. In a subsequent execution on input SK and n, SimN (SK, n) computes

PK ′, SK ′, U where SK ′ becomes the new secret key, and PK ′ and U are
outputs. When this happens, D may change at up to one input, namely an
x such that N(x) = n.

Transparently Updatable Zero-Knowledge Databases
Let (Commit, Prove, DBUpdate, Verify, PUpdate) be a TUDB system where all the
Turing machines in the quintuple run in probabilistic polynomial time. We say
that (Commit, Prove, DBUpdate, Verify, PUpdate) is a zero-knowledge transpar-
ently updatable database system (or ZKTUDB system) if there exists a UDB
simulator Sim and a constant c such that

1. Completeness. ∀ database D, ∃ν negligible such that ∀k,∀r, s, t such that
0 ≤ s ≤ r ≤ kc,

Pr[ σ ← {0, 1}kc
; (PK, SK) ← Commit(D, 1k, σ);

x1 ← {0, 1}≤t; y1 ← {0, 1}≤t; . . . ; xr ← {0, 1}≤t; yr ← {0, 1}≤t; x ← {0, 1}≤t

(PK′, SK′,U) ← DBUpdate(D, 1k,σ, PK,SK, (x1, y1)); PK ← PK′;SK ← SK′;
D(x1) ← y1; . . . ;

(PK′, SK′,U) ← DBUpdate(D, 1k,σ, PK,SK, (xs, ys)); PK ← PK′;SK ← SK′;
D(xs)← ys;πx ← Prove(D, 1k,σ, PK, SK, x);

(PK′, SK′,U) ← DBUpdate(D, 1k,σ, PK,SK, (xs+1, ys+1));SK ← SK′;D(xs+1) ← ys+1;

πx ← PUpdate(1k,σ, PK, PK′,U, x,πx); PK ← PK′;
. . . ;

(PK′, SK′,U) ← DBUpdate(D, 1k,σ, PK,SK, (xr, yr));SK ← SK′;D(xr) ← yr;

πx ← PUpdate(1k,σ, PK, PK′,U, x,πx); PK ← PK′;
y ← Verify(1k,σ, PK, x,πx) :
if ∃l such that s < l ≤ r and xl = x then πx =⊥, otherwise y = D(x)] > 1− ν(k).

Here, s is the number of updates before the proof is given, and r is the
number of updates total.

2. Soundness. ∀x ∈ {0, 1}∗ and ∀P ′ probabilistic polynomial time, ∃ν negligible
such that ∀k,

Pr[ σ ← {0, 1}kc

; (PK, x,π1,π2) ← P ′(1k, σ);
y1 ← Verify(1k, σ, PK, x,π1); y2 ← Verify(1k, σ, PK, x,π2) :
reject /∈ {y1, y2} ∧ y1 �= y2] ≤ ν(k),

3. Zero-knowledge with respect to N . ∀A acceptable adversaries, ∀k, View(k) ≈
View′(k)4 where

4 As usual, ≈ may refer to computational indistinguishability (in which case the sys-
tem is said to be “computationally zero-knowledge”), statistical closeness (“statis-
tical zero-knowledge”), or equality (“perfect zero-knowledge”). For computational
indistinguishability, A must be a polynomial-time adversary. For statistical or per-
fect indistinguishability, we do not limit A’s power.
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View(k) =

ViewA{σ ← {0, 1}kc
; (D, s0) ← A(1k,σ);

(PK, SK)← Commit(D, 1k,σ); z0 ← PK;
(w1, s1) ← A(s0, z0);
If w1 = Update(x1, y1),

(PK′
1,SK′

1,U1) ← DBUpdate(D, 1k,σ, PK, SK, x1, y1);SK ← SK′
1; PK ← PK′

1;
D(x1) ← y1; z1 ← (PK′

1,U1);

Else if w1 = Query(x1), π1 ← Prove(D, 1k,σ, PK,SK, x1); z1 ← π1;
(w2, s2) ← A(s1, z1);
. . .}

and

View′(k) =
ViewA{(σ, PK, SK) ← SimN (1k); (D, s0) ← A(1k, σ);
z0 ← PK;
(w1, s1) ← A(s0, z0);
If w1 = Update(x1, y1),

(PK ′1, SK
′
1, U1) ← SimN (SK,N(x1)); SK ← SK ′1; PK ← PK ′1;

D(x1) ← y1; z1 ← (PK ′1, U1);
Else if w1 = Query(x1), π1 ← SimN (SK, x1,D(x1),N(x1)); z1 ← π1;
(w2, s2) ← A(s1, z1);
. . .}

Appendix B: Opaquely Updatable Zero-Knowledge
Databases

We define opaquely updatable zero-knowledge databases, and present a solution
following ideas from Rackoff, Ostrovsky, and Smith [11] that is inefficient and
relies on general non-interactive zero-knowledge proofs. We do not present any
practical, efficient method better than simply committing the updated database
from scratch; indeed, we view this as an important open problem.

An opaquely updatable database system (or OUDB system) is a quadruple
of algorithms (Commit, Prove, DBUpdate, Verify) which satisfy the properties
properties of a TUDB system, except that DBUpdate outputs only PK ′, SK ′.

Zero-knowledge opaquely updatable databases are defined similarly to trans-
parently updatable ones. Let (Commit, Prove, DBUpdate, Verify) be a UDB sys-
tem where all the Turing machines in the quadruple run in probabilistic poly-
nomial time. We say that (Commit, Prove, DBUpdate, Verify) is a zero-knowledge
opaquely updatable database system (or ZKOUDB system) if there is a UDB sim-
ulator Sim and a constant c such that the following four properties are satisfied:

1. Perfect completeness. ∀ database D, ∀r, ∀ sequences of updates (x1, y1), . . . ,
(xr , yr), and ∀x ∈ [D] ∪ {x1, . . . , xr},

Pr[ σ ← {0, 1}kc
; (PK, SK) ← Commit(D, 1k, σ);

(PK′, SK′,U) ← DBUpdate(D, 1k,σ, PK,SK, (x1, y1)); PK ← PK′;SK ← SK′;
D(x1) ← y1; . . . ;

(PK′, SK′,U) ← DBUpdate(D, 1k,σ, PK,SK, (xr, yr)); PK ← PK′;SK ← SK′;
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D(xr) ← yr;πx ← Prove(D, 1k,σ, PK, SK);

y ← Verify(1k,σ, PK, x,πx) :
y = D(x)] = 1.

2. Soundness. (Commit, Prove, DBUpdate, Verify) satisfies the soundness prop-
erty of a ZKTUDB.

3. Zero-knowledge. (Commit, Prove, Verify) satisfies the zero-knowledge proper-
ties of a ZK database. We actually want zero-knowledge to hold for an ad-
versary that can adaptively ask for queries and updates, but we capture the
difference in our definition of update secrecy.

4. Update secrecy. For all appropriate A, View(k) ≈ View′(k) where:

View(k) =

ViewA{σ ← {0, 1}kc
; (D, s0) ← A(σ); (PK,SK) ← Commit(D, 1k,σ);

z0 ← PK; (w1, s1) ← A(s0, z0);
If w1 = Update(x1, y1),

(PK′,SK′) ← DBUpdate(D, 1k, σ, PK,SK, x1, y1);SK ← SK′; PK ← PK′;
D(x1) ← y1; z1 ← PK′;

Else if w1 = x1,π1 ← Prove(D, 1k,σ, PK, SK, x1); z1 ← π1;
(w2, s2) ← A(s1, z1);
. . .}

and

View′(k) =

ViewA{σ ← {0, 1}kc
; (D, s0) ← A(σ); (PK,SK) ← Commit(D, 1k,σ);

z0 ← PK; (w1, s1) ← A(s0, z0);
If w1 = Update(x1, y1),

D(x1) ← y1; (PK
′,SK′) ← Commit(D, 1k,σ); SK ← SK′; PK ← PK′;

z1 ← PK′;
Else if w1 = x1,π1 ← Prove(D, 1k,σ, PK, SK, x1); z1 ← π1;
(w2, s2) ← A(s1, z1);
. . .}

Again, appropriate adversaries are polynomial-time adversaries for compu-
tational indistinguishability, and unbounded adversaries otherwise.

Opaquely Updatable Construction
To create an opaquely updatable zero-knowledge database, following Rackoff,
Ostrovsky, and Smith [11], we modify the CHLMR construction as follows. In-
stead of sending a proof πx to the verifier, we give D(x) and a non-interactive
zero-knowledge proof of knowledge relative to σ of knowledge of πx such that
πx is a valid proof. To update, we just update the values where required, but do
not publish any of the updated values. We clearly have zero-knowledge: in order
to simulate, we just randomly create cε initially and each time we are asked to
update we create a new random commitment, and any time we are asked to
give a proof, we provide a faked non-interactive zero-knowledge proof. Further-
more, cε form a random commitment whether or not they were generated from
DBUpdate, so we have update secrecy as well, and soundness and completeness
follow from these same properties of CHLMR databases.

However, such non-interactive zero-knowledge proof systems are also only
computational zero-knowledge. In addition, much effort was taken by Micali,
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Rabin, and Kilian to avoid both computational zero-knowledge and the need
for general non-interactive zero-knowledge proofs. The large amount of ineffi-
ciency added to the system may even overbalance the objection to the solution of
recommitting the database from scratch. We consider it a significant open prob-
lem to construct an efficient and practical opaquely updatable zero-knowledge
databases.

Appendix C: Detailed Proof of Security

Proof of Theorem 1. To prove theorem 1, we must make a minor additional
asusmption, and prove several things.

First of all, note that when an update occurs, the only difference between the
secret information in our construction and the secret information in a CHLMR
database is that in our construction, it may be that for some internal nodes ω
which have no descendents in the tree, cω is a hard commitment rather than a
soft one. However, that is unimportant as proofs involving such an ω as a node
on the path will always be of nonmembership, and so only soft decommitments
will be revealed.

To prove completeness, note that when the database is updated, part of
an old proof about a different element will include path elements that have
changed. However, such path elements are always published as part of the update
information, so they can simply be replaced. Thus, the updated proof is valid.
The only possible snag we can run into is that if N(x) = N(x′) then an update
about x′ would prevent a proof about x from being properly updated. Barring
this, as long as no updates have occurred about the element x since πx was
issued, πx may be updated successfully. To deal with this issue we must assume
that N(x) is such that collisions are unlikely to occur. This is certainly the case
for all N we use.

To prove soundness, note that if a cheating prover were to be able to produce
relative to a random σ a public key PK and two valid proofs π1 and π2 proving
different results about D(x) for some particular x, then this same prover would
violate the soundness of CHLMR databases.

To prove zero-knowledge, we describe the simulator. The simulator must do
five things: it must create the string σ, it must provide the initial commitment,
and it must provide proofs and updates when requested.

– To produce σ, PK, or to produce a proof that D(x) = y, the simulator runs
just as the CHLMR simulator does, except using N(x) instead of H(x) to
determine the location of key pairs.

– To produce an update on a pseudonym n, computes vn = H(ε) and computes
a new commitment cn.
The simulator then updates all the commitments along the path from ε to
n from soft to hard commitments, with the proper values to maintain the
Merkle tree structure. The simulator incorporates any new decommitment
information into SK ′.
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Now, to prove that the view provided to the adversary in the real model is
identical to that in the ideal model, we describe the view of the adversary. In
the real world, the adversary sees the random string σ, and then after specifying
D, the commitment cε. Then, for each proof query, the adversary sees a proof
about x which consists of an appropriate value vN(x) and random commitments
cω to appropriate values, forming a hash authentication path to the root. For
each update query, the adversary sees a pseudonym N(x), a new commitment at
N(x), and for each proper prefix ω of N(x), a random updated commitment cω.
Furthermore, in the case of the discrete logarithm-based scheme, the adversary
also sees e for each such ω, which shows that all these commitments are hard
commitments.

In the ideal world, the adversary sees the simulated σ, followed by a distri-
bution exactly the same as in the real world, except that cN(x) is a commitment
to H(ε) rather than H(y). However, these commitments are hiding so this is
indistinguishable from the view of the adversary in the real world. In fact, in the
case of the discrete logarithm-based scheme, the views are identical, since the
only difference is in what cω commits to where ω is a leaf, but cω is a perfectly
hiding commitment. Furthermore, the distribution of real σ values is identical
to the distribution of simulated σ values by the perfect zero-knowledge property
of the Micali-Rabin-Kilian simulator.

Proof of Theorem 2. To prove that the construction using N(x) =
H(fSKf

(H(x))) is strongly secure, we must prove that it satisfies completeness,
soundness, and computational zero-knowledge with respect to NP in the random
oracle model.

Completeness is already established by the completeness proof of Theorem 1;
the only difference here is that a VRF proof must be verified (note that indeed,
N(x) here is unlikely to have collisions). However, N(x) does not change when x
is updated, so this part of the proof may remain the same. To prove soundness,
we need only note that the pseudonym N(x) that will be verified is unique from
the soundness property of the VRF.

Zero-knowledge is more of a challenge. We give a simulator with respect toNP

that gives us computational zero-knowledge. First, the simulator makes σ and the
database commitment cε just as the CHLMR simulator does. The simulator then
runs GenVRF to generate (PKf , SKf), and publishes (PKf , cε) as the database
commitment. We must be careful to note here that NP is not available as an
oracle to the simulator, but NP (x) is given without x for any update query, and
NP (x) is given with x for any database query. H∗(x) here refers to the value
used in the construction; the actual pseudonym we are considering is NP (x).

The simulator maintains two random functions: H and H ′, with the idea that
H ′(NP (x)) = H(f(H(x))). Whenever we say the simulator must “compute”
(say) H(x), the simulator looks to see if it has ever set H(x) to any particular
value. If so, it outputs that value. If not, it generates a random value of the correct
length, and notes the correspondence with x. There can never be a problem with
the simulator computing a value H(x) or H ′(x).
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When the simulator receives an update query, it computes H ′(NP (x)), and
uses this value as H∗(x).

When the simulator receives a database query on x, y,NP (x), the simulator
computes H(x), and then computes z = fSKf

(H(x)), and then attempts to set
H(z) = H ′(NP (x)). That is, if H is not defined at z, H(z) is set to be the
value computed from H ′(NP (x)). Otherwise, if H ′ is not yet defined at NP (x),
H ′(NP (x)) is set to be the value computed from H(z). If H(z) and H ′(NP (x))
are already defined and equal to each other, the simulator sets nothing. However,
if H(z) and H ′(NP (x)) are already defined and unequal, the simulator aborts. If
the simulator does not abort, it fakes a proof that the value stored at H∗(x) =
H(z) = H ′(NP (x)) is y, just as the MRK simulator does, and provides the value
z along with ProveVRF(SKf , H(x)) that z = fSKf

(H(x)).
We must prove two things. First, in cases in which the simulator doesn’t

abort, the adversary cannot distinguish between the simulator and the real
prover. We can assume without loss of generality that the adversary will always
make a database query about every value x that he asks us to update before he
halts (doing so will only increase the probability that the simulator aborts). If
the simulator hasn’t aborted by the time the adversary halts, we can reconcile
H ′ into H , since all values H ′(NP (x)) will have been set equal to H(z) for some
z (because the adversary has queried all points for which we have a pseudonym).
Thus, this simulator is doing exactly what the simulator in our previous proof
does: it accurately computes H∗(x) in every case and simulates proofs and up-
dates according to this. Thus, the view produced by such a simulator is identical
to the view produced by the real prover.

Second, if the simulator aborts with non-negligible probability, we can break
the security of the VRF as follows. On input a VRF public key PKf , we act as
the simulator with the given adversary in this experiment, except we give PKf

as the VRF public key instead of generating it ourselves, and we implement the
simulator. Note that we only ever need to query fSKf

right before we ask for
a proof about it. After some number of queries, the probability that the next
value we ask for will cause an abort is non-negligible, so instead of asking for
fSKf

(H(x)) that time, we pick a random z such that H(z) is defined, and guess
that fSKf

(H(x)) = z. We try this with the given oracle (which is either the
VRF or a random oracle), and if we are correct, we say that the oracle is a VRF,
otherwise, we guess at random. If the oracle is the VRF, and an abort would have
been caused, then we have a 1/p(k) probability of guessing the right z, where p(k)
is the polynomial determining how many inputs have been queried from H . Thus,
if the probability of an abort at the given step is 1/q(k), then the probability that
we break the VRF is (1/2)(1/(p(k)q(k)))+(1/4)(1−(1/p(k)q(k))+1/2(1−ν(k))
which is at least 1/2 + 1/(4p(k)q(k))− ν(k) for some negligible ν.

If the probability of an abort is non-negligible, it is non-negligible at some
particular query. Thus, there is some reduction that breaks the security of the
VRF.
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Appendix D: Pseudonym Collisions

In the work of Micali, Rabin, and Kilian, the Pedersen hash function is used
to assign pseudonyms to database elements. One attractive property of using
the Pedersen hash function is that if a pseudonym collision occurs, the database
owner learns the discrete logarithm of h to the base g, and then may continue
proving what would otherwise be impossible: for instance, that D(x) = y and
D(x′) = y′ �= y when H(x) = H(x′). This allows the database to have size that
is unrelated to any security parameters.

If, as we propose, we replace H(x) by N(x) = H(f(H(x))) for some ver-
ifiable random function f , we lose this property: N could encounter collisions
either from H-collisions or from f -collisions. The former would be fine while the
latter would be a problem. In practice, it is acceptable to limit honest users to
polynomial-size databases, in which case collisions are negligibly likely. However,
we can preserve this property through some extra effort, which has a minimal
impact on efficiency.

Due to space constraints, we do not give the full details of this construction.
The basic idea is that we use a public-key cryptosystem, and include two pub-
lic keys: one from the cryptosystem and one from a verifiable random function.
Then, instead of computing a = f(x), we compute EPKe(x; a), that is, we en-
crypt a under the encryption public key, using a as the randomness. A proof
consists of a and the proof that a = f(x) was properly generated by the VRF.
This may not be pseudorandom, but in our construction it is sufficient to have
unpredictability of the full answer, and this construction does achieve that.

When we use this injective verifiable unpredictable function, we get a
pseudonym function that only has collisions when they are collisions of the hash
function. Thus, any pseudonym collisions can be worked around.

It is worth noting, however, that the properties of the Pedersen hash function
are nice, yet we are assuming in our (main) security proof that the hash function
we use is a random oracle. In our opinion, the nice properties of the Pedersen
hash are worth having, and this will probably not cause a significant security
problem. However, we are unwilling to assume that the Pedersen hash function
is a random oracle.

Appendix E: Removing the Random Oracle Assumption

If we are willing to assume certain conditions on the adversary, we can give a con-
struction that is secure without the random oracle assumption. The conditions
are as follows:

– If the adversary first inquires about x in a database query, it may in the
future ask for more database queries about x as well as updates about x.

– If the adversary first inquires about x in an update query, it may only ask
for more updates about x in the future.

It may seem at first glance that we can assume this without loss of generality:
any successful adversary could always make more queries, and thus, make a
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database query immediately before any update query so as to always comply
with the conditions. The problem with this is that since the simulation is actually
a game of three parties: the adversary, the simulator, and the functionality that
provides pseudonyms, the simulator actually must interact with the functionality
more than normal to handle adversaries that don’t hold to these conditions,
which means that the simulator must learn more, which is not acceptable. It
is important that in our simulation, the simulator not be able to get any more
information out of the pseudonym-providing functionality than the adversary
would.

Given that all adversaries meet these restrictions, we remove the random
oracle assumption as follows: Again, we use the pseudonym function H∗(x) =
H(f(H(x))). To simulate, this time without being able to control H as a random
oracle, we do as follows: if x is a value that is first mentioned in a database query,
we actually compute H(f(H(x))). If x is a value that is first mentioned in an
update query, we know that the adversary will never make a database query
about this particular x, so we compute H∗(x) = H(R(N(x))) where R is a
random function that we maintain, and where N(x) is the pseudonym of x. If the
adversary can distinguish between this simulator and a real adversary then either
the adversary managed to find an H-collision, (for example, if H(x) = H(x′),
so the adversary could detect this simulator by making a database query on x
and then an update query on x′, which should give the same pseudonym), or all
inputs that should be given to f are distinct between the two types, in which
case, the probability of distinguishing is exactly the probability of distinguishing
the VRF from a random function.

We should note that although the restriction on the adversary is nontrivial,
such adversaries still represent a significant class of adversaries. What’s more,
since we use the same construction here as in Theorem 2, we have actually proved
security of that construction in two different ways: one, with the random oracle
model, the other, with these restrictions on the adversary.

However, we can remove the random oracle model without weakening our
assumptions if we give up efficiency. Instead of using a VRF, we can simply
commit to a key K for a PRP using a commitment that becomes part of the
database commitment, and then use fK(H(x)) as N(x), and prove correctness of
this using a general NIZK proof. The advantage of this is that the simulator can
fake NIZK proofs of false theorems, so the simulator can simply pretend that
F (NP (x)) = fK(H(x)) where F is a random function, and fake proofs when
necessary.

Appendix F: Efficiency Improvements

Multi-pair Updates

Suppose the database owner wants to update the database at n pairs simulta-
neously. A fairly obvious method presents itself: make an update for each pair
individually, and publish all the update information together. This saves space,
since some updated nodes will overlap. Asymptotically, the number of nodes
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updated becomes O(n(k− log n)k), which represents some savings over the one-
at-a-time approach, which is asymptotically O(nk2).

Multi-proof Updates

Suppose a proof owner has n proofs and an update is issued. If two proofs overlap
(that is, N(x) and N(x′) share a common prefix), the change in the updated
proofs for x and x′ can be computed more quickly by computing the change in
the common portion of those two proofs together, then computing the change in
the remaining portion of each. More generally, if a user holds n proofs, updating
each separately would take time O(nk2), but by combining the work, this is
reduced to time O(n(k − log n)k).

The analysis for both of these methods is based on the observation that an
average case instance of n random strings will have the first log n bits in common
with a newly chosen random string. Thus, if each string translates to a path of
length k, the expected sum of the length of all paths is k + k− log 0 + . . .+ k−
log(n − 1) < nk − (n/2) log(n/2) = O(n(k − log n)). The additional factor of k
accounts for the length of the data per node.
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Abstract. Shannon entropy is a useful and important measure in in-
formation processing, for instance, data compression or randomness ex-
traction, under the assumption—which can typically safely be made in
communication theory—that a certain random experiment is indepen-
dently repeated many times. In cryptography , however, where a system’s
working has to be proven with respect to a malicious adversary, this
assumption usually translates to a restriction on the latter’s knowledge
or behavior and is generally not satisfied. An example is quantum key
agreement, where the adversary can attack each particle sent through
the quantum channel differently or even carry out coherent attacks,
combining a number of particles together. In information-theoretic key
agreement, the central functionalities of information reconciliation and
privacy amplification have, therefore, been extensively studied in the sce-
nario of general distributions: Partial solutions have been given, but the
obtained bounds are arbitrarily far from tight, and a full analysis ap-
peared to be rather involved to do. We show that, actually, the general
case is not more difficult than the scenario of independent repetitions—in
fact, given our new point of view, even simpler. When one analyzes the
possible efficiency of data compression and randomness extraction in the
case of independent repetitions, then Shannon entropy H is the answer.
We show that H can, in these two contexts, be generalized to two very
simple quantities—Hε

0 and Hε
∞, called smooth Rényi entropies—which

are tight bounds for data compression (hence, information reconcilia-
tion) and randomness extraction (privacy amplification), respectively. It
is shown that the two new quantities, and related notions, do not only
extend Shannon entropy in the described contexts, but they also share
central properties of the latter such as the chain rule as well as sub-
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1 Introduction, Motivation, and Main Results

1.1 Unconditional Cryptographic Security and Key Agreement

Unconditional cryptographic security does, in contrast to computational secu-
rity, not depend on any assumption on an adversary’s computing power nor on
the hardness of computational problems. This type of security is, therefore, not
threatened by potential progress in algorithm design or (classical and quantum)
computer engineering. On the other hand, cryptographic functionalities such as
encryption, authentication, and two- or multi-party computation can generally
not be realized in an unconditionally secure way simply from scratch. It is, there-
fore, a natural question under what circumstances—as realistic as possible—they
can be realized. In particular for encryption and authentication or, more specif-
ically, secret-key agreement, this question has been studied extensively: In [23]
and [9], unconditional secret key agreement is realized based on the existence
of noisy channels between the legitimate partners and the adversary, whereas
in [15], a scenario is introduced and studied where all parties have access to
pieces of information (e.g., generated by repeated realizations of a certain ran-
dom experiment). On the other hand, the possibility of information-theoretic
key agreement has also been studied between parties connected not only by a
classical, but also a quantum channel allowing for the transmission of quantum
states [22,1]. Here, the security can be shown under the condition that the laws
of quantum physics are correct.

If, in a certain scenario, unconditional secret-key agreement is possible in
principle, then it is a natural question what the maximum length of the generated
secret key can be. To find the answer to this question has turned out to often
reduce to analyzing two functionalities that form important building blocks of
protocols for secret-key agreement (in any of the described settings), namely
information reconciliation and privacy amplification.

Information reconciliation (see, for instance [4]) means that the legitimate
partners generate identical shared strings from (possibly only weakly) correlated
ones by noiseless and authenticated but public communication, hereby leaking
to the adversary only a minimal amount of information about the original and,
hence, the resulting string. The generated common but potentially highly com-
promised string must then be transformed into a virtually secret key by privacy
amplification. On the technical level—but roughly speaking—, information rec-
onciliation is error correction, whereas privacy amplification is hashing, e.g., by
applying a universal hash function [13,2] or an extractor [16] allowing for distill-
ing a weakly random string’s min-entropy H∞. When these two functionalities
are analyzed in a context where all pieces of information stem from many in-
dependent repetitions of the same random experiment, then the analysis shows
that the amount of information to be exchanged in optimal information reconcil-
iation is the conditional Shannon entropy of, say, one party Alice’s information,
given the other Bob’s; on the other hand, privacy amplification, in the same
independent-repetitions setting, allows for extracting a string the length of which
equals the conditional Shannon entropy of the shared string given the adversary’s
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information. Hence, as often in information theory, Shannon entropy turns out
to be very useful in this asymptotic model. In a (classical or quantum) crypto-
graphic context, however, the assumption of independent repetitions typically
corresponds to a restriction on the adversary’s behavior, and cannot realistically
be made. It has been a common belief that in this case, the analysis of the
described information-reconciliation and privacy-amplification protocols—and
their combination—are quite involved and lead to rather complex (functional)
bounds on the (operational) quantities such as the key length. It is the main
goal of this paper to show that this is, actually, not the case.

1.2 Information Reconciliation and Privacy Amplification

Information reconciliation is error correction: Given that Alice and Bob
hold random variables X and Y , respectively, Alice wants to send a minimal
quantity of information C to Bob such that given Y and C, he can perfectly
reconstruct X with high probability. (More generally, protocols for information
reconciliation can use two-way communication. Such interactive protocols can
be computationally much more efficient than one-way protocols, but do not re-
duce the minimal amount of information to be exchanged [4].) To determine
the minimal amount of information to be sent from Alice to Bob such that the
latter can reconstruct Alice’s information with high probability reduces to the
following data-compression problem.

Question 1. Given a distribution PXY and ε > 0, what is the minimum length
Hε

enc(X |Y ) of a binary string C = e(X,R), computed from X and some addi-
tional independent randomness R, such that there exists an event Ω with proba-
bility at least 1−ε such that given Ω, X is uniquely determined by C, Y , and R?

Privacy amplification is randomness extraction: Given that Alice and Bob
both know X and an adversary knows Y , Alice wants to send a message R to
Bob such that from X and R, they can compute a (generally shorter) common
string S about which the adversary, knowing Y and R but not X , has no in-
formation except with small probability. More specifically, privacy amplification
deals with the following randomness-extraction problem.

Question 2. Given a distribution PXY and ε > 0, what is the maximum length
Hε

ext(X |Y ) of a binary string S = f(X,R), where R is an additional random
variable, such that there exists a uniformly distributed random variable U that
is independent of (Y,R) together with an event Ω with probability at least 1− ε
such that given Ω, we have S = U?

The problems of determining Hε
enc(X |Y ) and Hε

ext(X |Y ) have been studied
by several authors. Note, first of all, that in the case where the distribution
in question is of the form PXnY n = (PXY )n, corresponding to n independent
repetitions of the random experiment PXY , we have, for ε > 0,
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lim
ε→0

lim
n→∞

Hε
enc(X

n|Y n)
n

= lim
ε→0

lim
n→∞

Hε
ext(X

n|Y n)
n

= H(X |Y ) .

Interestingly, the two—a priori very different—questions have the same answer
in this case. We will show that in general, this is not true.

Unfortunately, the assumption that the distribution has product form is gen-
erally unrealistic in a cryptographic context: In quantum key agreement, for
instance, it corresponds to the assumption that the adversary attacks every par-
ticle individually, independently, and in exactly the same way. But what if she
does not?

It is fair to say that the problem of optimizing privacy amplification and
“distribution uniformizing” has been studied intensively in the general case and
considered to be quite involved (see, for instance, [5], [6], [7], and references
therein). It is our goal to show that this belief is, both for information reconcil-
iation and privacy amplification, in fact unjustified.

An example of a previous result is that Hε
ext(X |Y ) is bounded from be-

low by the minimum, over all y ∈ Y, of the so-called collision entropies or
Rényi entropies of order 2, H2(X |Y = y) (see below for a precise definition) [2].
However, this bound is not tight: For instance, the adversary can be given addi-
tional knowledge that increases the H2-entropy from her viewpoint. In fact, such
“spoiling-knowledge” arguments do not only show that the H2-bound is arbitrar-
ily far from tight, but also that the quantity H2 has some very counter-intuitive
properties that make it hard to handle.

We define two quantities that can be computed very easily and that represent
tight bounds on Hε

enc and Hε
ext, respectively. In a nutshell, we show that the

general case is as easy as the special independent-repetitions scenario—or even
easier when being looked at it in the right way. We also observe that, in general,
the answers to Questions 1 and 2 above are not at all equal.

1.3 Two New Quantities: Conditional Smooth Rényi Entropies and
Their Significance

For a distribution PXY and ε > 0, let1

Hε
0(X |Y ) := min

Ω
max

y
log
∣∣{x : PXΩ|Y=y(x) > 0}

∣∣ (1)

Hε
∞(X |Y ) := max

Ω
min

y
min
x

(
− logPXΩ|Y=y(x)

)
, (2)

where the first minimum/maximum ranges over all events Ω with probability
Pr[Ω] ≥ 1− ε.

First, we observe that these quantities are defined with respect to PXY in a
very simple way and are very easy to compute. Indeed, the involved optimiza-
tion problems can easily be solved by eliminating the smallest probabilities and

1 All logarithms in this paper are binary. PXΩ(x) is the probability that Ω occurs and
X takes the value x.
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by cutting down the largest probabilities, respectively. On the other hand, they
provide the answers to Questions 1 and 2 (Section 3).

Answer to Question 1. For ε1 + ε2 = ε, we have

Hε
0 (X |Y ) ≤ Hε

enc(X |Y ) ≤ Hε1
0 (X |Y ) + log(1/ε2) .

Answer to Question 2. For ε1 + ε2 = ε, we have

Hε1
∞(X |Y )− 2 log(1/ε2) ≤ Hε

ext(X |Y ) ≤ Hε
∞(X |Y ) .

We can say that—modulo a small error term—these results provide simple
functional representations of the important and natural operationally defined
quantities Hε

enc and Hε
ext. In a way, Hε

0 (i.e., Hε
enc) and Hε

∞ (Hε
ext) are two

natural generalizations of Shannon entropy to a cryptographic setting with an
adversary potentially not following any rules. In particular, both Hε

0 and Hε
∞

fall back to Shannon entropy if the distribution is of the form (PXY )n for large
n (Section 2.3). An example of an application of our results is the possibil-
ity of analyzing quantum key-agreement protocols or classical protocols based
on correlated information. For instance, our results allow for deriving a sim-
ple tight bound on the efficiency of key agreement by one-way communication2

(Section 3.3).
Hε

0 andHε
∞ are special cases of smooth Rényi entropies. In Section 2.1 we give

the general definition of conditional and unconditional smooth Rényi entropies
of any order α, and in Section 2.2 we show that, roughly speaking, Hε

α is, for
any α (�= 1), equal to either Hε

0 (if α < 1) or Hε
∞ (α > 1) up to an additive con-

stant. Unconditional smooth Rényi entropy has been introduced in [19], applied
in [18], and is, implicitly, widely used in the randomness-extraction literature
(see, e.g., [21]). We will show, however, that the conditional quantities, intro-
duced in this paper, are the ones that prove particularly useful in the context of
cryptography.

If we have concluded that Hε
0 and Hε

∞ generalize Shannon entropy, then
this is, in addition, true because they have similar properties (Section 2.4).
We summarize the most important ones in a table. (Let ε, ε′, ε1, and ε2 be
nonnegative constants. The approximation “�” holds up to log(1/(ε − ε1 −
ε2)).)

Hence, all important properties of Shannon entropy also hold for the new
quantities generalizing it. In contrast, note that the important chain rule, for
instance, does not hold for the original, “non-smooth” Rényi entropies H0, H2,
and H∞. In fact, this drawback is one of the reasons for the somewhat limited
applicability of these quantities.

2 Our results thus also apply to fuzzy extractors [10] which are technically the same as
one-way secret-key agreement schemes (where the generation and the reproduction
procedures correspond to the algorithms of Alice and Bob, respectively).
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Shannon entropy H New entropies Hε
0 and Hε

∞

Hε+ε′
0 (XY ) − Hε′

0 (Y ) ≤ Hε
0(X|Y )

� Hε1
0 (XY ) − Hε2∞ (Y )

chain rule H(X|Y ) = H(XY ) − H(Y )
(Lemmas 4 and 5) Hε1∞ (XY ) − Hε2

0 (Y ) � Hε
∞(X|Y )

≤ Hε+ε′
∞ (XY ) − Hε′

∞(Y )
Hε+ε′

0 (XY ) ≤ Hε
0(X) + Hε′

0 (Y )
sub-additivity H(XY ) ≤ H(X) + H(Y )
(Lemma 6) Hε

∞(XY ) ≤ Hε+ε′
∞ (X) + Hε′

0 (Y )
Hε

0(X) ≤ Hε
0(XY )

monotonicity H(X) ≤ H(XY )
(Lemma 7) Hε

∞(X) ≤ Hε
∞(XY )

The proofs of the above properties of the new, more general, quantities
are—just as are their definitions—in fact simpler than the corresponding proofs
for Shannon entropy; they only apply counting arguments (instead of, for in-
stance, the concavity of the logarithm function and Jensen’s inequality). Since,
on the other hand, Shannon entropy is simply a special case of the new quantities
(for many independent repetitions), we obtain simpler proofs of the correspond-
ing properties of Shannon entropy for free.

Note that although we state that all smooth Rényi entropies come down to
either Hε

0 or Hε
∞, we give general definitions and statements on Hε

α for any
α. This can be convenient in contexts in which the entropies have a natural
significance, such as H2 in connection with two-universal hashing [2].

2 Smooth Rényi Entropy: Definition and Properties

2.1 Definition

We start by briefly reviewing the notion of smooth Rényi entropy [19] and then
generalize it to conditional smooth Rényi entropy.

Let X be a random variable on X with probability distribution PX . We
denote by Bε(PX) the set of non-negative functions QX with domain X such
that QX(x) ≤ PX(x), for any x ∈ X , and

∑
x∈X QX(x) ≥ 1 − ε. The ε-smooth

Rényi entropy of order α, for α ∈ (0, 1) ∪ (1,∞) and ε ≥ 0, is defined by3

Hε
α(X) :=

1
1− α log rε

α(X) ,

where
rε
α(X) := inf

QX∈Bε(PX)

∑
x∈X

QX(x)α .

3 The definition given here slightly differs from the original definition in [19]. However,
it turns out that this version is more appropriate for our generalization to conditional
smooth Rényi entropy (Definition 1).
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For α = 0 and α = ∞, smooth Rényi entropy is defined by the limit values, i.e.,
Hε

0(X) := limα→0H
ε
α(X) and Hε

∞(X) := limα→∞Hε
α(X).

It follows directly from the definition that, for α < 1,

ε ≥ ε′ ←→ Hε
α(X) ≤ Hε′

α (X)

holds and, similarly, for α > 1,

ε ≥ ε′ ←→ Hε
α(X) ≥ Hε′

α (X) .

Moreover, for ε = 0, smooth Rényi entropy H0
α(X) is equal to “conventional”

Rényi entropy Hα(X) [20]. Similarly to conditional Shannon entropy, we define
a conditional version of smooth Rényi entropy.

Definition 1. Let X and Y be random variables with range X and Y, respec-
tively, and joint probability distribution PXY . The conditional ε-smooth Rényi
entropy of order α of X given Y , for α ∈ (0, 1)∪ (1,∞) and ε ≥ 0, is defined by

Hε
α(X |Y ) :=

1
1− α log rε

α(X |Y )

where
rε
α(X |Y ) := inf

QXY ∈Bε(PXY )
max
y∈Y

∑
x∈X

QX|Y=y(x)α ,

and where QX|Y=y(x) := QXY (x, y)/PY (y), for any x ∈ X and y ∈ Y (with the
convention QX|Y=y(x) = 0 if PY (y) = 0).4 For α = 0 and α = ∞, we define
Hε

0(X |Y ) := limα→0H
ε
α(X |Y ) and Hε

∞(X |Y ) := limα→∞Hε
α(X |Y ).

For α = 0 and α = ∞, Definition 1 reduces to (1) and (2), respectively. Note
that the infimum is in fact a minimum which is obtained by cutting away the
smallest probabilities or cutting down the largest, respectively.

2.2 Basic Properties

We will now derive some basic properties of smooth Rényi entropy. In particular,
we show that the smooth Rényi entropies can be split into two classes: It turns
out that for any value α < 1, Hε

α(X |Y ) is, up to an additive constant, equal to
Hε

0(X |Y ). Similarly, Hε
α(X |Y ), for α > 1, is essentially Hε

∞(X |Y ).
For this, we need a generalization, to the smooth case, of the fact that

α ≤ β ←→ Hα(X) ≥ Hβ(X) (3)

holds for any α, β ∈ [0,∞].

Lemma 1. Let X and Y be random variables. Then, for ε ≥ 0 and for α ≤ β <
1 or 1 < α ≤ β,

Hε
α(X |Y ) ≥ Hε

β(X |Y ) .

4 Since x QXY (x, y) is generally smaller than PY (y), the distribution QX|Y =y(·) :=
QXY (·, y)/PY (y) is not necessarily normalized.
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Proof. For any probability distribution Q on X , the right hand side of (3) can
be rewritten as

1−α

√∑
x∈X

Q(x)α ≥ 1−β

√∑
x∈X

Q(x)β . (4)

It is easy to verify that this inequality also holds for any (not necessarily nor-
malized) nonnegative function Q with

∑
x∈X Q(x) ≤ 1.

As mentioned above, the infimum in the definition of rε
α is actually a mini-

mum. Hence, there exists QXY ∈ Bε(PXY ) such that for any y ∈ Y,

rε
α(X |Y ) ≥

∑
x∈X

QX|Y=y(x)α

holds. When this is combined with (4), we find

1−α
√
rε
α(X |Y ) ≥ 1−α

√∑
x∈X

QX|Y=y(x)α ≥ 1−β

√∑
x∈X

QX|Y=y(x)β .

Because this holds for any y ∈ Y, we conclude

1−α
√
rε
α(X |Y ) ≥ 1−β

√
rε
β(X |Y ) .

The assertion now follows from the definition of smooth Rényi entropy. �
Lemma 2 is, in some sense, the converse of Lemma 1. Since it is a straight-

forward generalization of a statement of [19]5, we omit the proof here.

Lemma 2. Let X and Y be random variables. Then, for ε ≥ 0, ε′ ≥ 0, and
α < 1, we have

Hε+ε′

0 (X |Y ) ≤ Hε
α(X |Y ) +

log(1/ε′)
1− α

and for α > 1,

Hε+ε′

∞ (X |Y ) ≥ Hε
α(X |Y )− log(1/ε′)

α− 1
.

When Lemmas 1 and 2 are combined, we obtain the following characterization
of smooth Rényi entropy Hε

α(X |Y ), for α < 1, in terms of smooth Rényi entropy
of order 0:

Hε+ε′

0 (X |Y )− log(1/ε′)
1− α ≤ Hε

α(X |Y ) ≤ Hε
0(X |Y ) .

Similarly, for α > 1,

Hε+ε′

∞ (X |Y ) +
log(1/ε′)
α− 1

≥ Hε
α(X |Y ) ≥ Hε

∞(X |Y ) .

If ε = 0, this leads to an approximation of the (conventional) Rényi entropy
Hα, of any order α, in terms of the smooth Rényi entropies Hε

0 and Hε
∞. For

example, the collision entropy H2(X) cannot be larger than Hε
∞(X) + log(1/ε)

(whereas H2(X) ≈ 2H∞(X), for certain probability distributions PX).
5 The result of [19] corresponds to the special case where Y is a constant.
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2.3 Smooth Rényi Entropy as a Generalization of Shannon Entropy

Interestingly, one obtains as an immediate consequence of the asymptotic
equipartition property (AEP) (cf. [8]) that, for many independent realizations of
a random experiment, smooth Rényi entropy is asymptotically equal to Shannon
entropy. (Note that the same is not true at all for the usual Rényi entropies.)

Lemma 3. Let (X1,Y1), . . . , (Xn,Yn) be n independent pairs of random vari-
ables distributed according to PXY . Then we have, for any α �= 1,

lim
ε→0

lim
n→∞

Hε
α(Xn|Y n)

n
= H(X |Y ) ,

where H(X |Y ) is the conditional Shannon entropy.

For a proof as well as a more detailed (non-asymptotic) version of this state-
ment, we refer to [12].

2.4 Shannon-Like Properties of Smooth Rényi Entropy

Smooth Rényi entropy shares basic properties with Shannon entropy—this is
in contrast to the usual Rényi entropies, which do not have these properties.
Therefore, the smooth versions are much more natural and useful quantities in
many contexts, as we will see.

Chain Rule. We first prove a property corresponding to the chain ruleH(X |Y )=
H(XY )−H(Y ) of Shannon entropy. More precisely, Lemmas 4 and 5 below are
two different inequalities, which, combined, give a chain rule for smooth Rényi
entropies of any order α.

Lemma 4. Let X and Y be random variables and let ε ≥ 0, ε′ ≥ 0, ε′′ ≥ 0.
Then, for α < 1 < β, we have

Hε+ε′+ε′′

α (X |Y ) < Hε′

α (XY )−Hε′′

β (Y ) +
β − α

(1− α)(β − 1)
log(1/ε) ,

and, similarly, for α > 1 > β,

Hε+ε′+ε′′

α (X |Y ) > Hε′

α (XY )−Hε′′

β (Y )− α− β
(α− 1)(1− β)

log(1/ε) .

Proof. It is easy to verify that the assertion can be rewritten as

log rε+ε′+ε′′

α (X |Y ) < log rε′

α (XY ) +
1− α
β − 1

log rε′′

β (Y ) +
β − α
β − 1

log(1/ε) . (5)

By the definition of rε′

α (XY ) there exists an event Ω1 with probability Pr[Ω1] =
1− ε′ such that rε′

α (XY ) =
∑

x∈X ,y∈Y PXYΩ1(x, y)
α. Similarly, one can find an
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event Ω2 such that Pr[Ω2] = 1 − ε′′ and rε′′

β (Y ) =
∑

y∈Y PY Ω2(y)β . Hence, the
event Ω := Ω1 ∩Ω2 has probability Pr[Ω] ≥ 1− ε′ − ε′′ and satisfies∑

x∈X ,y∈Y
PXY Ω(x, y)α ≤ rε′

α (XY )

as well as ∑
y∈Y

PY Ω(y)β ≤ rε′′

β (Y ) .

For any y ∈ Y, let r̄y :=
∑

x∈X PXΩ|Y=y(x)α. Since inequality (5) is independent
of the labeling of the values in Y, we can assume without loss of generality that
these are natural numbers, Y = {1, . . . , n}, for n := |Y|, and that the values r̄y
are arranged in increasing order, r̄y > r̄y′ −→ y > y′. Let ȳ ∈ Y be the minimum
value such that Pr[Y > ȳ,Ω] ≤ ε holds. In particular,

Pr[Y ≥ ȳ, Ω] = Pr[Y > ȳ − 1, Ω] > ε . (6)

Let Ω′ be the event that Y ≤ ȳ holds, i.e., we have Pr[Ω′, Ω] ≤ ε and,
consequently,

Pr[Ω′, Ω] = 1− Pr[Ω]− Pr[Ω′, Ω] ≥ 1− ε− ε′ − ε′′ .

Hence, since PXΩΩ′|Y=y(x) = 0 holds for any x ∈ X and y > ȳ, we have

rε+ε′+ε′′

α (X |Y ) ≤ max
y∈Y

∑
x∈X

PXΩΩ′|Y=y(x)α ≤ max
y≤ȳ

r̄y ≤ r̄ȳ .

Therefore, it remains to be proven that

log r̄ȳ < log
( ∑
x∈X ,y∈Y

PXYΩ(x, y)α
)

+
1− α
β − 1

log
(∑

y∈Y
PY Ω(y)β

)
− β − α
β − 1

log ε .

(7)
Let s :=

∑n
y=ȳ PY (y)α. Then,

r̄ȳ · s =
n∑

y=ȳ

r̄ȳPY (y)α ≤
n∑

y=ȳ

r̄yPY (y)α ≤
n∑

y=1

r̄yPY (y)α , (8)

where the first inequality follows from the fact that r̄y ≥ r̄ȳ holds for all y ≥ ȳ.
When the definition of r̄y is inserted into inequality (8), we get

r̄ȳ ≤
1
s

∑
x∈X ,y∈Y

PXYΩ(x, y)α

i.e.,

log r̄ȳ ≤ log
( ∑
x∈X ,y∈Y

PXY Ω(x, y)α
)
− log s . (9)
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In order to find a bound on s, let py := PY Ω(y), p := β−α
β−1 , q := β−α

1−α , and

γ := α(β−1)
β−α , i.e., γp = α and (1 − γ)q = β. We then have 1

p + 1
q = 1 and can

apply Hölder’s inequality, yielding

p
√
s · q

√∑
y∈Y

PY Ω(y)β ≥ p

√√√√ n∑
y=ȳ

(py)α · q

√√√√ n∑
y=ȳ

(py)β

= p

√√√√ n∑
y=ȳ

(
(py)γ

)p · q

√√√√ n∑
y=ȳ

(
(py)1−γ

)q
≥

n∑
y=ȳ

(py)γ(py)1−γ =
n∑

y=ȳ

py = Pr[Y ≥ ȳ, Ω] > ε .

Hence,

log s > p log ε− p

q
log
(∑

y∈Y
PY Ω(y)β

)
.

Combining this with (9) implies (7) and, thus, concludes the proof. �

Lemma 5. Let X and Y be random variables and let ε ≥ 0, ε′ ≥ 0. Then, for
any α < 1, we have

Hε+ε′

α (XY ) ≤ Hε
α(X |Y ) +Hε′

α (Y ) ,

and, similarly, for α > 1,

Hε+ε′

α (XY ) ≥ Hε
α(X |Y ) +Hε′

α (Y ) .

Proof. Let Ω be an event with Pr[Ω] ≥ 1− ε such that

max
y

∑
x∈X

PXΩ|Y=y(x)α ≤ rε
α(X |Y ) .

Similarly, let Ω′ be an event with Pr[Ω′] ≥ 1 − ε′ such that Ω′ ↔ Y ↔ (X, Ω)
is a Markov chain and ∑

y∈Y
PY Ω′(y)α ≤ rε

α(Y ) .

Since Pr[Ω,Ω′] ≥ 1− ε− ε′ holds, we have

rε+ε′

α (XY ) ≤
∑

x∈X ,y∈Y
PXY ΩΩ′(x, y)α .

The assertion thus follows from∑
x∈X ,y∈Y

PXYΩΩ′(x, y)α =
∑

x∈X ,y∈Y
PY Ω′(y)αPXΩ|Y=y(x)α

≤
(∑

y∈Y
PY Ω′(y)α

)(
max
y∈Y

∑
x∈X

PXΩ|Y=y(x)α
)
. �
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It is easy to see that the statements of Lemma 4 and Lemma 5 still hold if
all entropies are conditioned on an additional random variable Z. For example,
the statement of Lemma 5 then reads, for α < 1,

Hε+ε′

α (XY |Z)−Hε′

α (Y |Z) ≤ Hε
α(X |Y Z) (10)

and for α > 1,

Hε+ε′

α (XY |Z)−Hε′

α (Y |Z) ≥ Hε
α(X |Y Z) . (11)

Sub-additivity. The Shannon entropy H(XY ) of a pair of random variables
X and Y cannot be larger than the sum H(X)+H(Y ). The following statement
generalizes this sub-additivity property to smooth Rényi entropy. The proof of
this statement is straightforward and, in fact, very similar to the (simple) proof
of Lemma 5.

Lemma 6. Let X and Y be random variables and let ε ≥ 0. Then, for any
α < 1,

Hε+ε′

α (XY ) ≤ Hε
α(X) +Hε′

0 (Y )

holds. Similarly, for α > 1, we have

Hε
α(XY ) ≤ Hε+ε′

α (X) +Hε′

0 (Y ) .

Monotonicity. The uncertainty on a pair of random variables X and Y cannot
be smaller than the uncertainty on X alone. This is formalized by the following
lemma. The proof is again similar to Lemma 5.

Lemma 7. Let X and Y be random variables and let ε ≥ 0. Then, for α �= 1,
we have

Hε
α(X) ≤ Hε

α(XY ) .

In particular, the smooth Rényi entropy does not increase when a function
is applied:

Hε
α(f(X)) ≤ Hε

α(X) . (12)

Independence, Conditional Independence, and Markov Chains. Con-
ditioning on independent randomness cannot have any effect on the entropy.

Lemma 8. Let X and Y be independent random variables and let ε ≥ 0, ε′ ≥ 0.
Then, for any α �= 1, we have

Hε
α(X |Y ) = Hε

α(X) .

This statement can be generalized to random variables X , Y , and Z such
that X ↔ Z ↔ Y is a Markov chain:

Hε
α(X |Y Z) = Hε

α(X |Z) .
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When this is combined with inequalities (10) and (11), we obtain, for α < 1,

Hε+ε′

α (XY |Z) ≤ Hε
α(X |Z) +Hε′

α (Y |Z)

and, for α > 1,
Hε+ε′

α (XY |Z) ≥ Hε
α(X |Z) +Hε′

α (Y |Z) .

3 Smooth Rényi Entropy in Cryptography

3.1 Randomness Extraction and Privacy Amplification

The problem of extracting uniform randomness from a non-uniform source has
first been studied in [3,13], and later been defined explicitly in [16]. Today, ran-
domness extraction is a well-known and widely-used concept in theoretical com-
puter science and, in particular, cryptography. A (strong) extractor is a function
f which takes as input a random variable X and some additional uniformly dis-
tributed randomness R and is such that if X satisfies a certain entropy condition,
the output S := f(X,R) is almost independent of R and uniformly distributed.

For two random variables Z and W with joint distribution PZW , we define
the distance from uniform by d(Z|W ) := 1

2δ(PZW , PU × PW ) where PU is the
uniform distribution on the range of Z and where δ(·, ·) denotes the statistical
distance.6

Definition 2. A strong (τ, κ, ε)-extractor on a set X is a function with domain
X × R (for a set R) and range U of size |U| = 2τ such that, for any random
variable X on X satisfying H∞(X) ≥ κ and R uniformly distributed over R,
d(f(X,R)|R) ≤ ε holds.

The following result has originally been proven in [13] based on two-universal
hashing (where the randomness R is used to select a function from a two-
universal7 class of functions.). Later, similar statements have been shown in [2]
and [11].8

Lemma 9 (Leftover hash lemma). For any κ > τ , there exists a strong
(τ, κ, 2−(κ−τ)/2)-extractor.

The following measure is closely related to smooth entropy as defined in [7]
and [5]. For a distribution PXY , it quantifies the amount of uniform randomness,
conditioned on Y , which can be extracted from X .

6 The statistical distance between two probability distributions P and Q is defined by
δ(P, Q) := 1

2 v |P (v) − Q(v)|.
7 A two-universal class of functions from Z to W is a family F of functions f : Z → W

such that for any z �= z′ and for f chosen at random from F , Pr[f(z) = f(z′)] ≤ 1
|W| .

8 For a simple proof of Lemma 9, see, e.g., [14], p. 20.
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Definition 3. Let X and Y be random variables and let ε≥ 0. The ε-extractable
randomness of X conditioned on Y is

Hε
ext(X |Y ) := max

U :∃f∈Γ ε
XY (X→U)

log |U| ,

where Γ ε
XY (X → U) denotes the set of functions f from X × R (for some set

R) to U such that d(f(X,R)|Y R) ≤ ε holds, for R independent of (X,Y ) and
uniformly distributed on R.

As mentioned in the introduction, smooth Rényi entropy equals the amount
of extractable uniform randomness, up to some small additive constant. Here,
the lower bound follows directly from the leftover hash lemma and the definition
of Hε

∞. The upper bound, on the other hand, is a special case of the bound on
one-way key agreement derived in Section 3.3.

Theorem 1. Let X and Y be random variables and let ε ≥ 0, ε′ ≥ 0. Then we
have

Hε
∞(X |Y )− 2 log(1/ε′) ≤ Hε+ε′

ext (X |Y ) ≤ Hε+ε′

∞ (X |Y ) .

Using Lemma 2, we can, in particular, conclude that Rényi entropy of order
α, for any α > 1, is a lower bound on the number of uniform random bits that
can be extracted, i.e.,

Hα(X |Y )− log(1/ε)
α− 1

− 2 log(1/ε′) ≤ Hε+ε′

ext (X |Y ) .

3.2 Data Compression, Error Correction, and Information
Reconciliation

Another fundamental property of a probability distribution P is the minimum
length of an encoding C = E(X) of a random variable X with PX = P such
that X can be retrieved from C with high probability. (A similar quantity can
be defined for a set P of probability distributions.) As a motivating example,
consider the following setting known as information reconciliation [4].9 An entity
(Alice) holds a value X which she wants to transmit to another (Bob), using τ
bits of communication C. Clearly the minimum number τ of bits needed depends
on the initial knowledge of Bob, which might be specified by some additional
random variable Y (not necessarily known to Alice). From Bob’s point of view,
the random variable X is thus initially distributed according to PX|Y=y for some
y ∈ Y. Consequently, in order to guarantee that Bob can reconstruct the value of
X with high probability, the error correcting information C sent by Alice must
be useful for most of the distributions PX|Y=y.

For the following, note that any probabilistic encoding function E corre-
sponds to a deterministic function e taking as input some additional randomness
R, i.e., E(X) = e(X,R).
9 In certain cryptographic applications, (one-way) information reconciliation schemes

are also called secure sketches [10] (where Bob’s procedure is the recovery function).
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Definition 4. A (τ, κ, ε)-encoding on a set X is a pair of functions (e, g) to-
gether with a random variable R with range R where e, the encoding function, is
a mapping from X ×R to C, for some set C of size |C| = 2τ , and g, the decoding
function, is a mapping from C × R to X such that, for any random variable X
with range X satisfying H0(X) ≤ κ, Pr[g(e(X,R),R) �= X ] ≤ ε holds.

The following result has originally been shown in the context of information
reconciliation [4].

Lemma 10. For any τ > κ, there exists a (τ, κ, 2−(τ−κ))-encoding.

For a distribution PXY , the measure defined below quantifies the minimum
length of an encoding C = e(X,R) of X such that X can be reconstructed from
C, Y , and R (with high probability).

Definition 5. Let X and Y be random variables and let ε ≥ 0. The ε-encoding
length of X given Y is

Hε
enc(X |Y ) := min

C:∃e∈Λε
XY (X→C)

log |C|

where Λε
XY (X → C) denotes the set of function e from X ×R (for some set R)

to C such that there exists a decoding function g from Y ×C ×R to X such that
Pr[g(Y, e(X,R),R) �= X ] ≤ ε holds, for R independent of (X,Y ) and uniformly
distributed on R.

Similarly to the amount of extractable randomness, smooth Rényi entropy
can also be used to characterize the minimum encoding length.

Theorem 2. Let X and Y be random variables and let ε ≥ 0, ε′ ≥ 0. Then we
have

Hε+ε′

0 (X |Y ) ≤ Hε+ε′

enc (X |Y ) ≤ Hε
0(X |Y ) + log(1/ε′) .

3.3 A Tight Bound for Key Agreement by One-Way Communication

As an application of Theorems 1 and 2, we prove tight bounds on the maximum
length of a secret key that can be generated from partially secret and weakly
correlated randomness by one-way communication.

Let X , Y , and Z be random variables. For ε ≥ 0, define

M ε(X ; Y |Z) := sup
V↔U↔X↔(Y,Z)

Hε
∞(U |ZV )−Hε

0(U |Y V ) . (13)

Note that this is equivalent to10

M ε(X ; Y |Z) = sup
(U,V )↔X↔(Y,Z)

Hε
∞(U |ZV )−Hε

0(U |Y V ) . (14)

10 To see that the measure defined by (14) is not larger than the measure defined
by (13), observe that the entropies on the right-hand side of (14) do not change
when the random variable U is replaced by U ′ := (U, V ). This random variable U ′

then satisfies V ↔ U ′ ↔ X ↔ (Y, Z).
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Consider now a setting where two parties, Alice and Bob, hold information
X and Y , respectively, while the knowledge of an adversary Eve is given by Z.
Additionally, they are connected by a public but authenticated one-way commu-
nication channel from Alice to Bob, and their goal is to generate an ε-secure key
pair (SA, SB). Let Sε(X → Y ||Z) be the maximum length of an ε-secure key that
can be generated in this situation. Here, ε-secure means that, except with prob-
ability ε, Alice and Bob’s keys are equal to a perfect key which is uniformly dis-
tributed and independent of Eve’s information. Note that, if Pr[SA �= SB] ≤ ε1
and d(SA|W ) ≤ ε2, where W summarizes Eve’s knowledge after the protocol
execution, then the pair (SA, SB) is ε-secure, for ε = ε1 + ε2.

Theorem 3. Let X, Y , and Z be random variables. Then, for ε ≥ 0 and ε′ =
Θ(ε), we have

M ε′
(X ; Y |Z)−O(log(1/ε′)) ≤ Sε(X → Y ||Z) ≤M ε(X ; Y |Z) .

Proof. We first show that the measure M ε′
(X ; Y |Z) is a lower bound on the

number of ε-secure bits that can be generated. To see this, consider the following
simple three-step protocol.

1. Pre-processing: Alice computes U and V from X . She sends V to Bob and
keeps U .

2. Information reconciliation: Alice sends error-correcting information to Bob.
Bob uses this information together with Y and V to compute a guess Û of
U .

3. Privacy amplification: Alice chooses a hash function F and sends a descrip-
tion of F to Bob. Alice and Bob then compute SA := F (U) and SB := F (Û),
respectively.

It follows immediately from the analysis of information reconciliation and
privacy amplification that the parameters of the protocol (i.e., the amount of
error correcting information and the size of the final keys) can be chosen such
that the final keys have length M ε′

(X ; Y |Z) and the key pair (SA, SB) is ε-
secure.

On the other hand, it is easy to see that any measure M ε(X ; Y |Z) is an
upper bound on the amount of key bits that can be generated if the following
conditions, which imply that the quantity cannot increase during the execution
of any protocol, are satisfied:

1. M ε(X ; Y |Z) ≥ M ε(X ′; Y |Z) for any X ′ computed from X .
2. M ε(X ; Y |Z) ≥ M ε(X ; Y ′|Z) for any Y ′ computed from Y .
3. M ε(X ; Y |Z) ≥ M ε(X ; Y C|ZC) for any C computed from X .
4. M ε(X ; Y |Z) ≤ M ε(X ; Y |Z ′) for any Z ′ computed from Z.
5. M ε(SA;SB |W ) ≥ n if the pair (SA, SB) is ε-secure with respect to an ad-

versary knowing W .

The measure M ε(X ; Y |Z) defined by (13) does in fact satisfy these properties. It
is thus an upper bound on the length of an ε-secure key which can be generated
by Alice and Bob.
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Property 1 holds since any pair of random variables U and V that can be
computed from X ′ can also be computed from X .

Property 2 follows from Hε
0 (A|BC) ≤ Hε

0(A|B).
Property 3 holds since M ε(X ; Y C|ZC) can be written as the supremum over
U and V ′ of Hε

∞(U |ZV ′) −Hε
0(U |Y V ′), where V ′ is restricted to values of

the form V ′ = (V,C).
Property 4 follows from Hε

∞(A|BC) ≤ Hε
∞(A|B).

Property 5 follows from M ε(SA;SB|Z)≥Hε
∞(SA|Z)−Hε

0(SA|SB),Hε
∞(SA|Z)≥

n, and Hε
0(SA|SB) = 0.

�

4 Concluding Remarks

We have analyzed data compression and randomness extraction in the crypto-
graphic scenario where the assumption, usually made in classical information and
communication theory, that the pieces of information stem from a large number
of repetitions of a random experiment, has to be dropped. We have shown that
Shannon entropy—the key quantity in independent-repetitions settings—then
generalizes, depending on the context, to two different entropy measures Hε

0 and
Hε
∞. These new quantities, which are tight bounds on the optimal length of the

compressed data and of the extracted random string, respectively, are very sim-
ple—in fact, simpler than Shannon information. Indeed, they can be computed
from the distribution simply by leaving away the smallest probabilities or cut-
ting down the largest ones, respectively. Moreover, the new quantities share all
central properties of Shannon entropy.

An application of our results is the possibility of a simple yet general and tight
analysis of protocols for quantum (see, e.g., [17]) and classical key agreement,
where no assumption on an adversary’s behavior has to be made. For instance, we
give a simple tight bound for the possibility and efficiency of secret-key agreement
by one-way communication.

It is conceivable that the new quantities have further applications in cryp-
tography and in communication and information theory in general. We suggest
as an open problem to find such contexts and applications.
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Abstract. We consider the problem of hiding sender and receiver of
classical and quantum bits (qubits), even if all physical transmissions
can be monitored. We present a quantum protocol for sending and re-
ceiving classical bits anonymously, which is completely traceless: it suc-
cessfully prevents later reconstruction of the sender. We show that this
is not possible classically. It appears that entangled quantum states are
uniquely suited for traceless anonymous transmissions. We then extend
this protocol to send and receive qubits anonymously. In the process we
introduce a new primitive called anonymous entanglement, which may
be useful in other contexts as well.

1 Introduction

In most cryptographic applications, we are interested in ensuring the secrecy of
data. Sender and receiver know each other, but are trying to protect their data
exchange from prying eyes. Anonymity, however, is the secrecy of identity. Prim-
itives to hide the sender and receiver of a transmission have received considerable
attention in classical computing. Such primitives allow any member of a group to
send and receive data anonymously, even if all transmissions can be monitored.
They play an important role in protocols for electronic auctions [32], voting
protocols and sending anonymous email [10]. Other applications allow users to
access the Internet without revealing their own identity [30], [14] or, in com-
bination with private information retrieval, provide anonymous publishing [15].
Finally, an anonymous channel which is completely immune to any active at-
tacks, would be a powerful primitive. It has been shown how two parties can use
such a channel to perform key-exchange [1].
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1.1 Previous Work

A considerable number of classical schemes have been suggested for anonymous
transmissions. An unconditionally secure classical protocol was introduced by
Chaum [11] in the context of the Dining Cryptographers Problem. Since this
protocol served as an inspiration for this paper, we briefly review it here. A group
of cryptographers is assembled in their favorite restaurant. They have already
made arrangements with the waiter to pay anonymously, however they are rather
anxious to learn whether one of them is paying the bill, or whether perhaps an
outside party such as the NSA acts as their benefactor. To resolve this question,
they all secretly flip a coin with each of their neighbours behind the menu and
add the outcomes modulo two. If one of them paid, he inverts the outcome of the
sum. They all loudly announce the result of their computation at the table. All
players can now compute the total sum of all announcements which equals zero if
and only if the NSA pays. This protocol thus allows anonymous transmission of
one bit indicating payment. A network based on this protocol is also referred to as
a DC-net. Small scale practical implementations of this protocol are known [23].
Boykin [7] considered a quantum protocol to send classical information anony-
mously where the players distribute and test pairwise shared EPR pairs, which
they then use to obtain key bits. His protocol is secure in the presence of noise
or attacks on the quantum channel. Other anonymity related work was done by
Müller-Quade and Imai [25] in the form of anonymous oblivious transfer.

In practice, two other approaches are used, which do not aim for uncondi-
tional security: First, there are protocols which employ a trusted third party.
This takes the form of a trusted proxy server [3], [22], forwarding messages while
masking the identity of the original sender. Secondly, there are computationally
secure protocols using a chain of forwarding servers. Most notably, these are
protocols based on so-called mixing techniques introduced by Chaum [10], such
as Webmixes [6] and ISDN-Mixes [27]. Here messages are passed through a num-
ber of proxies which reorder the messages; hence the name MixNet. The goal of
this reordering is to ensure an observer cannot match in- and outgoing messages
and thus cannot track specific messages on their way through the network. Pub-
lic Key Encryption is then used between the user and the different forwarding
servers to hide the contents of a message. Several implemented systems, such as
Mixmaster [24], PipeNet [14], Onion Routing [33] and Tor [16,35] employ layered
encryption: the user successively encrypts the message with the public keys of
all forwarding servers in the chain. Each server then “peels off” one layer, by de-
crypting the received data with its own secret key, to determine the next hop to
pass the message to. The Crowds [30] system takes another approach. Here each
player acts as a forwarding server himself. He either sends the message directly to
the destination, or passes it on to another forwarding server with a certain prob-
ability. The aim is to make any sender within the group appear equally probable
for an observer. Various other protocols using forwarding techniques are known.
Since our focus lies on unconditionally secure protocols, we restrict ourselves to
this brief introduction. More information can be found in the papers by Goldberg
and Wagner [19], [18] and in the PhD thesis of Martin [23–Chapter 2 and 3].
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Note that a DC-net computes the parity of the players inputs. Sending classi-
cal information anonymously can thus be achieved using secure multi-party com-
putation which has received considerable attention classically [20], [12]. Quantum
secure multi-party computation has been considered for the case that the play-
ers hold quantum inputs and each player receives part of the output [13]. Our
protocol for sending qubits anonymously does not form an instance of general
quantum secure multi-party computation, as we only require the receiver to ob-
tain the qubit sent. Other players do not share part of this state. Instead, the
receiver of the state should remain hidden.

1.2 Contribution

Here we introduce quantum protocols to send and receive classical and quantum
bits anonymously. We first consider a protocol that allowsn players to send and re-
ceive one bit of classical information anonymouslyusing one shared entangled state
|Ψ〉 = (|0〉⊗n+|1〉⊗n)/

√
2 andn uses of a broadcast channel. Given these resources,

the protocol is secure against collusions of up ton−2 players: the collaborators can-
not learn anything more by working together and pooling their resources.

The most notable property of our protocol for anonymous transmissions of
classical data is that it is traceless as defined in Section 2.1. This is related to the
notion of incoercibility in secure-multi party protocols [9]. Informally, a protocol
is incoercible, if a player cannot be forced to reveal his true input at the end of the
protocol. When forced to give up his input, output and randomness used during
the course of the protocol, a player is able to generate fake input and randomness
instead, that is consistent with the public transcript of communication. He can
thus always deny his original input. This is of particular interest in secret voting
to prevent vote-buying. Other examples include computation in the presence of
an authority, such as the mafia, an employer or the government, that may turn
coercive at a later point in time. In our case, incoercibility means that a player
can always deny having sent. A protocol that is traceless, is also incoercible.
However, a traceless protocol does not even require the player to generate any
fake randomness. A sender can freely supply a fake input along with the true
randomness used during the protocol without giving away his identity, i.e. his
role as a sender during the protocol. This can be of interest in the case that the
sender has no control over which randomness to give away. Imagine for example
a burglar sneaking in at night to obtain a hard disk containing all randomness
or the sudden seizure of a voting machine. As we show, the property traceless of
our protocol contrasts with all classical protocols and provides another example
of a property that cannot be achieved classically. The protocols suggested in [7]
are not traceless, can, however, be modified to exhibit this property.

Clearly, in 2005 the group of dinner guests is no longer content to send only
classical bits, but would also like to send qubits anonymously. We first use our
protocol to allow two anonymous parties to establish a shared EPR pair. Finally,
we use this form of anonymous entanglement to hide the sender and receiver of
an arbitrary qubit. These protocols use the same resource of shared entangled
states |Ψ〉 and a broadcast channel.
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1.3 Outline

Section 2 states the resources used in the protocol, necessary definitions and
a description of the model. In Section 2.2 we derive limitations on classical
protocols. Section 3.2 then presents a quantum protocol for sending classical bits
anonymously. Section 3.4 deals with the case of sending qubits anonymously and
defines the notion of anonymous entanglement. Multiple simultaneous senders
are considered in Section 4.

2 Preliminaries

2.1 Definitions and Model

We will consider protocols among a set of n players who are consecutively num-
bered. The players may assume a distinct role in a particular run of the protocol.
In particular, some players might be senders and others receivers of data items.
In our case, a data item d will be a single bit or a qubit. We use the verb send to
denote transmission of a data item via the anonymous channel and transmit to
denote transmission of a message (here classical bits) via the underlying classical
message passing network1 or via the broadcast channel given in Definition 3.

Anonymity is the secrecy of identity. Looking at data transmissions in par-
ticular, this means that a sender stays anonymous, if no one can determine his
identity within the set of possible senders. In particular, the receiver himself
should not learn the sender’s identity either. Likewise, we define anonymity for
the receiver. In all cases that we consider below, the possible set of senders coin-
cides with the possible set of receivers. The goal of an adversary is to determine
the identity of the sender and/or receiver. To this end he can choose to corrupt
one or more players: this means he can take complete control over such players
and their actions. Here, we only consider a non-adaptive adversary, who chooses
the set of players to corrupt before the start of the protocol. In addition, the
adversary is allowed to monitor all physical transmissions: he can follow the path
of all messages, reading them as desired. Contrary to established literature, we
here give the adversary one extra ability: After completion of the protocol, the
adversary may hijack any number of players. This means that he can break into
the system of a hijacked player and learn all randomness this player used during
the protocol. However, he does not learn the data item d or the role this player
played during the protocol. In a DC-net, for example, the randomness are the
coin flips performed between two players. The adversary may then try to use
this additional information to determine the identity of the sender and/or re-
ceiver. We return to the concept of hijacking in Section 2.1. In this paper, we are
only interested in unconditional security and thus consider an unbounded adver-
sary. We call a player malicious if he is corrupted by the adversary. A malicious
player may deviate from the protocol by sending alternate messages. We call a
player honest, if he is not corrupted and follows the protocol. If t > 1 players
are corrupted, we also speak of a collusion of t players.
1 A network of pairwise communication channels between the players.
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Let V denote the set of all players. Without loss of generality, a protocol
is a sequence of k rounds, where in each round the players, one after another,
transmit one message. We use cjm to denote the message transmitted by player
m in round j. The total communication during the protocol is thus given by
the sequence C = {cjm}k,nj=1,m=1 of nk messages. Note that we do not indicate
the receiver of the messages. At the beginning of the protocol, the players may
have access to private randomness and shared randomness among all players, or a
subset of players. In addition, each player may generate local private randomness
during the course of the protocol. We use gjm to denote the random string held
by player m in round j. A player cannot later delete gjm. Let Gm = {gjm}kj=1

be the combined randomness held by player m. Similarly, we use G = {Gm}nm=1

to denote the combined randomness held by all players. Note that the data item
d player m wants to send and his role in the protocol (sender/receiver/none)
are excluded from Gm. In the following definitions, we exclude the trivial case
where the sender or receiver are known beforehand, and where the sender is
simultaneously the receiver.

It is intuitive that a protocol preserves the anonymity of a sender, if the
communication does not change the a priori uncertainty about the identity of
the sender. Formally:

Definition 1. A k-round protocol P allows a sender s to be anonymous, if for
the adversary who corrupts t ≤ n− 2 players

max
S

Prob[S = s|Gt,C] = max
S

Prob[S = s] =
1

n− t

where the first maximum is taken over all random variables S which depend
only on the sequence of all messages, C, and on the set of randomness held by
the corrupted players, Gt = {Gm}m∈E. Here, E ⊂ V \{s} is the set of players
corrupted by the adversary; to exclude the trivial case where the sender s himself
is corrupted by the adversary. A protocol P that allows a sender to be anonymous
achieves sender anonymity.

Similarly, we define the anonymity of a receiver:

Definition 2. A k-round protocol P allows a receiver r to be anonymous, if for
the adversary who corrupts t ≤ n− 2 players

max
R

Prob[R = r|Gt,C] = max
R

Prob[R = r] =
1

n− t

where the first maximum is taken over all random variables R which depend only
on the sequence of all messages, C, and on the set of randomness held by the
corrupted players, Gt = {Gm}m∈E. Here, E ⊂ V \{r} is the set of players cor-
rupted by the adversary; to exclude the trivial case where the receiver r himself is
corrupted by the adversary. A protocol P that permits a receiver to be anonymous
achieves receiver anonymity.
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Note that protocols to hide the sender and receiver may not protect the data
item sent. In particular there could be more players receiving the data item,
even though there is only one receiver, which is determined before the protocol
starts. The definition implies that the data sent via the protocol does not carry
any compromising information itself.

All known protocols for sender and receiver anonymity achieving information
theoretic security need a reliable broadcast channel [17]. We will also make use
of this primitive:

Definition 3 (FGMR [17]). A protocol among n players such that one distinct
player s (the sender) holds an input value xs ∈ L (for some finite domain L)
and all players eventually decide on an output value in L is said to achieve
broadcast (or Byzantine Agreement) if the protocol guarantees that all honest
players decide on the same output value y ∈ L, and that y = xs whenever the
sender is honest.

Informally, we say that a protocol is traceless, if it remains secure even if
we make all resources available to an adversary at the end of the protocol.
Consider for example the DC-net protocol discussed earlier. Imagine a curious
burglar sneaking into the restaurant at night to gather all coin flips our group
of cryptographers performed earlier on from the tapes of the security cameras.
A protocol is traceless, if it can withstand this form of attack.

We model this type of attack by granting the adversary one additional ability.
After completion of the protocol, we allow the adversary to hijack any number
of players. If an adversary hijacks player m, he breaks into the system and learns
all randomness Gm used by this player. In this paper, we allow the adversary
to hijack all players after completion of the protocol. The adversary then learns
all randomness used by the players, G. Nevertheless, we want him to remain
ignorant about the identity of the sender and receiver. Formally,

Definition 4. A k-round protocol P with sender s which achieves sender anon-
ymity is sender traceless, if for the adversary who corrupts any t ≤ n−2 players
and, after completion of the protocol, hijacks all players

max
S

Prob[S = s|G,C] = max
S

Prob[S = s] =
1

n− t
where the first maximum is taken over all random variables S which depend only
on the sequence of all messages, C, and on the set of randomness held by all
players, G.

Likewise, change of sender s with receiver r, we define the property traceless
for receiver anonymous protocols. Recall that G and C do not contain the data
item d that was sent or the roles the players assumed during the course of the
protocol.

2.2 Limitations on Traceless Protocols

Intuitively, we cannot hope to construct a classical protocol which is traceless
and at the same time allows the receiver to learn what was sent: The only way
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data d can be send classically is by transmitting messages over the underlying
network. If, however, an adversary has all information except the player’s input
and all communication is public, he can simply check the messages transmitted
by each player to see if they “contain” d.

Theorem 1. Let P be a classical protocol with one sender and one receiver such
that for all data items d ∈ D with |D| ≥ 2 the following holds: the sender of d
stays anonymous and the receiver knows d at the end of the protocol. Then P is
not sender traceless.

Proof. Let us assume by contradiction that the protocol is traceless. Without
loss of generality, a player who is not the sender has input d0 ∈ D to the protocol.
Let d ∈ D be the data item that the sender s wants to send. We assume that
all but one players are honest during the run of the protocol. We would like to
emphasize that the only information that is not written down, is in fact the data
item d of the sender.

The adversary corrupts one player. After completion of the protocol, he hi-
jacks all players. He thus has access to all randomness and communication. Since
a traceless protocol must resist the corruption of any player, it must also resist
the corruption of the receiver. We therefore assume for the remainder of the
proof that the adversary corrupts the receiver.

Let us consider step j in the protocol, where player m has total information
gjm and sends communication cjm. Note that cjm may only depend on the pre-
vious communication, gjm, j, the number m and the role of the player m, i.e.
whether m is sender, receiver or neither of them. If m = s, then the communica-
tion may also depend on d. Since the adversary has corrupted the receiver, and
since there is only one receiver, the adversary knows that m is either a normal
player or the sender. Note that since the adversary corrupted the receiver, he
also knows the value of d.

After the protocol, the adversary, having access toG and C, can now calculate
the messages that player m should have sent in round j depending on whether

1. m was not sender or receiver, or,
2. m was the sender and sent item d.

The messages are calculated as follows: In case 1, the adversary simulates
the actions of player m as if m was neither sender nor receiver. This is possible,
since the adversary has access to all randomness and all communication. In case
2, the adversary simulates the actions of m as if m was the sender and sent
data item d. Let {f1

jm}j ,{f2
jm}j denote the set of messages resulting from the

simulations of cases 1 and 2 respectively. The adversary now checks whether
the set of observed messages {cjm}j = {f1

jm}j or {cjm}j = {f2
jm}j . If the first

equality holds he concludes that s �= m, and for the second that s = m.
By assumption, the protocol is traceless for all d. Thus, the message computed

for case 2) must be identical to the message computed for case 1) for all d, since
otherwise the adversary could determine the sender s. This must hold for all
steps j. But in this case the strategy the sender follows must be the same for
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both d = d0 and d �= d0. Hence it cannot have been possible for r to have
obtained the value of d in the first place and we have a contradiction to the
assumption that the protocol achieves a transfer for all elements of a set D with
|D| ≥ 2. �

Note that we make the assumption that there is exactly one receiver which is
determined before the start of the protocol. Other players might still obtain
the data item, as this is not a statement about the security of the message but
merely about anonymity.

2.3 Limitations on Shared Randomness

In this section, we take a look at how many privately shared random bits are
needed in order to perform anonymous transmissions. We thereby only consider
unconditionally secure classical protocols based on privately shared random bits,
such as for example the DC-net. In the following, we will view the players as
nodes in an undirected graph. The notions of “nodes in a key-sharing graph”
and “players” are used interchangeably. Similarly, edges, keys and private shared
random bits are the same. Again, regard the broadcast channel as an abstract
resource.

Definition 5. The undirected graph G = (V,E) is called the key-sharing graph
if each node in V represents exactly one of the players and there is an edge
between two nodes i and j if and only if i and j share one bit of key ri,j .

We first note that for any protocol P that achieves sender anonymity, where
the only resource used by the n participating players is pairwise shared keys, a
broadcast channel and public communication, the form of the key-sharing graph
G = (V,E) is important:

Lemma 1. In any protocol P to achieve sender anonymity among n players,
where the only resource available to the players is pairwise shared keys, a broad-
cast channel and public communication, a collusion of t players can break the
sender’s anonymity, if the corresponding collection of t nodes partitions the key-
sharing graph G = (V,E).

Proof. t colluding nodes divide the key-sharing graph into s disjoint sets of nodes
{S1, . . . , Ss}. Note that there is no edge connecting any of these sets, thus these
sets do not share any keys. Now suppose that sender anonymity is still possible.
Let ki ∈ Si and kj ∈ Sj with i �= j be two nodes in different parts of the graph.
Using a protocol achieving sender anonymity it is now possible to establish a
secret bit between ki and kj [1]: Nodes i and j each generate n random bits:
r1i , . . . , r

n
i and r1j , . . . , r

n
j . Node i now announces n data of the form: “Bit bk is

rki ” for 1 ≤ k ≤ n using the protocol for sender anonymity. Likewise, node j
announces “Bit bk is rkj ” for 1 ≤ k ≤ n. Nodes i and j now discard all bits for
which rki = rkj and use the remaining bits as a key. Note that an adversary can
only learn whether bk = rki or bk = rkj if the two announcements are the same.
If rki �= rkj , the adversary does not learn who has which bit.
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However, there is no channel between Si and Sj that is not monitored by the
colluding players. Thus, it cannot be possible to establish a secret bit between
ki and kj , since the only communication allowed is classical and public [26].
This establishes the contradiction and shows that the sender’s anonymity can
be broken if the graph can be partitioned. �

Furthermore, note that each player j needs to share one bit of key with at least
two other players. Otherwise, his anonymity can be compromised. We can phrase
this in terms of the key-sharing graph as

Corollary 1. Each node j ∈ V of the key-sharing graph G = (V,E), used by a
protocol P for anonymous transmissions, where the only resource available to the
n players is pairwise shared keys, a broadcast channel and public communication,
must have degree d ≥ 2.

Proof. Suppose on the contrary, that an arbitrary node j has degree 1: it has
only one outgoing edge to another node k. Clearly, node k can partition the key-
sharing graph into two disjoint sets S1 = {j} and S2 = V \ {j, k}. By Lemma 1,
node k can break j’s anonymity. �

Corollary 2. Any protocol P that achieves sender anonymity, where no players
collude and the only resource available to the n players is pairwise shared keys,
a broadcast channel and public communication, needs at least n bits of pairwise
shared keys.

Proof. Consider again the key-sharing graph G = (V,E). Suppose on the con-
trary, that only k < n bits of shared keys are used. Then there must be at least
one node of degree 1 in the graph. Thus, by Corollary 1 at most n bits of shared
keys are necessary. �

Corollary 3. Any protocol P that achieves sender anonymity and is resistant
against collusions of t < n−1 players, where the only resources available to the n
players are pairwise shared keys, a broadcast channel and public communication,
needs at least n(n− 1)/2 bits of pairwise shared keys.

Proof. Again consider the key-sharing graph G. Suppose on the contrary, that
only k < n(n− 1)/2 bits of shared keys are used. However, then there are only
k < n(n − 1)/2 edges in a graph of n nodes. Then G is not fully connected
and there is a set of t = n − 2 colluding nodes which can partition the key-
sharing graph. By Lemma 1, they can then break the sender’s anonymity. Thus
n(n− 1)/2 bits of pairwise shared key are necessary to tolerate up to t < n− 1
colluding players. �

2.4 Quantum Resources

We assume familiarity with the quantum model [26]. The fundamental resource
used in our protocols are n-party shared entangled states of the form

|Ψ〉 =
1√
2
(|0n〉+ |1n〉) ≡ 1√

2
(|0〉⊗n + |1〉⊗n).
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These are commonly known as generalized GHZ states [21]. By “shared” we
mean that each of the n players holds exactly one qubit of |Ψ〉. They could have
obtained these states at an earlier meeting or distribute and test them later on.

The key observation used in our protocols is the fact that phase flips and
rotations applied by the individual players have the same effect on the global
state no matter who applied them. Consider for example the phase flip defined
by

σz =
(

1 0
0 −1

)
.

If player number i applies this transformation to his state, the global transfor-
mation is Ui = I⊗(i−1)⊗σz⊗I⊗(n−i), where I is the identity transform. We now
have ∀i ∈ {1, . . . , n} : Ui|Ψ〉 = (|0n〉 − |1n〉)/

√
2. Note that this transformation

takes place “instantaneously” and no communication is necessary.

3 Traceless Quantum Protocols

3.1 Model

To obtain traceless anonymous transmissions we allow the players to have access
to a generalized GHZ state. We assume that the n players have access to the
following resources:

1. n-qubit shared entangled states |Ψ〉 = (|0n〉+ |1n〉)/
√

2 on which the players
can perform arbitrary measurements.

2. A reliable broadcast channel.

3.2 Sending Classical Bits

To start with, we present a protocol to send a classical bit b anonymously, if
the n players share an n-qubit entangled state |Ψ〉. For now, we assume that
only one person wants to send in each round of the protocol and deal with the
case of multiple senders later on. We require our protocol to have the following
properties:

1. (Correctness) If all players are honest, they receive the data item d that was
sent by the sender. If some players are malicious, the protocol aborts or all
honest players receive the same data item d̃, not necessarily equal to d.

2. (Anonymity) If up to t ≤ n−2 players are malicious, the sender and receiver
stay anonymous.

3. (Tracelessness) The protocol is sender and receiver traceless.

Protocol. Let’s return to the original dinner table scenario described earlier.
Suppose Alice, one of the dinner guests, wishes to send a bit d ∈ D = {0, 1}
anonymously. For this she uses the following protocol:
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Protocol 1: ANON(d)
Prerequisite: Shared state (|0n〉+ |1n〉)/

√
2

1: Alice applies a phase flip σz to her part of the state if d = 1 and does
nothing otherwise.

2: Each player (incl. Alice):
- Applies a Hadamard transform to his/her qubit.
- Measures his/her qubit in the computational basis.
- Broadcasts his/her measurement result.
- Counts the total number of 1’s, k, in the n measurement outcomes.
- If k is even, he/she concludes d = 0, otherwise d = 1.

3: The protocol aborts if one of more players do not use the broadcast
channel.

Correctness. First of all, suppose all parties are honest. Since Alice applies
the phase flip σz depending on the value of the bit d she wishes to send, the
players obtain the state (|0n〉+ |1n〉)/

√
2 if d = 0 and (|0n〉 − |1n〉)/

√
2 if d = 1.

By tracing out the other players’ part of the state, we can see that no player
can determine on his own whether the phase of the global state has changed.
We therefore require the players to first apply a Hadamard transform H to their
qubit. This changes the global state such that we get a superposition of all strings
x ∈ {0, 1}n with an even number of 1’s for no phase flip and an odd number of
1’s if a phase flip has been applied:

H⊗n
(

1√
2
(|0n〉+ (−1)d|1n〉)

)
=

=
1√

2n+1

⎛⎝ ∑
x∈{0,1}n

|x〉+ (−1)d
∑

x∈{0,1}n

(−1)|x||x〉

⎞⎠
=

1√
2n+1

∑
x∈{0,1}n

(1 + (−1)d⊕|x|)|x〉,

where |x| denotes the Hamming weight of the string x. Thus we expect an even
number of 1’s if d = 0 and an odd number of 1’s if d = 1. The players now measure
their part of the state and announce the outcome. This allows each player to
compute the number of 1’s in the global outcome, and thus d. If more than one
player had applied a phase flip, ANON computes the parity of the players inputs.
Broadcasting all measurement results needs n uses of a broadcast channel.

Now suppose that some of the players are malicious. Recall that we assume
that the players use a reliable broadcast channel. This ensures an honest player
obtains the same value for the announcement. Thus two honest parties will never
compute a different value for the sent data item d. Further, note that it may
always be possible that one or more malicious players do not use the broadcast
channel. This consequently results in an abort of the protocol. We conclude that
the correctness condition is satisfied.
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Anonymity. As we noticed in Section 2, the resulting global state is indepen-
dent of the identity of the person applying the phase flip. Since a phase flip is
applied locally, no transmissions are necessary to change the global state. Sub-
sequent transmissions are only dependent on the global state. Since this global
state is invariant under an arbitrary permutation of the honest players and since
the communication of the individual players depends only on their part of the
states, the total communication during a run of the protocol P where player
m sends d, is independent of the role of the player. If the sender is not one of
the colluding players, then for the set of colluding players, all other players are
equally likely to be sender. This is precisely the definition of sender anonymity.
A receiver may be specified. His anonymity is then given directly as every player
obtains the bit sent.

Note that a player deviating from the protocol by inverting his measurement
outcome or applying a phase flip himself will only alter the outcome, but not
learn the identity of the sender. The same discussion holds when the protocols
is executed multiple times in succession or parallel.

Tracelessness. The most interesting property of our quantum protocol is that
it is completely traceless: The classical communication during the protocol is
solely dependent on the global state, which is the same no matter who the
sender is. This means that Alice’ communication is independent of her bit d.
The randomness is now determined by the measurement results of the global
state, which has already been altered according to the players inputs. Thus, the
traceless condition is satisfied, because there is thus no record of Alice sending.

We believe that the tracelessness is a very intuitive property of the quan-
tum state, as sending d simply changes the overall probability distribution of
measurement outcomes instead of the individual messages of the sender. Note,
however, that if we had first measured the state |Ψ〉 in the Hadamard basis to
obtain classical information and then allowed the sender to invert the measured
bit to send d = 1, our protocol would no longer be traceless. We leave no record
of Alice’ activity in the form of classical information. Alice can later always deny
that she performed the phase flip. Whereas this is stronger than classical proto-
cols, it also makes our protocol more prone to disruptors. Unlike in the classical
scenario, we cannot employ mechanisms such as traps suggested by Chaum [11],
and Waidner and Pfitzmann [38], to trace back disruptors. If one of our players
is determined to disrupt the channel by, for example, always applying a phase
flip himself, we are not able to find and exclude him from the network.

3.3 Anonymous Entanglement

The dinner guests realize that if they could create entanglement with any of the
other players anonymously, they could teleport a quantum state to that player
anonymously as well. We define the notion of anonymous entanglement, which
may be useful in other scenarios as well:
Definition 6. If two anonymous players A and B share entanglement, we speak
of anonymous entanglement (AE).
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Definition 7. If two players A and B share entanglement, where one of them
is anonymous, we speak of one-sided anonymous entanglement (one-sided AE).

It is possible to use shared entanglement together with classical communication
to send quantum information using quantum teleportation [4]. Anonymous en-
tanglement together with a protocol providing classical sender anonymity thus
forms a virtual channel between two players who do not know who is sitting at
the other end. This allows for easy sender and receiver anonymity for the trans-
mission of qubits. Note that it is also possible to use anonymous entanglement
to obtain a secure classical anonymous channel. Unlike ANON, this provides
security of the data as well. Classically, such a virtual channel would have to be
emulated by exchanging a key anonymously. We require that if all players are
honest, the sender and recipient succeed in establishing an EPR pair. Further-
more, the protocol should achieve sender and receiver anonymity with regard to
the two parts of the shared state. If one or more players are dishonest, they may
disrupt the protocol.

Protocol. We use the same resource of shared states |Ψ〉 to establish anonymous
entanglement for transmitting information by using an idea presented in the
context of quantum broadcast [2]. More general protocols are certainly possible.
For now, we assume that there are exactly two players, sender s (Alice) and
receiver r (Bob), among the n players interested in sharing an EPR pair. If more
players are interested, they can use a form of collision detection described later.

Protocol 2: AE
Prerequisite: Shared state (|0n〉+ |1n〉)/

√
2.

1: Alice (s) and Bob (r) don’t do anything to their part of the state.
2: Every player j ∈ V \{s, r}

- Applies a Hadamard transform to his qubit.
- Measures this qubit in the computational basis with outcome mj .
- Broadcasts mj .

3: s picks a random bit b ∈R {0, 1} and broadcasts b.
4: s applies a phase flip σz to her qubit if b = 1.
5: r picks a random bit b′ ∈R {0, 1} and broadcasts b′.
6: r applies a phase flip σz to his qubit, if b⊕

⊕
j∈V \{s,r}mj = 1.

Correctness. The shared state after the n − 2 remaining players applied the
Hadamard transform becomes:

IA ⊗ IB ⊗H⊗(n−2)

(
1√
2
(|0n〉+ |1n〉)

)
=

=
1√

2n−1

∑
x∈{0,1}n−2

(|00〉|x〉+ (−1)|x||11〉|x〉).
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All players except Alice and Bob measure this state. The state for them
is thus (|00〉 + (−1)|x||11〉)/

√
2. After Alice’s phase flip the system is in state

(|00〉 + (−1)|x|⊕b|11〉)/
√

2. The sum of the measurements results gives |x| =⊕
j∈V \{s,r}mj . Thus Bob can correct the state to (|00〉+ |11〉)/

√
2 as desired.

Anonymity. The measurement outcomes are random. Thus, the players obtain
no information during the measurement step. Likewise, the bits broadcast by
Alice and Bob are random. Thus both of them remain hidden. Note that the
protocol is resistant to collusions of up to n− 2 players: The combined measure-
ment outcomes still do not carry any information about Alice and Bob.

3.4 Sending Qubits

Let’s return to the dinner table once more. After they have been dining for
hours on end, Bob, the waiter, finally shows up and demands that the bill is
paid. Alice, one of the dinner guests, is indeed willing to pay using her novel
quantum coins, however, does not want to reveal this to her colleagues. The
goal is now to transmit an arbitrary qubit and not mere classical information.
As before, we ask that our protocol achieves sender and receiver anonymity and
is traceless. Furthermore, if all players are honest, the receiver should obtain
the qubit sent. Note that unlike in the classical case, we do not require that
all honest players hold the same qubit at the end of the protocol. This would
contradict the no-cloning property of quantum states. Alice now uses the shared
EPR pair to send a quantum coin |φ〉 to Bob via teleportation [26].

Protocol 3: ANONQ(|φ〉)
Prerequisite: Shared states (|0n〉+ |1n〉)/

√
2

1: The players run AE: Alice and Bob now share an EPR pair: |Γ 〉 =
(|00〉+ |11〉)/

√
2

2: Alice uses the quantum teleportation circuit with input |φ〉 and EPR
pair |Γ 〉, and obtains measurement outcomes m0,m1.

3: The players run ANON(m0) and ANON(m1) with Alice being the
sender.

4: Bob applies the transformation described by m0,m1 on his part of |Γ 〉
and obtains |φ〉.

If all players are honest, after step 1, Alice and Bob share the state |Γ 〉 =
(|00〉+ |11〉)/

√
2 anonymously. The correctness condition is thus satisfied by the

correctness of quantum teleportation. As discussed earlier, AE and ANON(b) do
not leak any information about Alice or Bob. Since no additional information is
revealed during the teleportation step, it follows that ANONQ(|φ〉) does not leak
any information either and our anonymity condition is satisfied. In our example,
we only wanted Alice to perform her payment anonymously, whereas Bob is
known to all players. Our protocol also works, however, if Alice does not know
the identity of Bob.
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4 Dealing with Multiple Senders

So far, we have assumed that only a single person is sending in any one round.
In reality, many users may wish to send simultaneously, leading to collisions. A
user can easily detect a collision if it changes the classical outcome of the trans-
mission. Depending on the application this may be sufficient. However, it may be
desirable to detect collisions leading to the same outcome. This is important if we
want to know the value of each of the bits sent and not only their overall parity.

The simplest way to deal with collisions is for the user to wait a random num-
ber of rounds, before attempting to resend the bit. This method was suggested by
Chaum [11] and is generally known as ALOHA [34]. Unfortunately this approach
is rather wasteful, if many players try to send simultaneously. Alternatively one
could use a reservation map technique based on collision detection similar to
what was suggested by Pfitzmann et al. [28]: For this one uses n applications of
collision detection (of !logn"+ 1 rounds each) to reserve the following n slots.

We will now present a simple quantum protocol to detect all kinds of colli-
sions, provided that no user tries to actively disrupt the protocol. We use the
same resource, namely shared entangled states |Ψ〉. The important point of this
protocol is that it is traceless.

4.1 Protocol

Before each round of communication, the n players run a (!log n" + 1)-round
test to check, whether a collision would occur. For this they require !logn"+ 1
additional states of the form |Ψ〉 = (|0n〉+ |1n〉)/

√
2. Each state is rotated before

the start of the collision detection protocol. Let

Uj = Rz(−π/2j)⊗ I⊗(n−1) = ei
π

2j+1

(
1 0
0 e−iπ/2

j

)
⊗ I⊗(n−1)

and map the jth state to |tj〉 = Uj |Ψ〉. This could for example be done by a
dedicated player or be determined upon distribution of the entangled states |Ψ〉.

Protocol 4: Collision Detection
Prerequisite: !logn"+ 1 states |Ψ〉 = (|0n〉+ |1n〉)/

√
2

1: A designated player prepares !logn"+ 1 states by rotations:
For 0 ≤ j ≤ !logn", he applies Rz(−π/2j) to his part of one |Ψ〉 to
create |tj〉.

2: In round 0 ≤ j ≤ !logn" each of the n players
- Applies Rz(π/2j) to his part of the state |tj〉, if he wants to send.
- Applies a Hadamard transform to his part of the state.
- Measures in the computational basis.
- Announces his measurement result to all other players.
- Counts the total number of 1’s, kj , in the measurement results.
- If kj is odd, concludes a collision has occurred and the protocol ends.

3: If all kj are even, exactly 1 player wants to send.
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4.2 Correctness and Privacy

Let’s first take an informal look, why this works. In round j with 0 ≤ j ≤ !logn",
each user who wishes to send applies a rotation described by Rz(π/2j) to his
part of the state. Note that if exactly one user tries to send, this simply rotates
the global state back to the original state |Ψ〉 = (|0n〉+ |1n〉)/

√
2. If k > 1 users

try to send, we can detect the collision in round j such that k = 2jm+ 1 where
m ∈ N is odd: First |tj〉 is rotated back to |Ψ〉 by the first of the k senders. The
state is then rotated further by an angle of (π/2j) · 2jm = mπ. But

Rz(mπ) = e−i
mπ
2

(
1 0
0 eimπ

)
= ±i

(
1 0
0 −1

)
applied to |Ψ〉 gives |Ψ ′〉 = ±i(|0n〉 − |1n〉)/

√
2, where we can ignore the global

phase. The users now all apply a Hadamard transform to their part of the state
again, measure and broadcast their measurement results to all players. As before,
they can distinguish between |Ψ〉 and |Ψ ′〉, by counting the number of 1’s in the
outcome. If the number of users who want to send in round j is not of the form
2jm + 1, the players may observe an even or odd number of 1’s. The crucial
observation is that in !logn" + 1 rounds, the players will obtain |Ψ ′〉 at least
once, if more than one user wants to send, which they can detect. If no phase
flip has been observed in all rounds of the collision detection protocol, the players
can be sure there is exactly one sender. The key to this part of the protocol is
the following simple observation:

Lemma 2. For any integer 2 ≤ k ≤ n, there exist unique integers m and j,
with m odd and 0 ≤ j ≤ !logn", such that k = 2jm+ 1.

Proof. By the fundamental theorem of arithmetic we can write k − 1 = 2jm for
unique j,m ∈ N where m is odd. We have j ≤ !logn", since 2 ≤ k ≤ n. Thus
k = 2jm+ 1. �

Corollary 4. !logn" + 1 rounds, using one state (|0n〉 + |1n〉)/
√

2 each, are
sufficient to detect 2 ≤ k ≤ n senders within a group of n players.

Proof. Using Lemma 2 we can write k = 2jm+1 with 0 ≤ j ≤ !logn". In round j
the final state will be Rz((2jm) · (π/2j))|Ψ〉 = Rz(mπ)|Ψ〉 = ±i(|0n〉− |1n〉)/

√
2,

which the players can detect. �

There exists a classical protocol already suggested by Pfitzmann et al. [37] using
O(n2 logn) bits of private shared randomness. However, this protocol is not
traceless as desired by our protocol. Our protocol preserves anonymity and is
traceless by the same argument used in Section 3.2.

When sending quantum states, collisions are not so easy to detect, since they
do not change the outcome noticeably. The protocol to establish anonymous
entanglement relies on the fact that only two players refrain from measuring.
We thus require some coordination between the two players. Here, we can make
use of the same collision detection protocol as we used to send classical bits: First
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run the collision detection protocol to determine the sender. The sender again
expresses his interest in indicating that he wants to send by employing rotations.
Then perform another application of collision detection for the receiver.

5 Conclusions and Future Work

We have presented a protocol for achieving anonymous transmissions using
shared quantum states together with a classical broadcast channel. The main
feature of this protocol is that, unlike all classical protocols, it prevents later re-
construction of the sender. This indicates that shared entangled states are very
well suited to achieve anonymity. Perhaps similar techniques could also play an
important role in other protocols where such a traceless property is desirable.

Our protocol is a first attempt at providing anonymous transmissions with
this particular property. More efficient protocols may be possible. Perhaps a
different form of quantum resource gives an additional advantage. However, we
believe that our protocol is close to optimal for the given resources. We have
also not considered the possibility of allowing quantum communication between
the players, which could be required by more efficient protocols. It is also open
whether a better form of collision detection and protection against malicious
disruptors is possible. The states used for our collision detection protocol are
hard to prepare if n is very large. Furthermore, using shared entangled states, it
is always possible for a malicious user to measure his qubit in the computational
basis to make further transmissions impossible.

So far, we have simply assumed that the players share a certain quantum
resource. In reality, however, this resource would need to be established before
it can be used. This would require quantum communication among the players
in order to distribute the necessary states and at least classical communication
for verification purposes. The original DC-net protocol suffers from a similar
problem with regard to the distribution of shared keys, which is impossible to
do from scratch using only classical channels [26]. Some quantum states on the
other hand have the interesting property that the players can create and test
the states among themselves, instead of relying on a trusted third party.
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Privacy-Preserving Graph Algorithms in the
Semi-honest Model

Justin Brickell and Vitaly Shmatikov
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Abstract. We consider scenarios in which two parties, each in posses-
sion of a graph, wish to compute some algorithm on their joint graph
in a privacy-preserving manner, that is, without leaking any information
about their inputs except that revealed by the algorithm’s output.

Working in the standard secure multi-party computation paradigm,
we present new algorithms for privacy-preserving computation of APSD
(all pairs shortest distance) and SSSD (single source shortest distance),
as well as two new algorithms for privacy-preserving set union. Our al-
gorithms are significantly more efficient than generic constructions. As
in previous work on privacy-preserving data mining, we prove that our
algorithms are secure provided the participants are “honest, but curious.”

Keywords: SecureMultipartyComputation,GraphAlgorithms,Privacy.

1 Introduction

In this paper, we investigate scenarios with two mutually distrustful parties, each
in possession of a graph (representing, e.g., a network topology, a distribution
channel map, or a social network). The parties wish to compute some algorithm
on their combined graph, but do not wish to reveal anything about their private
graphs beyond that which will be necessarily revealed by the output of the
algorithm in question.

For example, consider two Internet providers who are contemplating a merger
and wish to see how efficient the resulting joint network would be without reveal-
ing the details of their existing networks; or two transportation companies trying
to determine who has the greatest capacity to ship goods between a given pair
of cities without revealing what that capacity is or which distribution channels
contribute to it; or two social networking websites wishing to calculate aggre-
gate statistics such as degrees of separation and average number of acquaintances
without compromising privacy of their users, and so on.

In this paper, we construct privacy-preserving versions of classic graph algo-
rithms for APSD (all pairs shortest distance) and SSSD (single source shortest
distance). Our algorithm for APSD is new, while the SSSD algorithm is a privacy-
preserving transformation of the standard Dijkstra’s algorithm. We also show
that minimum spanning trees can be easily computed in a privacy-preserving
manner. As one of our tools, we develop protocols for privacy-preserving set
union, which are results of independent interest.

B. Roy (Ed.): ASIACRYPT 2005, LNCS 3788, pp. 236–252, 2005.
c© International Association for Cryptologic Research 2005
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We demonstrate that our constructions are significantly more efficient than
those based on generic constructions for secure multi-party computation such
as Yao’s garbled circuits [39]. Some of the efficiency gain is due to our use of
canonical orderings on graph edges. We believe that this technique may find
applicability beyond the problems considered in this paper.

We prove that our constructions are secure in the semi-honest model. Assum-
ing that a party correctly follows the protocol, there is no efficient adversary that
can extract more information from the transcript of the protocol execution than
is revealed by that party’s private input and the result of the graph algorithm.
Our choice of the semi-honest model follows previous work on privacy-preserving
data mining such as Lindell and Pinkas’ construction for a privacy-preserving
version of the ID3 decision tree learning algorithm [28], and constructions by
Yang et al. for privacy-preserving classification [38].

In general, the semi-honest model seems to be the right fit for our setting,
where there is no realistic way to verify that the parties are submitting their
true graphs as private inputs. The best we could hope for in the case of actively
malicious participants is a protocol in which the parties first commit to their
graphs, and then prove at every step of the protocol that their inputs match their
commitments. This would greatly complicate the protocols without providing
any protection against parties who maliciously choose their graphs in such a way
that the result of the computation on the joint graph completely reveals the other
party’s input. We leave investigation of privacy-preserving graph algorithms in
the model with malicious participants to future work.

This paper is organized as follows. We survey related work in section 2,
then present our definition of privacy in section 3 and our cryptographic toolkit,
including a construction for private set union, in section 4. Section 5 contains
the main results of the paper: privacy-preserving APSD and SSSD algorithms.
Their complexity is analyzed in section 6. Conclusions are in section 7.

2 Related Work

This paper follows a long tradition of research on privacy-preserving algorithms
in the so called secure multiparty computation (SMC) paradigm. Informally, se-
curity of a protocol in the SMC paradigm is defined as computational indistin-
guishability from some ideal functionality, in which a trusted third party accepts
the parties’ inputs and carries out the computation. The ideal functionality is
thus secure by definition. The actual protocol is secure if the adversary’s view in
any protocol execution can be simulated by an efficient simulator who has access
only to the ideal functionality, i.e., the actual protocol does not leak any infor-
mation beyond what is given out by the ideal functionality. Formal definitions
for various settings can be found, for example, in [6,7,22].

Any polynomial-time multi-party computation can be done in a privacy-
preserving manner using generic techniques of Yao [39] and Goldreich, Micali,
and Wigderson [23]. Generic constructions, however, are sometimes impractical
due to their complexity. Recent research has focused on finding more efficient
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privacy-preserving algorithms for specific problems such as computation of ap-
proximations [18], auctions [33], set matching and intersection [20], surveys [19],
computation of the k-th ranked element [1] and especially data mining problems
such as privacy-preserving computation of decision trees [28], classification of
customer data [38], and mining of vertically partitioned data [16,37].

The techniques we use in this paper are closely related to those previously
used in the cryptographic version of privacy-preserving data mining, e.g., by
Lindell and Pinkas in their privacy-preserving transformation of the ID3 algo-
rithm [28]. We, too, use generic Yao’s protocol [39,29] as a building block. Yao’s
protocol can be implemented using efficient constructions for oblivious trans-
fer [31,32] and secure function evaluation [30].

In this paper, we aim to follow the SMC tradition and provide provable
cryptographic guarantees of security for our constructions. Another line of re-
search has focused on statistical privacy in databases, typically achieved by ran-
domly perturbing individual data entries while preserving some global proper-
ties [4,2,5,3,26,12,17]. A survey can be found in [36]. The proofs of security in
this framework are statistical rather than cryptographic in nature, and typi-
cally permit some leakage of information, while supporting more efficient con-
structions. In this paradigm, Clifton et al. have also investigated various data
mining problems [10,24,35,25], while Du et al. researched special-purpose con-
structions for problems such as privacy-preserving collaborative scientific analy-
sis [14,13,34,15]. Recent work by Chawla et al. [8] aims to bridge the gap between
the two frameworks and provide rigorous cryptographic definitions of statistical
privacy in the SMC paradigm.

Another line of cryptographic research on privacy focuses on private infor-
mation retrieval (PIR) [9,21], but the problems and techniques in PIR are sub-
stantially different from this paper.

3 Definition of Privacy

We use a simplified form of the standard definition of security in the static
semi-honest model due to Goldreich [22] (this is the same definition as used, for
example, by Lindell and Pinkas [28]).

Definition 1. (computational indistinguishability): Let S ⊆ {0, 1}∗. Two en-
sembles (indexed by S), X

def= {Xw}w∈S and Y
def= {Yw}w∈S are computation-

ally indistinguishable (by circuits) if for every family of polynomial-size circuits,
{Dn}n∈N, there exists a negligible ( i.e., dominated by the inverse of any polyno-
mial) function μ : N �→ [0, 1] so that

|Pr[Dn(w,Xw) = 1]− Pr[Dn(w,Yw) = 1]| < μ(|w|)

In such a case we write X
c≡ Y .

Suppose f is a polynomial-time functionality (deterministic in all cases con-
sidered in this paper), and π is the protocol. Let x and y be the parties’ respective
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private inputs to the protocol. For each party, define its view of the protocol as
(x, r1,m1

1, . . . ,m
1
k) (respectively, (y, r2,m2

1, . . . ,m
2
l )), where r1,2 are the parties’

internal coin tosses, and mi
j is the jth message received by party i during the

execution of the protocol. We will denote the ith party’s view as viewπ
i (x, y), and

its output in the protocol as outputπi (x, y).

Definition 2. Protocol π securely computes deterministic functionality f in the
presence of static semi-honest adversaries if there exist probabilistic polynomial-
time simulators S1 and S2 such that

{S1(x, f(x, y))}x,y∈{0,1}∗
c≡ {viewπ

1 (x, y)}x,y∈{0,1}∗
{S2(y, f(x, y))}x,y∈{0,1}∗

c≡ {viewπ
2 (x, y)}x,y∈{0,1}∗

where |x| = |y|.

Informally, this definition says that each party’s view of the protocol can be
efficiently simulated given only its private input and the output of the algorithm
that is being computed (and, therefore, the protocol leaks no information to a
semi-honest adversary beyond that revealed by the output of the algorithm).

4 Tools

As building blocks for our algorithms, we use protocols for privacy-preserving
computation of a minimum min(x, y) and set union S1 ∪ S2.

In the minimum problem, the parties have as their respective private inputs
integers x1 and x2 which are representable in n bits. They wish to privately com-
pute m = min(x1, x2). Because this problem is efficiently solved by a simple cir-
cuit containing O(n) gates, it is a good candidate for Yao’s generic method [39].
An implementation of this functionality with Yao’s garbled circuit requires 2
communication rounds with O(n) total communication complexity and O(n)
computational complexity.

4.1 Privacy-Preserving Set Union

In the set union problem, parties P1 and P2 have as their respective private
inputs sets S1 and S2 drawn from some finite universe U . They wish to compute
the set S = S1 ∪ S2 in a privacy-preserving manner, i.e., without leaking which
elements of S are in the intersection S1 ∩S2. We will define |S1| = s1, |S2| = s2,
|S| = s, and |U | = u.

In this section, we give two solutions for privacy-preserving set union: the
iterative method, and the tree-pruning method. Both require communication
and computational complexity that is logarithmic in u, provided s is small (note
that even if we are not concerned about privacy, computing the set union requires
at least O(s lg u) bandwidth, although it can be done in 1 round). Appendix B
surveys several previously proposed techniques that can be used to compute the
set union, but these techniques are all either linear in u (or worse), or do not
fully preserve privacy.
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Iterative method. The basic idea of the iterative method is to build up S one
element at a time, from “smallest” to “largest.” Before the protocol begins,
both parties agree upon a canonical total ordering for the entire universe U . As
a result, each element in U is given an integer label with lgu bits. In addition,
we need a label representing ∞, for which can simply use the integer u+ 1. The
protocol proceeds as follows:

Step 1. Set S = ∅.
Step 2. P1 selects m1 as the canonically smallest element in S1, or sets m1 = ∞
if S1 = ∅. P2 likewise selects m2 as the canonically smallest element in S2, or
sets m1 = ∞ if S1 = ∅.
Step 3. Using a protocol for private minimum, P1 and P2 privately compute
m = min(m1,m2).
Step 4. If m = ∞, stop and return S. Otherwise, S = S ∪ {m} and the parties
remove m from their input sets (it may be present in one or both). Then return
to step 2.

The protocol preserves privacy because, given the output set S, a simulator
can determine the value of m at each iteration. The protocol used for computing
the minimum is private, so there exists an efficient algorithm that can simulate
its execution to the party P1 given its input and the output m (likewise for
P2). The simulator for the iterative method protocol uses the simulator for the
minimum protocol as a subroutine, following the standard hybrid argument.

The iterative method protocol requires s + 1 iterations, and in each itera-
tion the minimum of two (lg u)-bit integers is privately computed. Using Yao’s
method, this requires a circuit with 2 lg u inputs and O(lg u) gates. The 2 lg u
oblivious transfers can all take place in parallel, and since Yao’s method re-
quires a constant number of rounds the whole protocol takes O(s) communi-
cation rounds. The total communication and computational complexity for the
iterative method is O(s lg u).

Tree-pruning method. Before the tree-pruning protocol begins, the participants
agree on a (lg u)-bit binary label for each element in the universe (note that a
canonical total ordering would automatically provide such a label). The basic
idea of the protocol is that the participants will consider label prefixes of in-
creasing length, and use a privacy-preserving Bit-Or protocol (see appendix C)
to determine if either participant has an element with that prefix in his set.

Initially, the single-bit prefixes “0” and “1” are set “live.” The protocol pro-
ceeds through lg u rounds, starting with round 1. In the ith round, the partic-
ipants consider the set P of i-bit “live” prefixes. For each prefix p ∈ P , each
participant sets his respective 1-bit input to 1 if he has an element in his set
with prefix p, and to 0 if he does not have any such elements. The participants
then execute a privacy-preserving Bit-Or protocol on their respective 1-bit in-
puts. If the result of the Bit-Or protocol is 1, then p0 and p1 are set as live
(i+ 1)-bit prefixes. Otherwise, p0 and p1 are dead prefixes.

By a simple inductive argument, the number of live prefixes in each round
does not exceed 2 · |S|, because an i-bit prefix pi = b1 . . . bi can be live if and
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only if at least one of the participants has an element whose label starts with
b1 . . . bi−1, and the number of such elements cannot exceed the total number of
elements in the union, i.e., |S|.

In the last round (i = lg u), the length of the prefix is the same as the length
of the binary labels, and the entire set P of live prefixes is declared to be the
output S of the privacy-preserving set union protocol.

The tree-pruning protocol preserves privacy because, given the output set
S, a simulator can determine the output of each of the Bit-Or protocols. As
in the case of the iterative method protocol, we can construct a simulator for
the tree-pruning protocol that uses a simulator for the Bit-Or protocol as a
subroutine, and prove its correctness using a hybrid argument. The construction
is simple and is omitted for brevity.

The tree-pruning protocol requires lg u iterations, and in each iteration the
pairwise Bit-Or of at most 2s bits is computed. These computations can all
take place in parallel, so the protocol requires O(lg u) communication rounds.
Each iteration requires O(s) communication and computational complexity, so
the entire protocol has complexity O(s lg u). Both the iterative method and tree
pruning protocols have the same complexity, but different numbers of rounds.
The iterative method requires fewer rounds when s = o(lg u).

5 Privacy-Preserving Algorithms on Joint Graphs

We now present our constructions that enable two parties to compute algorithms
on their joint graph in a privacy-preserving manner. Let G1 and G2 be the two
parties’ respective weighted graphs. Assume that G1 = (V1, E1,w1) and G2 =
(V2, E2,w2) are complete graphs on the same set of vertices, that is, V1 = V2

and E1 = E2. Let w1(e) and w2(e) represent the weight of edge e in G1 and G2,
respectively. To allow incomplete graphs, the excluded edges may be assigned
weight ∞. We are interested in computing algorithms on the parties’ joint min-
imum graph gmin(G1, G2) = (V,E,wmin) where wmin(e) = min(w1(e),w2(e)),
since minimum joint graphs seem natural for application scenarios such as those
considered in section 1.

5.1 Private All Pairs Shortest Distance (APSD)

The All Pairs Shortest Distance (APSD) problem is the classic graph theory
problem of finding shortest path distances between all pairs of vertices in a
graph (see, e.g., [11]). We will think of APSD(G) as returning a complete graph
G′ = (V,E′,w′) in which w′(eij) = dG(i, j) and V is the original edge set of
G. Here dG(i, j) represents the shortest path distance from i to j in G. This
problem is particularly well suited to privacy-preserving computation because
the solution “leaks” useful information that can be used by the simulator.

To motivate the problem, consider two shipping companies who are hoping
to improve operations by merging so that they can both take advantage of fast
shipping routes offered by the other company. They want to see how quickly
the merged company would be able to ship goods between pairs of cities, but
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they don’t want to reveal all of their shipping times (and, in particular, their
inefficiencies) in case the merger doesn’t happen. In other words, they wish to
compute APSD(G) where G = gmin(G1, G2).

The basic idea behind our construction is to build up the solution graph by
adding edges in order from shortest to longest. The following algorithm takes as
input the parties’ complete graphs G1 and G2. The graphs may be directed or
undirected, but they must have strictly positive weight functions.

1. For notational convenience we introduce a variable k, initially set to 1, that
represents the iteration count of the algorithm. Color each edge in E “blue”
by letting B(k) denote the set of blue edges in the edge set E at iteration
k, and setting B(0) = E. Let R(k) denote the set of “red” edges, R(k) def

=
E − B(k). The lengths of red edges have reached their final values and will
not change as the algorithm proceeds, while the lengths of blue edges may
still decrease.

2. A public graph G
(0)
0 = (V,E,w(0)

0 ) is created. Its edges are all initially
weighted as w

(0)
0 (e) =∞. When the algorithm terminates after n iterations,

we will have w
(n)
0 (eij) = dG(i, j) and B(n) = ∅.

3. The parties compute the following public value

m
(k)
0 = min

e∈B(k−1)
w

(k−1)
0 (e) (1)

and the respective private values

m
(k)
1 = min

e∈B(k−1)
w1(e), and (2)

m
(k)
2 = min

e∈B(k−1)
w2(e) (3)

4. Now the parties privately compute the length of the smallest blue edge
among all three graphs, m(k) = min(min(m(k)

1 ,m
(k)
0 ),min(m(k)

2 ,m
(k)
0 )), us-

ing a generic protocol for private minimum (section 4). This protocol does
not reveal the larger value.

5. The parties form the following public set

S
(k)
0 = {e|w(k−1)

0 (e) = m(k)} (4)

and the respective private sets

S
(k)
1 = {e|w1(e) = m(k)}, and (5)

S
(k)
2 = {e|w2(e) = m(k)} (6)

By construction, S(k)
0 , S(k)

1 , and S(k)
2 contain only blue edges.

6. First, the parties privately compute the set union S(k) = S
(k)
0 ∪ S(k)

1 ∪ S(k)
2 .

This is done using the privacy-preserving set union algorithm from section 4.
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Next, the color of each edge e ∈ S(k) is changed from blue to red by setting
B(k) = B(k−1) − S(k). Define a weight function w

′(k)
0 by

w
′(k)
0 (e) =

{
m(k) if e ∈ S(k)

w
(k−1)
0 (e) otherwise

(7)

7. Examine triangles with an edge eij ∈ S(k), an edge ejk ∈ R(k), and an edge
eik ∈ B(k). Define the weight function w

(k)
0 by fixing these triangles if they

violate the triangle inequality under w
′(k)
0 . More precisely, if w

′(k)
0 (eij) +

w
′(k)
0 (ejk) < w

′(k)
0 (eik), then define w

(k)
0 (eik) = w

′(k)
0 (eij) + w

′(k)
0 (ejk). Do

the same for triangles with an edge eij ∈ R(k), an edge ejk ∈ S(k), and an
edge eik ∈ B(k).

8. If there are still blue edges, go to step 3. Otherwise stop; the graph G
(k)
0

holds the solution to APSD(G).

The algorithm is proved correct in appendix A. The proof of privacy follows.

Proof (Privacy). We describe a simulator for P1; the simulator is given P1’s
input to the protocol, x, and the output of the protocol, f(x, y) = G′. The
simulators are identical for P1 and P2 except for the asymmetry in the simulation
of the set union and minimum subprotocols. We assume that simulators for
the subprotocols exist because they are private protocols. For instance, if Yao’s
protocol is used then we can use the simulator in [29].

We will assume that there are n protocol rounds. The view of P1 is

{RTm(x1, y1),RT u(x2, y2),RTm(x3, y3), . . . ,RT u(x2n, y2n)} (8)

where RTm denotes the real transcript of the private minimum protocol, and
RT u denotes the real transcript of the private set union protocol.

We will show in later theorems that the output of each of these protocol
executions can be computed by the simulator as a polynomial function of G′,
which we will denote as hmi (G′) and hui (G

′). We will also show that P1’s input
to each of these protocol executions can be computed as a polynomial function
of x and G′ which we will denote as gmi (x,G′) and gui (x,G′). The simulator can
therefore use the subprotocol simulators as subroutines, producing the simulated
transcript

{STm(gm1 (x,G′), hm1 (G′)), . . . , ST u(gu2n(x,G
′), hu2n(G

′))} (9)

where STm and ST u denote the simulated transcripts of the minimum and union
protocols, respectively.

We prove a hybrid argument over the simulated views for the minimum and
set union protocols. First, define the hybrid distribution Hi in which the first i
minimum/union protocols are simulated and the last 2n− i are real. Formally,
let Hi(x, y) denote the distribution:

{STm(gm1 (x,G′), hm1 (G′)), . . . , ST u(gui (x,G′), hui (G
′)),

RTm(xi+1, yi+1),RT u(xi+2, yi+2), . . . ,RT u(x2n, y2n)}
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We now prove that H0(x, y)
c≡ H2n(x, y) by showing that for all i, Hi(x, y)

c≡
Hi+1(x, y). For the sake of contradiction, assume the opposite, and choose i so

that Hi(x, y)
c

�≡ Hi+1(x, y). These two distributions differ in only one term, so
there must be a polynomial-time distinguisher for either

ST u(gui (x,G′), hui (G
′)) and RT u(xi, yi) or

STm(gmi (x,G′), hmi (G′)) and RTm(xi, yi)

However, this contradicts the privacy of the subprotocols, which implies that no
such polynomial-time distinguishers exist.

We now show that for each execution of the set union and minimum sub-
protocols, P1’s subprotocol input and the subprotocol output are computable as
functions of P1’s input and the output of the entire APSD protocol.

Theorem 1. m(k) is efficiently computable as a function of G′.

Proof. The edge weights found in G′ are m(1) < m(2) < . . . < m(n). Therefore
m(k) is the kth smallest edge weight in G′.

Theorem 2. S(k) is efficiently computable as a function of G′.

Proof. S(k) is the set of edges in G′ with weight m(k).

Theorem 3. m(k)
1 is efficiently computable as a function of G1 and G′.

Proof. m(k)
1 is the smallest edge weight in G1 that is > m(k−1), allowing that

m(0) = 0. This is because all edges with weight ≤ m(k−1) are in R(k−1).

Theorem 4. S(k)
1 is efficiently computable as a function of G1 and G′.

Proof. S(k)
1 is the set of edges in G1 with weight m(k).

5.2 Private All Pairs Shortest Path

While there is only a single all pairs shortest distance solution for a given graph,
there may be many all pairs shortest path solutions, because between a pair of
points there may be many paths that achieve the shortest distance. As a side
effect of engaging in the protocol described in section 5.1, the two participants
learn an APSP solution. When defining the weight function w

(k)
0 by fixing vio-

lating triangles in w
′(k)
0 during step 7, a shortest path solution may be associated

with the fixed edge. Specifically, if w
′(k)
0 (eij) + w

′(k)
0 (ejk) < w

′(k)
0 (eik), then the

shortest path from i to k is through j.
In step 6 of subsequent iterations, when adding an edge eij ∈ S(k) to the set

of blue edges, we can conclude that the shortest path from i to j is the edge
eij itself if eij �∈ S

(k)
0 , or is the shortest path solution as computed above if

eij ∈ S(k)
0 .

Note that learning this APSP solution does not imply any violation of privacy,
as it is the APSP solution implied by the APSD solution.
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5.3 Private Single Source Shortest Distance (SSSD)

The Single Source Shortest Distance (SSSD) problem is to find the shortest
path distances from a source vertex s to all other vertices [11]. An algorithm to
solve APSD also provides the solution to SSSD, but leaks additional information
beyond that of the SSSD solution and cannot be considered a private algorithm
for SSSD. Therefore, this problem warrants its own investigation.

Similar to the protocol of section 5.1, the SSSD protocol on the minimum
joint graph adds edges in order from smallest to largest. This protocol is very
similar to Dijkstra’s algorithm, but is modified to take two graphs as input.

1. Set w
(0)
1 = w1 and w

(0)
2 = w2. Color all edges incident on the source s blue

by putting all edges esi into the set B(0). Set the iteration count k to 1.
2. Both parties privately compute the minimum length of blue edges in their

graphs.

m
(k)
1 = min

esi∈B(k−1)
w

(k−1)
1 (esi),

m
(k)
2 = min

esi∈B(k−1)
w

(k−1)
2 (esi)

3. Using the privacy-preserving minimum protocol, compute

m(k) = min(m(k)
1 ,m

(k)
2 ).

4. Each party finds the set of blue edges in its graph with length m(k).

S
(k)
1 = {esi|w(k−1)

1 (esi) = m(k)}, and

S
(k)
2 = {esi|w(k−1)

2 (esi) = m(k)}
5. Using the privacy-preserving set union protocol, compute

S(k) = S
(k)
1 ∪ S(k)

2 .

6. Color the edges in S(k) red by setting Bk = B(k−1) − S(k). Define a weight
function w

′(k)
1 by

w
′(k)
1 (e) =

{
m(k) if e ∈ S(k)

w
(k−1)
1 (e) otherwise

(10)

and a weight function w
′(k)
2 by

w
′(k)
2 (e) =

{
m(k) if e ∈ S(k)

w
(k−1)
2 (e) otherwise

(11)

7. Similar to the APSD algorithm, form the weight function w
(k)
1 by fixing the

triangles in w
′(k)
1 that violate the triangle inequality and contain edges in

S(k). w2(k) is likewise formed from w
′(k)
2 .

If there are still blue edges remaining, go to step 2. Otherwise stop; both par-
ties now have a graph with each edge incident on s colored red, and with the
weight of these edges equal to the shortest path distance from s to each vertex.
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5.4 Minimum Spanning Tree

Suppose that two frugal telephone companies wish to merge. Each company has
a cost function for connecting any pair of houses, and they want to connect
every house as cheaply as possible using the resources available to the merged
company. In other words, they wish to compute MST(gmin(G1, G2)). If they can
perform this computation privately, then both companies can see the final result
without revealing their entire cost functions.

Both Kruskal’s and Prim’s algorithms for MST are easily turned into private
protocols using our techniques, because the algorithms already consider edges
in order from smallest to largest. At each iteration, Kruskal’s algorithm adds
the shortest edge such that its addition does not form a loop. It is a simple
task for each party to compute the set of edges which would not form loops,
and then to privately compute the length of the shortest edge in this set. One
problem arises when there are multiple edges that share this length. In the short-
est path algorithms, we addressed this issue by adding all edges of appropriate
length at the same time using the private set union protocol, but this will not
work for MST. Instead, we can assign a canonical ordering to the edges, and at
each step find the shortest length edges that are canonically “first.” This will
allow a simulator to determine, given the final MST, in what order the edges
arrived.

6 Complexity Analysis

For each algorithm considered in this paper, we calculate the number of rounds,
the total communication complexity, and the computational complexity, and
compare them with the generic method. Using Yao’s method on a circuit with
m gates and n inputs requires O(1) rounds, O(m) communication, and O(m+n)
computational overhead. Lindell and Pinkas note in [28] that the computational
overhead of the n oblivious transfers in each invocation of Yao’s protocol typ-
ically dominates the computational overhead for the m gates, but for correct
asymptotic analysis we must still consider the gates.

Complexity of privacy-preserving APSD. For our analysis we will assume that
the edge set E has size n, and that the maximum edge length is l. The generic
approach to this problem would be to apply Yao’s Method to a circuit that
takes as input the length of every edge in G1 and G2, and returns as output
G = APSD(gmin(G1, G2)). Clearly, such a circuit will have 2n log l input bits.
To count the number of gates, note that a circuit to implement Floyd-Warshall
requires O(n3/2) minimums and O(n3/2) additions. For integers represented with
log l bits, both of these functionalities require log l gates, so we conclude that
Floyd-Warhsall requires O(n3/2 log l) gates. To compute gmin requires O(n log l)
gates, but this term is dominated by the gate requirement for Floyd-Warshall.
We conclude that the generic approach requires O(1) rounds, O(n3/2 log l) com-
munication, and O(n3/2 log l) computational overhead.
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The complexity of our approach depends on the number of protocol iterations
k, which is equal to the number of different edge lengths that appear in the
solution graph. In iteration i, we take the minimum of two (lg l)-bit integers,
and compute a set union of size si. Because each edge in the graph appears in
exactly one of the set unions, we also know that

∑k
i=1 si = n.

First we will determine the contribution to the total complexity made by
the integer minimum calculations. If we use Yao’s protocol, then each integer
minimum requires a constant number of communication rounds, O(lg l) inputs,
and O(lg l) gates, so the k calculations together contribute O(k) rounds, O(k lg l)
communication complexity, and O(k lg l) computational complexity.

Complexity contribution of the set union subprotocols depends on whether we
use the iterative method or the tree pruning method as described in section 4.
If the iterative method is used, then the k invocations of set union require a
total of O(n) rounds, O(k lgn) communication complexity, and O(k lgn) com-
putational complexity. If the tree-pruning method is used, then O(k lg n) rounds
are required, but the communication and computational complexity remains
the same. The asymptotically better performance of the iterative method hides
the fact that each of the k rounds requires O(lg n) oblivious transfers, which
are considerably more expensive than the O(|si|) private Bit-Or computations
performed in each of the lg u rounds of the tree-pruning method.

Using the iterative method for set union, and noting that k = O(n), we con-
clude that our APSD protocol requires O(n) communication rounds, O(n log n+
n log l) communication complexity, and O(n log n+ n log l) computational com-
plexity. As compared to the generic approach, we have traded more rounds for
better overall complexity.

Complexity of privacy-preserving SSSD. Complexity of SSSD is similar to that
of APSD, except that the number of rounds is k = O(v) and the total number
of set union operations is v, where v is the number of vertices (O(e1/2)). We
conclude that our protocol requires O(v) rounds, O(v(log v + log l)) oblivious
transfers, and O(v(log v + log e)) gates. A generic solution, on the other hand,
would require O(v2 log l) oblivious transfers.

7 Conclusions

In this paper, we presented privacy-preserving protocols that enable two honest
but curious parties to compute APSD and SSSD on their joint graph. A related
problem is how to construct privacy-preserving protocols for graph comparison.
Many of these problems (e.g., comparison of the graphs’ respective maximum
flow values) reduce to the problem of privacy-preserving comparison of two val-
ues, and thus have reasonably efficient generic solutions. For other problems,
such as graph isomorphism, there are no known polynomial-time algorithms
even if privacy is not a concern. Investigation of other interesting graph algo-
rithms that can be computed in a privacy-preserving manner is a topic of future
research.
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A Proof of Private APSD Protocol Correctness

Before proving the algorithm correct, we prove some supporting lemmas.

Lemma 1. If an edge e ∈ Rk and w
(k)
0 (e) = l then ∀j > k,w

(j)
0 (e) = l.

Proof. Intuitively, this says that once the protocol establishes the length of a red
edge, it never changes. This follows from the protocol lacking operations that
alter the length of red edges.

Lemma 2. For an edge e ∈ R(k), w
(k)
0 (e) ≤ m(k).

Proof. In step 6 of iteration k, for edges e ∈ S(k) we set w
(k)
0 (e) = m(k) and

e ∈ R(k). Apply lemma 1 to complete the proof.

Lemma 3. For an edge e ∈ B(k), w
(k)
0 (e) > m(k).

Proof. First, we show that for an edge e ∈ B(k), w
′(k)
0 (e) > m(k). If w

′(k)
0 (e) =

m(k) then e ∈ S(k) (and e �∈ B(k)). If w
′(k)
0 (e) < m(k) and e ∈ B(k), then

w
(k−1)
0 (e) < m(k) and we would have defined a smaller m(k).

Now, for those edges e where we have w
(k)
0 (e) < w

′(k)
0 (e) because of step 7,

we still have w
(k)
0 (e) > m(k) because the right-hand side of the assignment is

strictly greater than m(k).

Lemma 4. For all edges e, e ∈ R(k) ↔ w
(k)
0 (e) ≤ m(k) and e ∈ B(k) ↔

w
(k)
0 (e) > m(k).

Proof. This is an immediate consequence of lemmas 2 and 3.

Lemma 5. For every red edge eij ∈ R(k), w
(k)
0 (eij) = dG(i, j).

Proof. The proof is by induction on k. For k = 0, the result is trivial. We will
now assume that the result holds for values less than k and prove it for k.

Because of lemma 1, it is sufficient to prove that for edges eij ∈ S(k),
dG(i, j) = m(k). We consider two cases.
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1. The shortest path from i to j in G is the edge eij .
In this case, dG(i, j) = min(w1(eij),w2(eij)). To complete the proof, it’s
enough to show that w

(k−1)
0 (eij) ≥ dG(i, j). Suppose that in some iteration

h < k we set w
(h)
0 (eij) = w

′(h)
0 (eik) + w

′(h)
0 (ekj) in step 7. Then by inductive

hypothesis, this implies a shorter path from i to j than the edge eij which
is a contradiction.

2. The shortest path from i to j in G is through k.
In this case, dG(i, j) = dG(i, k) + dG(k, j). WLOG, assume that w

(k)
0 (eik) ≥

w
(k)
0 (ekj). Then by lemmas 1 and 4, we have that for some h < k, w

(k)
0 (eik) =

m(h). This means that in step 7 of iteration h the protocol set w
(h)
0 (eij) =

w
(h)
0 (eik) + w

(h)
0 (ekj). By the inductive hypothesis, w

(h)
0 (eik) = dG(i, k) and

w
(h)
0 (ekj) = dG(k, j). We conclude that w

(h)
0 (eij) = dG(i, k) + dG(k, j) and

therefore that w
(k)
0 (eij) ≤ dG(i, k) + dG(k, j). By the same argument as

in the first case, we also have w
(k)
0 (eij) ≥ dG(i, k) + dG(k, j). Therefore,

m(k) = dG(i, k) + dG(k, j) = dG(i, j).

It is now a simple task to prove algorithm correctness.

Proof (Correctness). Suppose the algorithm terminates after n iterations. Then
R(n) = E. Apply lemma 5.

B Survey of Privacy-Preserving Set Union Protocols

Generic Yao’s method. It is easy to construct a circuit for computing the set
union. Each party Pp inputs one bit for every element e in the universe U . The
input bit bpi is set to 1 if party Pp has element ei in his set, and 0 otherwise.
The circuit consists of |U | AND gates, each of which takes as inputs b0i and b1i
and outputs oi = b0i ∧ b1i. Then oi = 1 iff element ei is in the set union. Since
this circuit has O(u) inputs and O(u) gates, we conclude that the computational
overhead and the communication complexity are both O(u).

Commutative encryption. Clifton et al. [10] present a simple construction for
privacy-preserving set union that uses commutative encryption. Each party en-
crypts the elements in its set, exchanges the encrypted sets with the other party,
and then encrypts the other party’s encrypted elements with its own key. The
double-encrypted sets are then combined. Due to commutativity of encryption,
all elements in the intersection appear as duplicates. They are removed, and the
remaining elements are decrypted. Scrambling the order of elements may hide
which elements are in the intersection, but the size of the intersection is still re-
vealed, thus this method is not secure in the standard sense of definition 2. This
protocol requires communication and computational complexity O(|s1|+ |s2|).

Complement of set intersection. When the universe U is small, it is possible to
use complementation and take advantage of the fact that S1 ∪ S2 = S̄1 ∩ S̄2.
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Freedman et al. [20] present a privacy-preserving protocol for set intersection
that uses homomorphic encryption which requiresO(k) communication overhead
and O(k ln ln k) computation overhead, where k is the size of the set intersection.
For applications considered in this paper, sets S1 and S2 are very small, so their
complements are of size O(u). As a result, this method requires O(u ln lnu)
computation, which is unacceptable.

Polynomial set representation. Kissner and Song [27] present a method for rep-
resenting sets as polynomials, and give several privacy-preserving protocols for
set operations using these representations. They do not provide a protocol for
the standard set union problem. Instead, they give a protocol for the “threshold
set union” problem, in which the inputs are multi-sets and the output is the set
of elements whose multiplicity of appearance in the union exceed some thresh-
old; the intersection of the input sets is also revealed. When applied to regular
sets (as opposed to multi-sets) this protocol does not preserve privacy as the
intersection is the only information one can hope to keep private.

C Privacy-Preserving Bit-Or

First, observe that the circuit for computing Or of 2 bits consists in a single gate.
Therefore, even the generic construction using Yao’s protocol [39] is efficient,
requiring a single 1-out-of-2 oblivious transfer.

An alternative construction without oblivious transfers is provided by a se-
mantically secure homomorphic encryption scheme such as ElGamal. Suppose
Alice and Bob want to compute Or of their respective bits bA and bB in a
privacy-preserving manner (Alice and Bob are honest, but curious). Alice picks
some cyclic group G of prime order q with generator g where the Decisional
Diffie-Hellman problem is presumed hard, e.g., the group of quadratic residues
modulo some large prime p = 2q + 1, and chooses its secret key k at random
from {0, . . . , q − 1}. Alice sends to Bob its public key q, g, gk together with its
ciphertext cA, which is created as follows. If bA = 0, then cA = (gr, gkr), where
r is randomly selected from {0, . . . , q − 1}. If bA = 1, then cA = (gr, g · gkr).

Upon receipt of cA = (α, β) and Alice’s public key, Bob computes cB as fol-
lows. First, it randomly picks r′ ∈ {0, . . . , q − 1}. If bB = 0, then cB = (αr

′
, βr

′
).

If bB = 1, then cB = (αr
′
, gr

′ · βr′). Bob returns cB to Alice.
Alice computes bit b by decrypting cB = (γ, δ) with its private key k, i.e.,

b = δ
γk . Clearly, if bA = bB = 0, then b = 1. In this case, Alice declares that

bA ∨ bB = 0. If b �= 1, then Alice declares that bA ∨ bB = 1.
To verify that this construction preserves privacy, observe that secrecy of bA

follows from the semantic security of ElGamal. Now suppose bA = 1. If bB = 0,
then the decrypted plaintext b = gr

′
. If bB = 1, then b = g2r′. Since B does not

know r′, it cannot tell the difference. Thus, A does not learn bB if bA = 1.
(We are grateful to Stas Jarecki for a helpful discussion of constructions for

privacy-preserving Bit-Or).
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Abstract. We introduce a new cryptographic primitive called the blind
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natural and important applications. In particular, we use it to construct
a mechanism for transmitting alerts undetectably in a message-passing
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1 Introduction

Motivation. As more computers become interconnected, chances increase
greatly that an attacker may attempt to compromise your system and network
resources. It has become common to defend the network by running an Intru-
sion Detection System (IDS) on several of the network nodes, which we call
sentinels. These sentinel nodes continuously monitor their local network traffic
for suspicious activity. When a sentinel node detects an attacker’s presence, it
may want to alert all other network nodes to the threat. However, issuing an
alert out in the open may scare the attacker away too soon and preclude the
system administrator from gathering more information about attacker’s rogue
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exploits. Instead, we would like to propagate the alert without revealing the ids
of the sentinel nodes or the fact that the alert is being spread.

We consider a powerful (yet computationally bounded) attacker who observes
all message traffic and is capable of reading, replacing, and delaying circulating
messages. Our work provides a cryptographic mechanism that allows an alert
to spread through a population of processes at the full speed of an epidemic,
while remaining undetectable to the attacker. As the alert percolates across the
network, all nodes unwittingly come to possess the signal, making it especially
difficult to identify the originator even if the secret key is compromised and the
attacker can inspect the nodes’ final states.

A New Tool: A Blind Coupon Mechanism. The core of our algorithms is a
new cryptographic primitive called a blind coupon mechanism (BCM). The
BCM is related, yet quite different, from the notion of commitment. It consists
of a set DSK of dummy coupons and a set SSK of signal coupons (DSK ∩
SSK = ∅). The owner of the secret key SK can efficiently sample these sets
and distinguish between their elements. We call the set of dummy and signal
coupons, DSK ∪ SSK , the set of valid coupons.

The BCM comes equipped with a verification algorithm VPK(x) that
checks if x is indeed a valid coupon. There is also a probabilistic combining
algorithm CPK(x, y), that takes as input two valid coupons x, y and outputs
a new coupon which is, with high probability, a signal coupon if and only if at
least one of the inputs is a signal coupon. As suggested by the notation, both
algorithms can be computed by anyone who has access to the public key PK of
the blind coupon mechanism.

We regard the BCM secure if an observer who lacks the secret key SK (a)
cannot distinguish between dummy and signal coupons (indistinguishability);
(b) cannot engineer a new signal coupon unless he is given another signal coupon
as input (unforgeability); and (c) cannot distinguish randomly chosen coupons
from coupons produced by the combining algorithm (blinding).

Our Main Construction. Our BCM construction uses an abstract group
structure (U,G,D). Here, U is a finite set, G ⊆ U is a cyclic group, and D is
a subgroup of G. The elements of D will represent dummy coupons and the
elements of G \ D will be signal coupons (see also Figure 1). The combining
operation will simply be a group operation. To make verification possible, there

Fig. 1. Abstract group structure used in our BCM construction
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will need to be an easy way to distinguish elements of G (valid coupons) from
elements of U \G (invalid coupons).

In order for the BCM to be secure, the following two problems must be hard
on this group structure:

– Subgroup Membership Problem: Given generators for G and D and an
element y ∈ G, decide whether y ∈ D or y ∈ G \D.

– Subgroup Escape Problem: Given a generator for D (but not G), find
an element of G \D.

The subgroup membership problem has appeared in many different forms
in the literature [11, 18,28, 31, 33, 16,29]. The subgroup escape problem has not
been studied before. To provide more confidence in its validity, we later analyze
it in the generic group model.

Notice that the task of distinguishing a signal coupon from a dummy coupon
(indistinguishability) and the task of forging a signal coupon (unforgeability)
are essentially the subgroup membership and subgroup escape problems. The
challenge thus becomes to find a concrete group structure (U,G,D) for which
the subgroup membership and the subgroup escape problems are hard.

We provide two instantiations of the group structure: one using groups with
bilinear pairings, and one using elliptic curves over composite moduli.

Why is a BCM Useful? The BCM can potentially be useful in various appli-
cations. If signal coupons are used to encode a “1” and dummy coupons a “0”,
then a BCM can be viewed as an OR-homomorphic bit commitment scheme.
The BCM is indeed hiding because dummy and signal coupons appear the
same to an outside observer. It is also binding because the sets of dummy
and signal coupons are disjoint. In addition, the BCM’s verification function en-
sures the commitment is authenticated. By switching signal coupons to encode
a “0” and dummy coupons to encode a “1”, we get an AND-homomorphic bit
commitment. As far as we know, it has not been known how to construct such
commitments before. The BCM thus provides a missing link in protocol design.
Using BCM together with techniques of Brassard et al. [7], we can obtain short
non-interactive proofs of circuit satisfiability, whose length is linear in the num-
ber of AND gates in the circuit. Other potential uses include i-voting (voting
over the Internet) [10].

Spreading Alerts with the BCM. Returning to our original motivation,
we demonstrate how a BCM can be used to propagate alerts quickly and quietly
throughout the network. During the initial network setup, the network admin-
istrator generates the BCM’s public and secret keys. He then distributes signal
coupons to sentinel nodes. All other nodes receive dummy coupons. In our mech-
anism, nodes continuously transmit either dummy or signal coupons with all
nodes initially transmitting dummy coupons. Sentinel nodes switch to sending
signal coupons when they detect the attacker’s presence. The BCM’s combining
algorithm allows dummy and signal coupons to be combined so that a node can
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propagate signal coupons without having to know that it has received any, and
so that an attacker (who can observe all message traffic) cannot detect where or
when signals are being transmitted within the stream of dummy messages.

In addition, the BCM’s verification algorithm defends against Byzantine
nodes [25]: While Byzantine nodes can replay old dummy messages instead of
relaying signals, they cannot flood the network with invalid coupons, thereby
preventing an alert from spreading; at worst, they can only act like crashed
nodes.

We prove that if the underlying BCM is secure, then the attacker cannot
distinguish between executions where an alert was sent and executions where no
alert was sent. The time to spread the alert to all nodes will be determined by
the communications model and alert propagation strategy. At any point in time,
the network administrator can sample the state of some network node and check
if it possesses a signal coupon.

Paper Organization. The rest of the paper is organized as follows. We begin
with a discussion of related work in Section 2. In Section 3, we formally define
the notion of a blind coupon mechanism and sketch an abstract group structure,
which will allow us to implement it. Then in Section 4, we provide two concrete
instantiations of this group structure using certain bilinear groups and elliptic
curves over the ring Zn. In Section 5, we show how the BCM can be used to
spread alerts quietly throughout a network. In Section 6, we analyze the hardness
of the subgroup escape problem in the generic group model. Some of the proofs
have been omitted due to space limitations; they can be found in the full version,
available as a Yale CS technical report [3]. Conclusions and open problems appear
in Section 7.

2 Related Work

Our motivating example of spreading alerts is related to the problem of anony-
mous communication. Below, we describe known mechanisms for anonymous
communication, and contrast their properties with what can be obtained from
the blind coupon mechanism. We then discuss literature on elliptic curves over
a ring, which are used in our constructions.

2.1 Anonymous Communication

Two basic tools for anonymous message transmission are DC-nets (“dining-
cryptographers” nets) [9,19] and mix-nets [8]. These tools try to conceal who the
message sender and recipient are from an adversary that can monitor all network
traffic. While our algorithms likewise aim to hide who the signal’s originators
are, they are much less vulnerable to disruption by an active adversary that can
delay or alter messages, and they can also hide the fact that a signal is being
spread through the network.

DC-nets enable one participant to anonymously broadcast a message to oth-
ers by applying a dining cryptographers protocol. A disadvantage of DC-nets for
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unstructured systems like peer-to-peer networks is that they require substan-
tial setup and key management, and are vulnerable to jamming. In contrast,
the initialization of our alert-spreading application involves distributing only a
public key used for verification to non-sentinel nodes and requires only a single
secret key shared between the sentinels and the receiver, jamming is prevented
by the verification algorithm, and outsiders can participate in the alert-spreading
(although they cannot initiate an alert), which further helps disguise the true
source. As the signal percolates across the network, all nodes change to an alert
state, further confounding the identification of an alert’s primary source even if
a secret key becomes compromised.

The problem of hiding the communication pattern in the network was first
addressed by Chaum [8], who introduced the concept of a mix, which shuffles
messages and routes them, thereby confusing traffic analysis. This basic scheme
was later extended in [40, 39]. A further refinement is a mix-net [1, 21, 20], in
which a message is routed through multiple trusted mix nodes, which try to hide
correlation between incoming and outgoing messages. Our mechanism is more
efficient and produces much stronger security while avoiding the need for trusted
nodes; however, we can only send very small messages.

Beimel and Dolev’s [4] proposed the concept of buses, which hide the mes-
sage’s route amidst dummy traffic. They assume a synchronous system and a
passive adversary. In contrast, we assume both an asynchronous system and very
powerful adversary, who in addition to monitoring the network traffic controls
the timing and content of delivered messages.

2.2 Elliptic Curves over a Ring

One of our BCM constructions is based on elliptic curves over the ring Zn, where
n = pq is a product of primes. Elliptic curves over Zn have been studied for nearly
twenty years and are used, inter alia, in Lenstra’s integer factoring algorithm [27]
and the Goldwasser-Kilian primality testing algorithm [17]. Other works [13,23,
31] exported some factoring-based cryptosystems (RSA [35], Rabin [34]) to the
elliptic curve setting in hopes of avoiding some of the standard attacks. The
security of our BCM relies on a special feature of the group of points on elliptic
curves modulo a composite: It is difficult to find new elements of the group
except by using the group operation on previously known elements. This problem
has been noted many times in the literature, but was previously considered a
nuisance rather than a cryptographic property. In particular, Lenstra [27] chose
the curve and the point at the same time, while Demytko [13] used twists and
x-coordinate only computations to compute on the curve without y-coordinates.
To the best of our knowledge, this problem’s potential use in cryptographic
constructions was first noted in [15].

2.3 Epidemic Algorithms

Our alert mechanism belongs to the class of epidemic algorithms (also called
gossip protocols) introduced in [12]. In these algorithms, each process chooses to
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partner processes with which to communicate randomly. The drawback of gossip
protocols is the number of messages they send, which is in principle unbounded
if there is no way for the participants to detect when all information has been
fully distributed.

3 Blind Coupon Mechanism

The critical component of our algorithms that allows information to propagate
undetectably among the processes is a cryptographic primitive called a blind
coupon mechanism (BCM). In Section 3.1, we give a formal definition of the
BCM and its security properties. In Section 3.2, we describe an abstract group
structure that will allow us to construct the BCM.

3.1 Definitions

Definition 1. A blind coupon mechanism is a tuple of PPT algorithms
(G,V , C,D) in which:

– G(1k), the probabilistic key generation algorithm, outputs a pair of public
and secret keys (PK, SK) and two strings (d, s). The public key defines a
universe set UPK and a set of valid coupons GPK . The secret key implicitly
defines an associated set of dummy coupons DSK and a set of signal
coupons SSK .1 It is the case that d ∈ DSK and s ∈ SSK , DSK ∩ SSK = ∅,
and DSK ∪ SSK = GPK .

– VPK(y), the deterministic verification algorithm, takes as input a coupon
y and returns 1 if y is valid and 0 if it is invalid.

– z ← CPK(x, y), the probabilistic combining algorithm, takes as input two
valid coupons x, y ∈ GPK and produces a new coupon z. The output z is a
signal coupon (with overwhelming probability) whenever one or more of the
inputs is a signal coupon, otherwise it is a dummy coupon (see Figure 2).

– DSK(y), the deterministic decoding algorithm, takes as input a valid
coupon y ∈ GPK . It returns 0 if y is a dummy coupon and 1 if y is a
signal coupon.

The BCM may be established either by an external trusted party or jointly
by the application participants, running the distributed key generation protocol
(e.g., one could use a variant of [2]). In this paper, we assume a trusted dealer
(the network administrator) who runs the key generation algorithm and distrib-
utes signal coupons to the supervisor algorithms of sentinel nodes at the start
of the system execution. In a typical algorithm, the nodes will continuously ex-
change coupons with each other. The combining algorithm CPK enables nodes
to locally and efficiently combine their coupons with coupons of other nodes.
1 Note that membership in SSK and DSK should not be efficiently decidable when

given only PK (unlike membership in GPK). However, we require that membership
is always efficiently decidable when given SK.
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x y C(x, y)
DSK DSK DSK

DSK SSK SSK

SSK DSK SSK

SSK SSK SSK

Fig. 2. Properties of the combining algorithm

The verification function VPK prevents the adversary from flooding the system
with invalid coupons and making it impossible for the signal to spread.

For this application, we require the BCM to have certain specific security
properties.

Definition 2. We say that a blind coupon mechanism (G,V , C,D) is secure if
it satisfies the following requirements:

1. Indistinguishability: Given a valid coupon y, the adversary cannot tell
whether it is a signal or a dummy coupon with probability better than 1/2.
Formally, for any PPT algorithm A,∣∣∣∣∣∣∣Pr

⎡⎢⎣ b = b′
(PK, SK, d, s)← G(1k);

x0
$← DSK ;x1

$← SSK ;

b
$← {0, 1}; b′← A(1k, PK, d, xb)

⎤⎥⎦− 1
2

∣∣∣∣∣∣∣ ≤ negl(k)

2. Unforgeability: The adversary is unlikely to fabricate a signal coupon with-
out the use of another signal coupon as input2. Formally, for any PPT
algorithm A,

Pr
[
y ∈ SSK

(PK, SK, d, s)← G(1k);
y ← A

(
1k, PK, d

) ]
≤ negl(k)

3. Blinding: The combination CPK(x, y) of two valid coupons x, y looks like a
random valid coupon. Formally, fix some pair of keys (PK, SK) outputted
by G(1k). Let UD be a uniform distribution on DSK and let US be a uniform
distribution on SSK . Then, for all valid coupons x, y ∈ GPK ,{

Dist(CPK(x, y), UD) = negl(k) if x, y ∈ DSK ,
Dist(CPK(x, y), US) = negl(k) otherwise.

(Here, Dist(A,B)
def
= 1

2

∑
x |Pr[A = x]−Pr[B = x]| is the statistical distance

between a pair of random variables A,B.)

To build the reader’s intuition, we describe a straw-man construction of a
BCM. Suppose we are given any semantically secure encryption scheme E(·)
2 The adversary, however, can easily generate polynomially many dummy coupons

by using CPK(·, ·) with the initial dummy coupon d that he receives.
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and a set-homomorphic signature scheme SIG(·) by Johnson et al. [22]. This
signature scheme allows anyone possessing sets x, y ⊆ Zp and their signatures
SIG(x), SIG(y) to compute SIG(x ∪ y) and SIG(w) for any w ⊆ x. We rep-
resent dummy coupons by a random-length vector of encrypted zeroes; e.g.,
x = (E(0), . . . , E(0)). The signal coupons are represented by a vector of en-
cryptions that contains at least one encryption of a non-zero element; e.g.,
y = (E(0), . . . , E(0), E(1)). To prevent the adversary from forging coupons, the
coupons are signed with the set-homomorphic signature. The combining opera-
tion is simply the set union: CPK

(
(x,SIG(x)), (y, SIG(y))

)
=
(
x ∪ y, SIG(x ∪ y)

)
.

The drawback of this construction is immediate: as coupons are combined and
passed around the network, they quickly grow very large. Constructing a BCM
with no expansion of coupons is more challenging. We describe such a construc-
tion next.

3.2 Abstract Group Structure

We sketch the abstract group structure that will allow us to implement a secure
and efficient BCM. Concrete instantiations of this group structure are provided
in Section 4.

Let Γ = {Γk} be a family of sets of tuples (U,G,D, d, s), where U is a finite
set, and G is a subset of U . G also has a group structure: it is a cyclic group
generated by s. D is a subgroup of G generated by d, such that the factor group
G/D has prime order |G|/|D|. The orders of D and G/D are bounded by 2k;
moreover, |G|/|U | ≤ negl(k) and |D|/|G| ≤ negl(k).

Let G′ be a PPT algorithm that on input of 1k samples from Γk accord-
ing to some distribution. We consider Γk to be a probability space with this
distribution.

We assume there exists an efficient, deterministic algorithm for distinguishing
elements of G from elements of U \G, and an efficient algorithm for computing
the group operation in G.

– The key generation algorithm G(1k) runs G′ to sample (U,G,D, d, s) from
Γk, and outputs the public key PK = (U,G, d, k), the secret key SK = |D|,
as well as d and s.
The elements of D will represent dummy coupons, the elements of G\D will
represent signal coupons, and the elements of U \G will be invalid coupons
(see Figure 1).

– The verification algorithm VPK(y) checks that the coupon y is in G.
– The combining algorithm CPK(x, y) is simply the group operation com-

bined with randomization. For input x, y ∈ G, sample r0, r1 and r2 uniformly
at random from {0, 1, . . . , 22k − 1}, and output r0d + r1x+ r2y.

– Because |D| · y = 0 if and only if y ∈ D, the decoding algorithm DSK

checks if |D| · y = 0.

The indistinguishability and unforgeability properties of the BCM will de-
pend on the hardness assumptions described below.
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Definition 3. The subgroup membership problem for Γ asks: given a tuple
(U,G,D, d, s) from Γ and y ∈ G, decide whether y ∈ D or y ∈ G \D.

The subgroup membership problem is hard if for any PPT algorithm A,∣∣∣∣∣∣∣Pr

⎡⎢⎣b′ = b

(U,G,D, d, s) $← Γk;

y0
$← D; y1

$← G \D;

b
$← {0, 1}; b′← A(U,G,D, d, s, yb)

⎤⎥⎦− 1
2

∣∣∣∣∣∣∣ ≤ negl(k).3

Various subgroup membership problems have been extensively studied in
the literature, and examples include the Decision Diffie-Hellman problem [11],
the quadratic residue problem [18], among others [28, 31, 33]. Our constructions
however are more related to the problems described in [16,29].

Definition 4. The subgroup escape problem for Γ asks: given U , G, D and
the generator d for D from the tuple (U,G,D, d, s) from Γ , find an element
y ∈ G \D.

The subgroup escape problem is hard if for any PPT algorithm A,

Pr

[
y ∈ G \D (U,G,D, d, s) $← Γk;

y ← A(U,G,D, d)

]
≤ negl(k).

The subgroup escape problem has to our knowledge not appeared in the
literature before. It is clear that unless |G|/|U | is negligible, finding elements of
G \ D cannot be hard. We show in Section 6 that if |G|/|U | is negligible, the
subgroup escape problem is provably hard in the generic model.

We also note that the problem of generating a signal coupon from polynomi-
ally many dummy coupons is essentially the subgroup escape problem.

Theorem 1. Let Γ be as above. If the subgroup membership problem and the
subgroup escape problem for Γ are hard, then the corresponding BCM is secure.

Proof. Fix k and (U,G,D, d, s) sampled from Γk.
We prove the blinding property first, and start with the ideal case: For input

x, y ∈ G, sample r0 uniformly from {0, 1, . . . , |D| − 1}, and r1 and r2 uniformly
from {0, 1, . . . , |G/D| − 1}, and output r0g + r1x+ r2y.

If x, y ∈ D, the product is uniformly distributed in D, since r0g is.
If x �∈ D, then the residue class r1x + D is uniformly distributed in G/D.

Since r0g is uniformly distributed in D, the product is uniformly distributed in
G. The uniform distribution on G is |D|/|G|-close to the uniform distribution
on G \D. The same argument holds for r2y.

Finally we note that we do not need to know |D| or |G/D|. Since we know
that |D| and |G/D| are less than 2k, sampling r0, r1, r2 uniformly from the set
3 Henceforth, we assume that groups we operate on have some concise description,

which can be passed as an argument to our algorithms. We also assume that group
elements can be uniquely encoded as bit strings.
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{0, . . . , 22k − 1} will produce an output distribution that is 2−k-close to ideal,
which proves the bound for blinding.

Next, we prove the indistinguishability property, so let A be an adversary
against indistinguishability. We have a subgroup membership problem instance
(U,G,D, d, s) and y ∈ G. We construct the public key PK = (U,G, d, k), and
give A as input PK, d and y.

If A answers 1, we conclude that y ∈ G \D, otherwise y ∈ D. Whenever A
is correct, we will be correct, so A must have negligible advantage.

Finally, we deal with forging. Let A be an adversary against unforgeability.
We have a subgroup escape problem instance U , G and D, and a generator d for
D. Again we construct the public key PK = (U,G, d, k), and give A as input
PK and d.

Our output is simply A’s output. Whenever A succeeds, we will succeed, so
A must have negligible success probability. �

4 Constructing the BCM

We now give two instantiations of the abstract group structure (U,G,D) de-
scribed in the previous section. First, we review some basic facts about elliptic
curves over composite moduli in Section 4.1. Then, in Section 4.2, we describe
our BCM construction that utilizes these curves. In Section 4.3, we describe
an alternative BCM construction on elliptic curves equipped with bilinear pair-
ings. These constructions can be used to undetectably transmit a one-shot signal
throughout the network. In Section 4.4, we describe how the BCM’s bandwidth
can be further expanded.

4.1 Preliminaries

Let n be an integer greater than 1 and not divisible by 2 or 3. We first intro-
duce projective coordinates over Zn. Consider the set Ū of triples (x, y, z) ∈ Z3

n

satisfying gcd(x, y, z, n) = 1. Let ∼ be the equivalence relation on Ū defined by
(x, y, z) ∼ (x′, y′, z′) iff there exists λ ∈ Z∗n such that (x, y, z) = (λx′, λy′, λz′).
Let U be the set of equivalence classes in Ū . We denote the equivalence class of
(x, y, z) as (x : y : z).

An elliptic curve over Zn is defined by the equation

E : Y 2Z ≡ X3 + aXZ2 + bZ3 (mod n),

where a, b are integers satisfying gcd(4a2 − 27b3, n) = 1. The set of points on
E/Zn is the set of equivalence classes (x : y : z) ∈ U satisfying y2z ≡ x3+axz2+
bz3 (mod n), and is denoted by E(Zn). Note that if n is prime, these definitions
correspond to the usual definitions for projective coordinates over prime fields.

Let p and q be primes, and let n = pq. Let Ep : Y 2Z = X3 + apXZ2 + bpZ
3

and Eq : Y 2Z = X3 + aqXZ2 + bqZ
3 be elliptic curves defined over Fp and Fq,

respectively. We can use the Chinese remainder theorem to find a and b yielding
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an elliptic curve E : Y 2Z = X3 + aXZ2 + bZ3 over Zn such that the reduction
of E modulo p gives Ep and likewise for q.

It can also be shown that the Chinese remainder theorem gives a set isomor-
phism

E(Zn) ∼−→ Ep(Fp)× Eq(Fq)

inducing a group operation on E(Zn). For almost all points in E(Zn), the usual
group operation formulae for the finite field case will compute the induced group
operation. When they fail, the attempted operation gives a factorization of the
composite modulus n. Unless Ep(Fp) or Eq(Fq) has smooth or easily guessable
order, this will happen only with negligible probability (see [14] for more details).

4.2 BCM on Elliptic Curves Modulo Composites

Let p, q, 
1, 
2, 
3 be primes, and suppose we have elliptic curves Ep/Fp and Eq/Fq
such that #Ep(Fp) = 
1
2 and #Eq(Fq) = 
3. Curves of this form can be found
using complex multiplication techniques [5,26].

With n = pq, we can find E/Zn such that #E(Zn) = 
1
2
3. Let U be
the projective plane modulo n, let G be E(Zn), and let D be the subgroup of
order 
1
3. The public key is PK = (G,D, n), while the secret key is SK =
(p, q, l1, l2, l3).4

Verification Function For any equivalence class (x : y : z) in U , it is easy to
decide if (x : y : z) is in E(Zn) or not, simply by checking if y2z ≡ x3+axz2+bz3

(mod n).

Subgroup Membership Problem For the curve Ep(Fp), distinguishing the
elements of prime order from the elements of composite order seems to be hard,
unless it is possible to factor the group order [16].

Counting the number of points on an elliptic curve defined over a composite
number is equivalent to factoring the number [27,24]. Therefore, the group order
Ep(Fp) is hidden.

When the group order is hidden, it cannot be factored. It therefore seems
reasonable that the subgroup of E(Zn) of order 
1
3 is hard to distinguish from
the rest of the points on the curve, as long as the integer n is hard to factor.

Subgroup Escape Problem Anyone capable of finding a random point on
the curve will with overwhelming probability be able to find a point outside the
subgroup D.

Finding a random point on an elliptic curve over a field is easy: Choose a
random x-coordinate and solve the resulting quadratic equation. It has rational
solutions with probability close to 1/2.

4 To describe groups G and D, we publish the elliptic curve equation and the generator
for D. This gives away enough information to perform group operations in G, check
membership in G, and generate new elements in D (but not in G).
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This does not work for elliptic curves over the ring Zn, since solving square
roots modulo n is equivalent to factoring n. One could instead try to choose a
y-coordinate and solve for the x-coordinate, but solving cubic equations in Zn
seems no easier than finding square roots.

One could try to find x and y simultaneously, but there does not seem to be
any obvious strategy. This is in contrast to quadratic curves, where Pollard [36]
gave an algorithm to find solutions of a quadratic equation modulo a composite
(which broke the Ong-Schnorr-Shamir signature system [32]). These techniques
do not seem to apply to the elliptic curve case.

Finding a lift of the curve over the integers does not seem promising. While
torsion points are fairly easy to find, they will not exist if the curveE/Zn does not
have points of order less than or equal to 12. If we allow E/Zn to have points of
small order that are easily found, we can simply include them in the subgroup D.

Finding rational non-torsion points on curves defined over Q is certainly non-
trivial, and seems impossibly hard unless the point on the lifted curve has small
height [38]. There does not seem to be any obvious way to find a lift with rational
points of small height (even though they certainly exist).

What if we already know a set of points on the curve? If we are givenP1, P2, P3 ∈
E(Zn), we can find, unless the points are collinear, a quadratic curve

C : Y Z = αX2 + βXZ + γZ2

defined over Zn that passes through P1, P2, P3. Considering divisors, it is easy to
show that the fourth intersection point P4 is the inverse sum of the three known
points.

If points of the curve only yield new points via the group operation, and
it seems hard to otherwise find points on E(Zn), it is reasonable to assume
that E(Zn) and its subgroup, as described in the previous section, yield a hard
subgroup escape problem.

4.3 BCM on Groups with Bilinear Pairings

Let p, 
1, 
2, and 
3 be primes such that p+1 = 6
1
2
3, and p = 2 (mod 3). Here,
l1, l2, l3 must be distinct and larger than 3. The elliptic curve E : Y 2 = X3 + 1
defined over Fp is supersingular and has order p + 1. Because F∗p2 has order
p2−1 = (p+1)(p−1), there is a modified Weil pairing ê : E(Fp)×E(Fp)→ F∗p2 .
This pairing is known to be bilinear: ê(aP, bQ) = ê(P,Q)ab for all P,Q ∈ E(Fp)
and a, b ∈ Zp. It can be computed as described in [6].

Let U = E(Fp), and let G and D be the subgroups of E(Fp) of order 
1
2 and

1, respectively. We also let P be a point in E(Fp) of order 6
1
2
3, and let R be a
point of order 6
3 in E(Fp), say R = 
1
2P . The public key is PK = (G,D, p,R)
and the secret key is SK = (l1, l2, l3). The pairing ê allow us to describe G in
the public key without giving away secret information.

Verification Function. We claim that for any point Q ∈ E(Fp), Q ∈ G if
and only if ê(Q,R) is equal to 1. If Q ∈ G, then Q has order 
1
2 and for some
integer s, Q = 6s
3P . Then
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ê(Q,R) = ê(6s
3P, 
1
2P ) = ê(P, P )6s�1�2�3 = 1.

So the point R and the pairing ê allows us to determine if points are in G or in
U \G.

Subgroup Membership Problem. Distinguishing the subgroup D (the points
of order 
1) from G (the points of order 
1
2) can easily be done if the integer

1
2
3 can be factored. In general, factoring seems to be the best way to distin-
guish the various subgroups of E(Fp).

Because we do not reveal any points of order 
2 or 
2
3, it seems impossible
to use the pairing to distinguish the subgroup D in this way. (Theorem 1 of [16]
assumes free sampling of any subgroup, which is why it and the pairing cannot
be used to distinguish the subgroups of E(Fp).) It therefore seems reasonable to
assume that the subgroup membership problem for G and D is hard, which will
provide indistinguishability.

Subgroup Escape Problem. For a general cyclic group of order 
1
2
3, it is
easy to find elements of order 
1
2 if 
3 is known. Unless 
3 is known, it is hard
to find elements of order 
1
2, and knowing elements of order 
1 does not help.

For our concrete situation, factoring the integer 
1
2
3 into primes seems to
be the best method for solving the problem. If the primes 
1, 
2 and 
3 are
chosen carefully to make the product 
1
2
3 hard to factor, it seems reasonable
to assume that the subgroup escape problem for U , G and D is hard.

4.4 Extending the BCM’s Bandwidth

The blind coupon mechanism allows to undetectably transmit a single bit. Al-
though this is sufficient for our network alert application, sometimes we may
want to transmit longer messages.

Trivial Construction. By using multiple blind coupon schemes over different
moduli in parallel, we can transmit longer messages. Each m-bit message x =
x1 . . . xm is represented by a vector of coupons 〈c1, . . . , c2m〉, where each ci is
drawn from a different scheme. Each processor applies his algorithm in parallel
to each of the entries in the vector, verifying each coupon independently and
applying the appropriate combining operation to each ci.

A complication is that an adversary given a vector of coupons might choose
to propagate only some of the ci, while replacing others with dummy coupons.
We can enable the receiver to detect when it has received a complete message by
representing each bit xi by two coupons: c2i−1 (for xi = 0) and c2i (for xi = 1).
A signal coupon in either position tells the receiver both the value of the bit and
that the receiver has successfully received it.

Alas, we must construct and run Ω(m) blind coupon schemes in parallel to
transmit m bits.



266 J. Aspnes et al.

Better Construction. Some additional improvements in efficiency are pos-
sible. As before, our group structure is (U,G,D). Suppose our cyclic group G
has order n0p1 · · · pm, where pi are distinct primes. Let D be the subgroup of G
of order n0.

An m-bit message x = x1 . . . xm is encoded by a coupon y ∈ G, whose order
is divisible by

∏
i :xi=1 pi. For all i, we can find an element gi ∈ G of order n0pi.

We can thus let y = gr1x1
1 · · · grmxm

m for random r1, . . . , rm ∈ {0, 1, . . . , 22k − 1}.
When we combine two coupons y1 and y2, it is possible that the order of

their combination CPK(y1, y2) is less than the l.c.m. of their respective orders.
However, if the primes pi are sufficiently large, this is unlikely to happen.

In Section 4.2, n0 is a product of two moderately large primes, while the other
primes can be around 280. For the construction from Section 4.3, n0 is prime,
but every prime must be fairly large to counter elliptic curve factorization.

This technique allows us to transmit messages of quite restricted bandwidth.
It remains an open problem whether some other tools can be used to achieve
higher capacity without a linear blow-up in message size.

5 Spreading Alerts with the BCM

In this section, we show how the BCM can be used to spread an alert quietly
and quickly throughout a network.

To summarize these results briefly, we consider a very general message-
passing model in which each node Pi has a “split brain,” consisting of an update
algorithm Ui that is responsible for transmitting and combining coupons, and
a supervisor algorithm Si that may insert a signal coupon into the system
at some point. The supervisor algorithm Si of sentinel nodes initially hands
out dummy coupons until attacker’s presence is detected when it switches to
sending signal coupons. Meanwhile, regular nodes’ Si always doles out dummy
coupons. The update algorithm Ui in each node may behave arbitrarily; the
intent is that it represents an underlying strategy for spreading alerts whose
actions do not depend on whether the process is transmitting a dummy or signal
coupon.

The nodes carry out these operations under the control of a PPT attacker
A (who wants to remain undetectable) that can observe all the external op-
erations of the nodes and may deliver any message to any node at any time,
including messages of its own invention. (To save space, we omit a formal de-
scription of the model from this extended abstract, deferring details to the full
paper.)

We show first that, assuming the BCM is secure, the attacker can neither
detect nor forge alerts (with non-negligible probability) despite its total control
over message traffic. This result holds no matter what update algorithm is used
by each node; indeed, it holds even if the update half of each node colludes
actively with the adversary. We then give examples of some simple strategies for
spreading an alert quickly through the network with some mild constraints on
the attacker’s behavior.
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5.1 Security

Let us begin with the security properties we want our alert-spreading mechanism
to have. In the following, we let ĉti be the indicator variable for the event that the
supervisor half of node Pi supplies a signal coupon at time t. (This is the only in-
formation we need about the behavior of Si.) We write Ξ(PK, SK,A, {Ui}, {ĉti})
for the probability distribution on protocol executions given the specified public
key, secret key, attacker, update algorithms, and supervisor behaviors.

Definition 5. A set of update algorithms {Ui} is secure if, for any adversary
algorithm A, and any T = poly(k), we have:

1. Undetectability: Given two distributions on executions, one in which no
signal coupons are injected by supervisors and one in which some are, the
adversary cannot distinguish between them with probability greater than 1/2.
Formally, let ĉ0,ti = 0 for all i, t and let ĉ1,ti be arbitrary. Then for any
PPT algorithm D,∣∣∣∣∣∣∣∣∣Pr

⎡⎢⎢⎢⎣ b = b′

∣∣∣∣∣∣∣∣∣
(PK, SK, d, s)← G(1k);

b
$← {0, 1};

ξ
$← Ξ

(
PK, SK,A, {Ui}, {ĉb,ti }

)
;

b′ ← D(1k, PK, d, {ĉ1,ti }, ξ)

⎤⎥⎥⎥⎦− 1
2

∣∣∣∣∣∣∣∣∣ ≤ negl(k).

2. Unforgeability: The adversary cannot cause any process to transmit a sig-
nal coupon unless one is supplied by a supervisor. Formally, if ĉti = 0 for all
i, t, then there is no PPT algorithm A such that

Pr

[
∃(s, r,m, c) ∈ ξ ∧ (c ∈ SSK)

∣∣∣∣∣ (PK, SK, d, s)← G(1k);

ξ
$← Ξ (PK, SK,A, {Ui}, {ĉti}) ;

]
≤negl(k).

Security of the alert-spreading mechanism follows immediately from the se-
curity of the underlying blind coupon mechanism. The essential idea behind
undetectability is that because neither the adversary nor the update algorithms
can distinguish between dummy and signal coupons distributed by the supervi-
sor algorithms, there is no test that can detect their presence or absence. For
unforgeability, the inability of the adversary and update algorithms to generate a
signal coupon follows immediately from the unforgeability property of the BCM.

Theorem 2. An alert-spreading mechanism is secure if the underlying blind
coupon mechanism is secure.

Proof (sketch). We show first undetectability and then unforgeability.

Undetectability. Suppose that the alert-spreading mechanism does not satisfy
undetectability, i.e. that there exists a set of update algorithms {Ui}, an adver-
sary A, and pattern {ĉ1,ti } of signal coupons that can be distinguished from only
dummy coupons by some PPT algorithm D with non-negligible probability.
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Let us use this fact to construct a PPT algorithm B that violates indistin-
guishability. Let y be the coupon input to B. Then B will simulate an execution ξ
of the alert-spreading protocol by simulating the adversary A and the appropri-
ate update algorithm Ui at each step. The only components of the protocol that
B cannot simulate directly are the supervisor algorithms Si, because B does not
have access to signal coupons provided to the supervisor algorithms of sentinel
nodes. But here B lets cti = C(d, d) when ĉ1,ti = 0 and lets cti = C(y, y) when
ĉ1,ti = 1. By the blinding property of the BCM, if y ∈ DSK , then all coupons cti
will be statistically indistinguishable from uniformly random dummy coupons,
giving a distribution on executions that is itself statistically indistinguishable
from Ξ

(
PK, SK,A, {Ui}, {ĉ0,ti }

)
. If instead y ∈ SSK , then cti will be such that

the resulting distribution on executions will be statistically indistinguishable
from Ξ

(
PK, SK,A, {Ui}, {ĉ1,ti }

)
. It follows from the indistinguishability prop-

erty of the BCM that no PPT algorithm D can distinguish between these two
distributions with probability greater than 1/2 + negl(k).

Unforgeability. The proof of unforgeability is similar. Suppose that there is
some adversary and a set of update functions that between them can, with non-
negligible probability, generate a signal coupon given only dummy coupons from
the supervisor algorithms. Then a PPT algorithm B that simulates an execution
of this system and returns a coupon obtained by combining all valid coupons
sent during the execution forges a signal coupon with non-negligible probability,
contradicting the unforgeability property of the BCM.

�
5.2 Performance

It is not enough that the attacker cannot detect or forge alerts: a mechanism
that used no messages at all could ensure that. To ensure that all non-faulty
nodes eventually receive an alert, we must specify both a strategy for the nodes’
update algorithms and place restrictions on the attacker’s ability to discard
messages. In the full paper, we give two simple examples of how alerts might be
spread in practice: a synchronous flooding algorithm that spreads an alert to all
nodes in time proportional to the diameter of the network (after removing faulty
nodes), and a simple asynchronous epidemic algorithm that spreads the alert in
time O(n log n) in a complete network of n nodes, where at most a constant
fraction of nodes is faulty. In each case the behavior of the update algorithms
is straightforward: invalid incoming coupons are discarded, while valid incoming
coupons are combined with previous coupons.

6 Generic Security of the Subgroup Escape Problem

We prove that the subgroup escape problem is hard in the generic group
model [37] when the representation set is much larger than the group.

Let G be a finite cyclic group and let U ⊆ {0, 1}∗ be a set such that |U | ≥ |G|.
In the generic group model, elements of G are encoded as unique random strings.
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We define a random injective function σ : G → U , which maps group elements
to their string representations. Algorithms have access to an oracle that on input
of x± y returns σ(σ−1(x)± σ−1(y)) when both x, y ∈ σ(G) ⊆ U , and otherwise
the special symbol ⊥. An algorithm can use the oracle to decide whether x ∈ U
is in σ(G) or not by sending the query x+x to the oracle. If x �∈ σ(G), the reply
will be ⊥.

Theorem 3. Let D be a subgroup of G ⊆ U . Let g be a generator of D. Let A
be a generic algorithm that solves the subgroup escape problem. If A makes at
most q queries to the group oracle, then

Pr
[
y ∈ G \D

∣∣∣ A(1k, σ(g)) = σ(y)
]
≤ q(|G| − |D|)

(|U | − q) .

Proof. The algorithm can only get information about σ through the group oracle.
If the input to the oracle is two elements known to be in σ(D), then the adversary
learns a new element in σ(D).

To have any chance of finding an element of σ(G \D), the adversary must
use the group oracle to test elements that are not known to be in σ(D).

Suppose that after i queries, the adversary knows a elements in σ(D) and b
elements of U \ σ(G) (a + b ≤ i). For any z outside the set of tested elements,
the probability that z ∈ σ(G \D) is exactly (|G| − |D|)/(|U | − b) (note that it
is independent of a).

Therefore, the probability that the adversary discovers an element in σ(G\D)
with i+1 query is at most (|G|−|D|)/(|U |−i). For up to q queries, the probability
that at least one of the tested elements are in σ(G \D) is at most

q∑
i=1

|G| − |D|
|U | − i ≤ q · |G| − |D||U | − q .

For a sufficiently large universe U , this probability is negligible. �

7 Conclusion

We have defined and constructed a blind coupon mechanism, implementing a
specialized form of a signed, AND-homomorphic encryption. Our proofs of se-
curity are based on the novel subgroup escape problem, which seems hard on
certain groups given the current state of knowledge. Our scheme can be instanti-
ated with elliptic curves over Zn of reasonable size which makes our constructions
practical. We have demonstrated that the BCM has many natural applications.
In particular, it can be used to spread an alert undetectably in a variety of
epidemic-like settings despite the existence of Byzantine processes and a power-
ful, active adversary.
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Abstract. We introduce the first El Gamal based mix-net in which
each mix-server partially decrypts and permutes its input, i.e., no re-
encryption is necessary. An interesting property of the construction is
that a sender can verify non-interactively that its message is processed
correctly. We call this sender verifiability.

The mix-net is provably UC-secure against static adversaries corrupt-
ing any minority of the mix-servers. The result holds under the decision
Diffie-Hellman assumption, and assuming an ideal bulletin board and an
ideal zero-knowledge proof of knowledge of a correct shuffle.

Then we construct the first proof of a decryption-permutation shuffle,
and show how this can be transformed into a zero-knowledge proof of
knowledge in the UC-framework. The protocol is sound under the strong
RSA-assumption and the discrete logarithm assumption.

Our proof of a shuffle is not a variation of existing methods. It is based
on a novel idea of independent interest, and we argue that it is at least
as efficient as previous constructions.

1 Introduction

The notion of a mix-net was invented by Chaum [10]. Properly constructed a
mix-net takes a list of cryptotexts and outputs the cleartexts permuted using a
secret random permutation. Usually a mix-net is realized by a set of mix-servers
organized in a chain that collectively execute a protocol. Each mix-server receives
a list of encrypted messages from the previous mix-server, transforms them, using
partial decryption and/or random re-encryption, reorders them, and outputs the
result. The secret permutation is shared by the mix-servers.

1.1 Previous Work

Chaum’s original “anonymous channel” [10, 40] enables a sender to send mail
anonymously. When constructing election schemes [10, 17, 42, 47, 39] a mix-net
can be used to ensure that the vote of a given voter cannot be revealed. Abe gives
an efficient construction of a general mix-net [2], and argues about its properties.
Jakobsson has written (partly with Juels) more general papers on the topic of
mixing [30, 31, 32] focusing on efficiency. There are two known approaches to

B. Roy (Ed.): ASIACRYPT 2005, LNCS 3788, pp. 273–292, 2005.
c© International Association for Cryptologic Research 2005
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proving a correct shuffle efficiently. These are introduced by Furukawa et al.
[19, 20, 21], and Neff [37, 38] respectively. Groth [27] generalizes Neff’s protocol
to form an abstract protocol for any homomorphic cryptosystem.

Desmedt and Kurosawa [13] describe an attack on a protocol by Jakobsson
[30]. Similarly Mitomo and Kurosawa [36] exhibit a weakness in another pro-
tocol by Jakobsson [31]. Pfitzmann has given some general attacks on mix-nets
[44, 43], and Michels and Horster give additional attacks in [35]. Wikström [48]
gives several attacks for a protocol by Golle et al. [26]. He also gives attacks
for the protocols by Jakobsson [31] and Jakobsson and Juels [33]. Abe [3] has
independently found related attacks.

Canetti [9], and independently Pfitzmann and Waidner [45] proposed security
frameworks for reactive processes. We use the former universal composability
(UC) framework. Both frameworks have composition theorems, and are based
on older definitional work. The initial ideal-model based definitional approach
for secure function evaluation is informally proposed by Goldreich, Micali, and
Wigderson in [22]. The first formalizations appear in Goldwasser and Levin [24],
Micali and Rogaway [34], and Beaver [5]. See [8, 9] for an excellent background
on these definitions.

Wikström [49] defines the notion of a mix-net in the UC-framework, and
provides a construction that is provably secure against static adversaries under
the decisional Diffie-Hellman assumption. The scheme is practical only when the
number of mix-servers is small.

1.2 Contributions

We introduce a new type of El Gamal based mix-net in which each mix-server
only decrypts and permutes its input. No re-encryption is necessary. This allows
an individual sender to verify non-interactively that its message was processed
correctly, i.e., the scheme is sender verifiable. Although some older constructions
have this property, our is the first provably secure scheme.

Then we give the first proof of a decrypt-permutation shuffle of El Gamal
cryptotexts. There are two known approaches, [37, 27] and [19], to construct such
a protocol, but our solution is based on a novel idea of independent interest, and
we argue that it is at least as efficient as previous schemes.

We also give the first transformation of a proof of a shuffle into an efficient
zero-knowledge proof of knowledge in the UC-framework. An important technical
advantage of the new decrypt and permute construction is that witnesses are
much smaller than for previous shuffle relations.

Combined, our results give a mix-net that is provably UC-secure against
static adversaries corrupting any minority of the mix-servers. The mix-net is
efficient for any number of mix-servers, improving the result in Wikström [49].

1.3 Outline of the Paper

The paper is organized as follows. Notation is introduced in Section 2. In Section
3 we define the ideal mix-net functionality. A partial result in this direction is
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given in Section 4, where we describe a sender verifiable mix-net and discuss sender
verifiability. In Section 5 we describe a zero-knowledge proof of knowledge that a
mix-server processes its input correctly. Then in Section 6 we transform this into a
realization of an ideal zero-knowledge functionality in the UC-framework. Proofs
of all claims are given in the full version [50] of this paper.

2 Notation

Throughout, S1, . . . , SN denote senders and M1, . . . ,Mk mix-servers. All partic-
ipants are modeled as interactive Turing machines. We abuse notation and use
Si and Mj to denote both the machines themselves and their identity. We denote
the set of permutations of N elements by ΣN . We use the term “randomly” in-
stead of “uniformly and independently at random”. A function f : N → [0, 1] is
said to be negligible if for each c > 0 there exists aK0 ∈ N such that f(K) < K−c

for K > K0 ∈ N. A probability p(K) is overwhelming if 1− p(K) is negligible.
We assume that Gq is a group of prime order q with generator g for which

the Decision Diffie-Hellman (DDH) Assumption holds. Informally, it means that
it is infeasible to distinguish the distributions (gα, gβ , gαβ) and (gα, gβ , gγ) when
α, β, γ ∈ Zq are randomly chosen. This implies that also the Discrete Logarithm
(DL) assumption holds, namely that it is infeasible to compute the logarithm
in base g of a random element in Gq. For concreteness we let Gq be a subgroup
of prime order q of the multiplicative group Z∗p for some prime p. When we say
that an element in Zq is prime, we mean that its representative in {0, . . . , q− 1}
is a prime when considered as an integer.

We review the El Gamal [14] cryptosystem employed in Gq. The private key
x is generated by choosing x ∈ Zq randomly. The corresponding public key is
(g, y), where y = gx. Encryption of a message m ∈ Gq using the public key (g, y)
is given by E(g,y)(m, r) = (gr, yrm), where r is chosen randomly from Zq, and
decryption of a cryptotext on the form (u, v) = (gr, yrm) using the private key
x is given by Dx(u, v) = u−xv = m.

We also use an RSA modulus N = pq, where p and q are safe primes.
We denote by QRN the group of squares in Z∗N and adopt the convention that
any element b in QRN is written in boldface. We assume that the strong RSA-
assumption holds for such rings. Informally, it means that given random (N,h),
where h ∈ QRN, it is infeasible to find a non-trivial eth root b of h, i.e., an
e �= ±1 such that be = h. This differs from the RSA-assumption in that e is not
fixed.

The primary security parameter K1 is the number of bits in q. Several other
security parameters are introduced later in the paper. We denote by PRG a
pseudo-random generator (cf. [23]). We denote by Sort the algorithm that given
a list of strings as input outputs the same set of strings in lexicographical order.

2.1 The Universally Composable Security Framework

We analyze the security of our protocols in the Universally Composable (UC)
security framework of Canetti [9]. There are several variants and extensions of
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this framework, but we consider a plain model with asynchronous authenticated
communication. In the full version [50] we give a formal definition of this model.
Here we only indicate how our notation differs from the standard [9].

The notion of a communication model, CI , used below is not explicit in
Canetti [9]. It works as a router between participants and between participants
and ideal functionalities. Given the input ((A1,B1,C1, . . .), . . . , (As,Bs,Cs, . . .)
it interprets Aj as the receiver of (Bj ,Cj , . . .). The adversary cannot read the
correspondence with ideal functionalities, but it has full control over when a
message is delivered.

Our results hold for both blocking and non-blocking adversaries, where a
blocking adversary is allowed to block the delivery of a message indefinitely.

Definition 1. We define Ml to be the set of static adversaries that corrupt
less than l out of k participants of the mix-server type, and arbitrarily many
participants of the sender type.

Throughout we implicitly assume that a message handed to an ideal functional-
ity that is not on the form prescribed in its definition is returned to the sender
immediately. In particular this includes verifying membership in Gq when ap-
propriate. We use the same convention for definitions of protocols.

3 The Ideal Mix-Net

Although other definitions of security of mix-nets have been proposed, the most
natural definition is given by Wikström [49] in the UC-framework. He formalizes
a trusted party that waits for messages from senders, and then when a majority of
the mix-servers request it, outputs these messages but in lexicographical order.
For simplicity it accepts only one input from each sender. We prove security
relative this functionality.

Functionality 1 (Mix-Net). The ideal functionality for a mix-net, FMN, run-
ning with mix-servers M1, . . . ,Mk, senders S1, . . . , SN , and ideal adversary S
proceeds as follows

1. Initialize a list L = ∅, and set JP = ∅ and JM = ∅.
2. Repeatedly wait for new inputs and do

(a) Suppose (Si, Send, mi), mi ∈ Gq, is received from CI . If i �∈ JP , set
JP ← JP ∪ {i}, and append mi to L. Then hand (S, Si, Send) to CI .

(b) Suppose (Mj , Run) is received from CI . Set JM ← JM ∪ {j}. If |JM | >
k/2, then sort the list L lexicographically to form a list L′, hand
((S,Mj , Output,L′), {(Ml, Output,L′)}k

l=1) to CI and ignore further
messages. Otherwise, hand CI the list (S,Mj , Run).

4 A Sender Verifiable El Gamal Based Mix-Net

In recent El Gamal based mix-nets, e.g. [38, 20, 49], the mix-servers form a chain,
and each mix-server randomly permutes, partially decrypts, and re-encrypts the
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output of the previous mix-server. In older constructions decryption is instead
carried out jointly at the end of the chain. Our construction is different in that
each mix-server partially decrypts and sorts the output of the previous mix-
server. Thus, no cryptotext is re-encrypted and the permutation is not random,
but determined by the lexicographical order of the cryptotexts.

Let us consider why re-encryption is often considered necessary. In several
previous mix-nets each mix-server Mj holds a secret key xj ∈ Zq corresponding
to a public key yj = gxj . A joint public key y =

∏k
j=1 yj is used by a sender Si

to compute a cryptotext (u0,i, v0,i) = (gri , yrimi) of a message mi for a random
ri ∈ Zq. The mix-servers take turns and compute

(uj,i, vj,i)Ni=1 =
(

gsj,iuj−1,πj(i),

( k∏
l=j+1

yl

)sj,i

vj−1,πj(i)/u
xj

j−1,πj(i)

)N
i=1

,

for random sj,i ∈ Zq and πj ∈ ΣN , i.e., each mix-server permutes, partially
decrypts and re-encrypts its input. In the end (vk,i)Ni=1 = (mπ(i))Ni=1 for some
random joint permutation π. The reason that re-encryption is necessary with
this type of scheme is that otherwise the first component u0,i of each cryptotext
remains unchanged during the transformation, which allows anybody to break
the anonymity of all senders. For the older type of construction it is obvious why
re-encryption is necessary.

4.1 Our Modification

We modify the El Gamal cryptosystem to ensure that also the first component
uj−1,i is changed during partial decryption. Each mix-server is given a secret key
(wj , xj) ∈ Z2

q and a corresponding public key (zj , yj) = (gwj , gxj). To partially
decrypt and permute its input it computes

(u1/wj

j−1,i, vj−1,iu
−xj/wj

j−1,i )Ni=1 , (1)

from Lj−1, and sorts the result lexicographically. The result is denoted by Lj =
(uj,i, vj,i)Ni=1. Note that both components of each cryptotext are transformed
using the secret key of the mix-server. For this transformation to make any
sense we must also modify the way the joint key is formed. We define

(Zk+1,Yk+1) = (g, 1) and (Zj ,Yj) = (Zwj

j+1,Yj+1Z
xj

j+1) . (2)

The joint keys must be computed jointly by the mix-servers. A sender en-
crypts its message using the public key (Z1,Y1), i.e., (u0,i, v0,i) = (Zri

1 ,Y ri
1 mi)

for some random ri. The structure of the keys are chosen such that a crypto-
text on the form (uj−1,i, vj−1,i) = (Zri

j ,Y ri

j mi) given as input to mix-server Mj

satisfies

(u1/wj

j−1,i, vj−1,iu
−xj/wj

j−1,i ) = (Zri/wj

j ,Y ri

j Z
−rixj/wj

j mi)

= ((Z1/wj

j )ri , (YjZ
−xj/wj

j )rimi) = (Zri

j+1,Y
ri

j+1mi) .
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Thus, each mix-server Mj transforms a cryptotext (uj−1,i, vj−1,i) encrypted
with the public key (Zj ,Yj) into a cryptotext (uj,i, vj,i) encrypted with the public
key (Zj+1,Yj+1). Note that Sort({vk,i}Ni=1) = Sort({mi}Ni=1), since Yk+1 = 1.

There are several seemingly equivalent ways to set up the scheme, but some
of these do not allow a reduction of the security of the mix-net to the DDH-
assumption. The relation in Equation (1) is carefully chosen to allow a reduction.

4.2 Sender Verifiability

An important consequence of our modification is that a sender can compute
(Zri

j+1,Y
ri

j+1mi) and verify that this pair is contained in Lj for j = 1, . . . , k.
Furthermore, if this is not the case the sender can easily prove to any outsider
which mix-server behaved incorrectly. We call this sender verifiability, since it
allows a sender to verify that its cryptotext is processed correctly by the mix-
servers. This is not a new property. In fact Chaum’s original construction [10]
has this property, but our construction is the first provably secure scheme with
this property.

We think that sender verifiability is an important property that deserves
more attention. The verification process is unconditional and easily explained
to anybody with only a modest background in mathematics, and a verification
program can be implemented with little skills in programming. This means that
in the main application of mix-nets, electronic elections, a sender can convince
herself that her vote was processed correctly. We stress that this verification does
not guarantee anonymity or correct processing of any other cryptotext. Thus, a
proof of the overall security of the mix-net is still required.

The reader may worry that sender verifiability allows a voter to point out
its vote to a coercer. This is the case, but the sender can do this in previous
mix-nets as well by pointing at its message in the original list L0 of cryptotexts
and revealing the randomness used during encryption, so this problem is not
specific to our scheme. Furthermore, our scheme becomes coercion-free whenever
the sender does not know the randomness of its cryptotext, as other El Gamal
based mix-nets, but sender verifiability is then lost.

4.3 A Technical Advantage

There is also an important technical consequence of the lack of re-encryption in
the mixing process. The witness of our shuffle relation consists of a pair (wj , xj),
which makes it easy to turn our proof of knowledge into a secure realization of
the ideal functionality FRDP

ZK . This should be contrasted with all previous shuffle
relations, where the witness contains a long list of random exponents used to
re-encrypt the input that must somehow be extracted by the ideal adversary in
the UC-setting.

A potential alternative to our approach is to formalize the proof of a shuffle as
a proof of membership [7] in the UC-framework. However, a proof of membership
is not sufficient for the older constructions where decryption is carried out jointly
at the end of the mixing chain. The problem is that the adversary could corrupt
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the last mix-serverMk and instruct it to output L0 instead of a re-encryption and
permutation of Lk−1. This would obviously break the anonymity of all senders.
The malicious behavior is not detected, since the ideal proof of membership only
expects an element in the language and no witness from corrupted parties, and
L0 is a re-encryption and permutation of Lk−1. Interestingly, it seems that the
adversary cannot attack the real protocol if the proof of membership of a correct
shuffle is implemented using a proof of knowledge in the classical sense.

It is an open question if a proof of membership suffices for mix-nets where
each mix-server partially decrypts and then re-encrypts and permutes its input.

4.4 Preliminaries

We describe the mix-net in a hybrid model as defined in the UC-framework. This
means that the mix-servers and senders have access to a set of ideal function-
alities introduced in this section. We assume the existence of an authenticated
bulletin board. All parties can write to it, but no party can erase any message
from it. A formal definition is given in [49, 50]. We also assume an ideal func-
tionality corresponding to the key set-up sketched in Section 4.1. This is given
below.

Functionality 2 (Special El Gamal Secret Key Sharing). The ideal Spe-
cial El Gamal Secret Key Sharing over Gq, FSKS, with mix-servers M1, . . . ,Mk,
senders S1, . . . , SN , and ideal adversary S.

1. Initialize sets Jj = ∅ for j = 0, . . . , k.
2. Until |J0| = k, repeatedly wait for inputs. If (Mj, MyKey,wj , xj) is received

from CI such that wj , xj ∈ Zq and j �∈ J0. Set J0 ← J0 ∪ {j} compute
zj = gwj and yj = gxj , and hand (S, PublicKey,Mj,wj , zj) to CI .

3. Set (Zk+1,Yk+1) = (g, 1) and (Zj ,Yj) = (Zwj

j+1,Yj+1Z
xj

j+1). Then hand
((S, PublicKeys,(Zj ,Yj , zj, yj)k

j=1),{(Si, PublicKeys, (Zj ,Yj , zj , yj)k
j=1)}Ni=1,

{(Ml, Keys,wl, xl, (Zj ,Yj , zj, yj)k
j=1)}k

l=1) to CI .
4. Until |J0| = k, repeatedly wait for inputs. If (Mj , Recover,Ml) is received

from CI , set Jl ← Jl∪{j}. If |Jl|>k/2, then hand ((S, Recovered,Ml,wl, xl),
{(Mj, Recovered,Ml,wl, xl)}k

j=1) to CI , and otherwise hand
(S,Mj , Recover,Ml) to CI .

The above functionality can be securely realized by letting each mix-server
secret share its secret key using Feldman’s [15] verifiable secret sharing scheme.
Note that the functionality explicitly allows corrupted mix-servers to choose
their keys in a way that depends on the public keys of uncorrupted mix-servers.
The special joint keys would then be computed iteratively using Equation (2),
and during this process each mix-server would prove that it does this correctly
using standard methods.

Each mix-server partially decrypts each cryptotext and sorts the resulting
cryptotexts. Thus, proving correct behavior corresponds to proving knowledge
of a secret key (w, x) such that the cryptotexts (ui, vi) input to a mix-server are
related to the cryptotexts (u′i, v

′
i) it outputs by the following relation.
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Definition 2 (Knowledge of Correct Decryption-Permutation). Define
for each N a relation RDP ⊂ (G3

q ×G2N
q ×G2N

q )× (Zq × Zq), by

((g, z, y, {(ui, vi)}Ni=1, {(u′i, v′i)}Ni=1), (w, x)) ∈ RDP

precisely when z = gw, y = gx and (u′i, v
′
i) = (u1/w

π(i), vπ(i)u
−x/w
π(i) ) for i = 1, . . . ,N

and π ∈ ΣN such that the list {(u′i, v′i)}Ni=1 is sorted lexicographically.

To avoid a large class of “relation attacks” [44, 43, 48] no sender can be al-
lowed to construct a cryptotext of a message related to the message encrypted
by some other sender. Thus, each sender is required to prove knowledge of the
randomness it uses to form its cryptotexts. This corresponds to the following
relation.

Definition 3 (Knowledge of Cleartext). Define a relation RC ⊂ G4
q × Zq

by ((Z,Y, u, v), r) ∈ RC precisely when logZ u = r.

Formally, we need a secure realization of the following functionality parame-
terized by the above relations.

Functionality 3 (Zero-Knowledge Proof of Knowledge). Let L be a lan-
guage given by a binary relation R. The ideal zero-knowledge proof of knowledge
functionality FR

ZK of a witness w to an element x ∈ L, running with parties
P1, . . . , Pk

1. Upon receipt of (Pi, Prover, x,w) from CI , store w under the tag (Pi, x),
and hand (S, Pi, Prover, x,R(x,w)) to CI .

2. Upon receipt of (Mj , Question, Pi, x) from CI , let w be the string stored
under the tag (Pi, x) (the empty string if nothing is stored), and hand
((S,Mj , Verifier, Pi, x,R(x,w)), (Mj , Verifier, Pi,R(x,w))) to CI .

In [49] a secure realization πC of FRC
ZK is given, under the DDH-assumption,

which is secure against Mk/2-adversaries.
The functionality FRDP

ZK is securely realized in Section 6.

4.5 The Mix-Net

We now give the details of our mix-net. It executes in a hybrid model with access
to the ideal functionalities described above.

Protocol 1 (Mix-Net). The mix-net protocol πMN =(S1, . . . , SN ,M1, . . . ,Mk)
consists of senders Si, and mix-servers Mj.

Sender Si. Each sender Si proceeds as follows.
1. Wait for (PublicKeys, (Zj ,Yj , zj , yj)k

j=1) from FSKS.
2. Wait for an input (Send, mi), mi ∈ Gq. Then choose ri ∈ Zq randomly and

compute (ui, vi) = E(Z1,Y1)(mi, ri) = (Zri
1 ,Y ri

1 mi). Then hand
(Prover, (Z1,Y1, ui, vi), ri) to FRC

ZK , and hand (Write, (ui, vi)) to FBB.
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Mix-Server Mj. Each mix-server Mj proceeds as follows.

1. Choose wj , xj ∈ Zq randomly and hand (MyKey,wj , xj) to FSKS.
2. Wait for (Keys, (wj , xj), (Zj ,Yj , zj , yj)k

j=1) from FSKS, where wj , xj ∈ Zq

and Zj ,Yj , zj , yj ∈ Gq.
3. Wait for an input (Run), and then hand (Write, Run) to FBB.
4. Wait until more than k/2 different mix-servers have written Run on FBB,

and let the last entry of this type be (cRun,Mi, Run).
5. Form the list L∗ = {(uγ , vγ)}γ∈I∗ , for some index set I∗, by choosing for

γ = 1, . . . ,N the entry (c, Sγ , (uγ , vγ)) on FBB with the smallest c < crun

such that uγ , vγ ∈ Gq, if present.
6. For each γ ∈ I∗ do the following,

(a) Hand (Question, Sγ , (Z1,Y1, uγ , vγ)) to FRC
ZK .

(b) Wait for (Verifier, Sγ , bγ) from FRC
ZK .

Then form L0 = {(u0,i, v0,i)}N
′

i=1 consisting of pairs (uγ , vγ) such that bγ = 1.
7. For l = 1, . . . , k do

(a) If l �= j, then do
i. Wait until an entry (c,Ml, (List,Ll)) appears on FBB, where Ll is

on the form {(ul,i, vl,i)}N
′

i=1 for ul,i, vl,i ∈ Gq.
ii. Hand (Question,Ml, (g, zl, yl,Ll−1,Ll)) to FRDP

ZK , and wait for
(Verifier,Ml, bl) from FRDP

ZK .
iii. If bl = 0, then hand (Recover,Ml) to FSKS, and wait for

(Recovered,Ml, (wl, xl)) from FSKS. Then compute

Ll = {(ul,i, vl,i)}N
′

i=1 = Sort({(u1/wl

l−1,i, vl−1,iu
−xl/wl

l−1,i )}N ′

i=1) .

(b) If l = j, then compute

Lj = {(uj,i, vj,i)}N
′

i=1 = Sort({(u1/wj

j−1,i, vj−1,iu
−xj/wj

j−1,i )}N
′

i=1) ,

Finally hand (Prover, (g, zj, yj ,Lj−1,Lj), (wj , xj)) to FRDP
ZK , and hand

(Write, (List,Lj)) to FBB.
8. Output (Output, Sort({vk,i}N

′

i=1)).

Theorem 1. The ideal functionality FMN is securely realized by πMN in the
(FBB,FSKS,FRC

ZK ,FRDP
ZK )-hybrid model with respect to Mk/2-adversaries under

the DDH-assumption in Gq.

5 A New Efficient Proof of a Shuffle

We want to securely realize the ideal functionality FRDP
ZK . It turns out that a

useful step in this direction is to construct a statistical zero-knowledge proof for
the relation RDP, i.e., a proof of the decryption-permutation shuffle. First we
explain the key ideas in our approach. Then we give a detailed description of our
protocol. Finally, we explain how it can be turned into a public coin protocol.
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5.1 Our Approach

The protocol for proving the relation RDP is complex, but the underlying ideas
are simple. To simplify the exposition we follow Neff [37, 38] and consider the
problem of proving that a list of elements in Gq are exponentiated and permuted.
More precisely, let y, u1, . . . , uN , u′1, . . . , u

′
N ∈ Gq be defined by y = gx and

u′i = ux
π(i) for a permutation π. Only the prover knows x and π and it must

show that the elements satisfy such a relation. We also omit numerous technical
details. In particular we remove several blinding factors, hence the protocols are
not zero-knowledge as sketched here.

Extraction Using Linear Independence. The verifier chooses a list P =
(pi)Ni=1 ∈ ZNq of random primes and computes U =

∏N
i=1 upi

i . Then it requests
that the prover computes U ′ =

∏N
i=1(u

′
i)

pπ(i) , proves that U ′ = Ux and that it
knows a permutation π such that U ′ =

∏N
i=1(u

′
i)

pπ(i) .
The idea is then that if a prover succeeds in doing this it can be rewound and

run several times with different random vectors Pj , giving different Uj and U ′j ,
until a set P1, . . . , PN of linearly independent vectors in ZNq are found. Linear
independence implies that there are coefficients al,j ∈ Zq such that

∑N
j=1 al,jPj

equals the lth unity vector el, i.e., the vector with a one in the lth position and
all other elements zero. We would then like to conclude that

ux
l =

( N∏
j=1

U
al,j

j

)x

=
N∏

j=1

(U ′j)
al,j =

N∏
j=1

( N∏
i=1

(u′i)
pj,π−1(i)

)al,j

= u′π(l) , (3)

since that would imply that the elements satisfy the shuffle-relation.

Proving a Permutation of Prime Exponents. The prover can use standard
techniques to prove knowledge of integers ρ1, . . . , ρN such that U ′ =

∏N
i=1(u

′
i)

ρi ,
but it must also prove that ρi = pπ(i) for some permutation π.

Suppose that
∏N

i=1 pi =
∏N

i=1 ρi over Z. Then unique factorization in Z
implies that each ρi equals some product of the pi and −1. If in addition we
demand that ρi ∈ [−2K +1, 2K−1], no such product can contain more than one
factor. This implies that every product must contain exactly one factor. Thus,
ρi = ±pπ(i) for some permutation π. If we also have

∑N
i=1 pi =

∑N
i=1 ρi, then

we must clearly have ρi = pπ(i).
We observe that proving the above is relatively simple over a group of un-

known order such as the group QRN of squares modulo an RSA modulus N.
The prover forms commitments

b0 = g , (bi,b′i)
N
i=1 = (htib

pπ(i)
i−1 ,ht′igpπ(i))Ni=1 ,

with random ti and t′i and proves, using standard methods, knowledge of ρi, τi, τ
′
i

such that

U ′ =
N∏

i=1

(u′i)
ρi , bi = hτibρi

i−1 , and b′i = hτ ′
igρi . (4)
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Note that bN = hτg
N
i=1 ρi for some τ , so the verifier can check that

∏N
i=1 ρi =∏N

i=1 pi by asking the prover to show that it knows τ such that bN/g
N
i=1 pi =

hτ . We then note that a standard proof of knowledge over a group of unknown
order also gives an upper bound on the bit-size of the exponents, i.e., it implicitly
proves that ρi ∈ [−2K + 1, 2K − 1]. Finally, since

∏N
i=1 b′i = hτ ′

g
N
i=1 ρi for a

τ ′ =
∑N

i=1 τ ′i , the verifier can check that
∑N

i=1 ρi =
∑N

i=1 pi by asking the prover
to show that it knows τ ′ such that

∏N
i=1 b′i/g

N
i=1 pi = hτ ′

.

Fixing a Permutation. In Equation (3) above it is assumed that a fixed
permutation π is used for all prime vectors P1, . . . , PN . Unfortunately, this is
not necessarily the case, i.e., the permutation used in the jth proof may depend
on j and we should really write πj .

To solve this technical problem we force the prover to commit to a fixed
permutation π before it receives the prime vector P . The commitment is on
the form (wi)Ni=1 = (gr′

igπ−1(i))Ni=1. The verifier then computes W =
∏N

i=1 w
pi

i

and the prover proves that W = gr′ ∏N
i=1 gρi

i in addition to Equations (4).
The idea is that the prover must use π to permute the ρi or find a non-
trivial representation of 1 ∈ Gq using g, g1, . . . , gN , which is infeasible under the
DL-assumption.

5.2 An Honest Verifier Statistical Zero-Knowledge Computationally
Convincing Proof of Knowledge of a Decryption-Permutation

In this section we describe our proof of a shuffle in detail. Although we consider
a decrypt-permutation relation, our approach can be generalized to a proof of
a shuffle for the other shuffle relations considered in the literature. In the full
version [50] we detail such shuffles, including a shuffle of Paillier [41] cryptotexts.

We introduce several security parameters. We use K1 to denote the number
of bits in q, the order of the group Gq, and similarly K2 to denote the number
of bits in the RSA-modulus N. We use K3 to denote the number bits used in
the random primes mentioned above. At some point in the protocol the verifier
hands a challenge to the prover. We use K4 to denote the number of bits in
this challenge. At several points exponents must be padded with random bits to
achieve statistical zero-knowledge. We useK5 to denote the number of additional
random bits used to do this. We assume that the security parameters are chosen
such that K3 + K4 + K5 < K1,K2, and K5 < K3 − 2. Below the protocol we
explain how the informal description above relates to the different components
of the protocol.

Protocol 2 (Proof of Decryption-Permutation). The common input con-
sists of an RSA modulus N and g,h ∈ QRN, generators g, g1, . . . , gN ∈ Gq, a
public key (z, y) ∈ G2

q , and two lists L = (ui, vi)Ni=1 and L′ = (u′i, v
′
i)
N
i=1 in G2N

q .
The private input to the prover consists of (w, x) ∈ Z2

q such that (z, y) = (gw, gx)

and (u′i, v
′
i) = (u1/w

π(i), vπ(i)/u
x/w
π(i)) for a permutation π ∈ ΣN such that L′ is lexi-

cographically sorted.
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1. The prover chooses r′i ∈ Zq randomly, computes (wi)Ni=1 = (gr′
igπ−1(i))Ni=1,

and hands (wi)Ni=1 to the verifier.
2. The verifier chooses random primes p1, . . . , pN ∈ [2K3−1, 2K3−1], and hands

(pi)Ni=1 to the prover.
3. Both parties compute (U, V,W ) = (

∏N
i=1 upi

i ,
∏N

i=1 vpi

i ,
∏N

i=1 w
pi

i ).
4. The prover chooses the following elements randomly k1, k2, k3, k4, k5 ∈ Zq,

l1, . . . , l7, lr′, l1/w, lx/w, lw, lx ∈ Zq, ti, t
′
i ∈ [0, 2K2+K5 − 1],

si, s
′
i ∈ [0, 2K2+K4+2K5 − 1], ri ∈ [0, 2K3+K4+K5 − 1] for i = 1, . . . ,N ,

s ∈ [0, 2K2+NK3+K4+K5+log2N −1], and s′ ∈ [0, 2K2+K5+log2N −1]. Then the
prover computes

(b1, b2) = (gk1U1/w, gk2Ux/w) (5)

(b3, b4, b5) = (gk3
1 g1/w, gk4

1 bx
3 , gk5

1 bw
3 ) (6)

(β1, β2) =
(
gl1U l1/w , gl2U lx/w) (7)

(β3, β4) = (gl3
1 gl1/w , gl6

1 glx/w) (8)

(β5, β6, β7, β8, β9) = (gl4
1 blx

3 , glx , gl5
1 blw

3 , glw , gl7
1

)
(9)

(α1, α2, α3) =
(

gl1

N∏
i=1

(u′i)
ri , g−l2

N∏
i=1

(v′i)
ri , glr′

N∏
i=1

gri

i

)
(10)

b0 = g (11)

(bi,b′i)
N
i=1 = (htib

pπ(i)
i−1 ,ht′igpπ(i))Ni=1 (12)

(γi, γ
′
i)
N
i=1 = (hsibri

i−1,h
s′

igri)Ni=1 (13)

(γ, γ′) = (hs,hs′
) , (14)

and ((bi)5i=1, (βi)9i=1, (α1, α2, α3), (bi,b′i)
N
i=1, (γi, γ

′
i)
N
i=1, (γ, γ′)) is handed to

the verifier.
5. The verifier chooses c ∈ [2K4−1, 2K4−1] randomly and hands c to the prover.
6. Define t = tN +pπ(N)(tN−1 +pπ(N−1)(tN−2 +pπ(N−2)(tN−3 +pπ(N−3)(. . .))),

t′ =
∑N

i=1 t′i, r′ =
∑N

i=1 r′ipi, k6 = k4 + k3x, and k7 = k5 + k3w. The prover
computes

(fi)7i=1 = (cki + li)7i=1 mod q

(f1/w, fx/w) = (c/w + l1/w, cx/w + lx/w) mod q

(fw, fx) = (cw + lw, cx + lx) mod q

fr′ = cr′ + lr′ mod q

(ei, e
′
i)
N
i=1 = (cti + si, ct

′
i + s′i)

N
i=1 mod 2K2+K4+2K5

(di)Ni=1 = (cpπ(i) + ri)Ni=1 mod 2K3+K4+K5

e = ct + s mod 2K2+NK3+K4+K5+log2N

e′ = ct′ + s′ mod 2K2+K5+log2N

Then it hands (((fi)7i=1, f1/w, fx/w, fw, fx, fr′), (ei, e
′
i)
N
i=1, (di)Ni=1, (e, e

′)) to
the verifier.



A Sender Verifiable Mix-Net and a New Proof of a Shuffle 285

7. The verifier checks that bi, βi, αi ∈ Gq, and that L′ is lexicographically sorted
and that

(bc
1β1, b

c
2β2) = (gf1Uf1/w , gf2Ufx/w) (15)

(bc
3β3, b

c
4β4) = (gf31 gf1/w , gf61 gfx/w) (16)

(bc
4β5, y

cβ6) = (gf41 bfx

3 , gfx) (17)

(bc
5β7, z

cβ8, (b5/g)cβ9) = (gf51 bfw

3 , gfw , gf71 ) (18)

(bc
1α1, (V/b2)cα2,W

cα3) =
(

gf1
N∏

i=1

(u′i)
di , g−f2

N∏
i=1

(v′i)
di , gfr′

N∏
i=1

gdi

i

)
(19)

(bc
iγi, (b

′
i)

cγ′i)
N
i=1 = (heibdi

i−1,h
e′igdi)Ni=1 (20)

(g−
N
i=1 pibN )cγ = he (21)(

g−
N
i=1 pi

N∏
i=1

b′i

)c

γ′ = he
′
. (22)

Equations (5)-(9) are used to prove that (b1, V/b2) = (gκ1U1/w, g−κ2V/Ux/w)
using standard Schnorr-like proofs of knowledge of logarithms. Equations (12)
contain commitments corresponding to those in the outline of our approach.
Equations (13) are used to prove knowledge of exponents τi, τ

′
i , ρi such that

(bi,b′i) = (hτibρi

i−1,h
τ ′

igρi). We remark that the verifier need not check that
bi,b′i, γi, γ

′
i, γ, γ′ ∈ QRN for our analysis to go through. Equations (14) are

used to prove that
∏N

i=1 ρi =
∏N

i=1 pi and
∑N

i=1 ρi =
∑N

i=1 pi, i.e., that ρi

in fact equals pπ(i) for some permutation π. Equation (10) is used to prove
that (b1, V/b2) also equals (gk1

∏N
i=1(u

1/wj

i )pi , g−k2
∏N

i=1(vi/u
xj/wj

i )pi). If the
two ways of writing b1 and b2 are combined we have

(U1/w, V/Ux/w) =
( N∏

i=1

(u1/wj

i )pi ,

N∏
i=1

(vi/u
xj/wj

i )pi

)
,

which by the argument in Section 5.1 implies that ((g, z, y,L,L′), (w, x)) ∈ RDP.

5.3 Security Properties

Formally, the security properties of our protocol are captured by the following.

Proposition 1 (Zero-Knowledge). Protocol 2 is honest verifier statistical
zero-knowledge.

The protocol could be modified by adding a first step, where the verifier
chooses (N,g,h) and (g1, . . . , gN ). This would give a computationally sound
proof of knowledge. However, in our application we wish to choose these para-
meters jointly and only once, and then let the mix-servers execute the proof with
these parameters as common inputs. Thus, there may be a negligible portion of
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the parameters on which the prover can convince the verifier of false statements.
Because of this we cannot hope to prove that the protocol is a proof of knowledge
in the formal sense. Damg̊ard and Fujisaki [12] introduce the notion of a compu-
tationally convincing proof of knowledge to deal with situations like these. We
do not use the notion of “computationally convincing proofs” explicitly in our
security analysis, but the proposition below implies that our protocol satisfies
their definition.

We consider a malicious prover A which is given Γ = (N,g,h) and g =
(g, g1, . . . , gN ) as input and run with internal randomness rp. The prover outputs
an instance IA(Γ , g, rp), i.e., public keys z, y ∈ Gq and two lists L,L′ ∈ G2N

q

and then interacts with the honest verifier on the common input consisting of
(Γ , g, z, y,L,L′). Denote by TA(Γ , g, rp, rv) the transcript of such an interaction
when the verifier runs with internal randomness rv. Let Acc be the predicate
taking a transcript T as input that outputs 1 if the transcript is accepting
and 0 otherwise. Let LRDP be the language corresponding to the decryption-
permutation relation RDP. We prove the following proposition.

Proposition 2 (Soundness). Suppose the strong RSA-assumption and the
DL-assumption are true. Then for all polynomial-size circuit families A = {AK}
it holds that ∀c > 0, ∃K0, such that for K1 ≥ K0

Pr
Γ ,g,rp,rv

[Acc(TA(Γ , g, rp, rv)) = 1 ∧ IA(Γ , g, rp) �∈ LRDP] <
1
K1

c .

5.4 Generation of Primes from a Small Number of Public Coins

In our protocol the verifier must generate vectors in ZNq such that each compo-
nent is a “randomly” chosen prime in [2K3−1, 2K3 − 1]. We define a generator
PGen that generates prime vectors from public coins. Let p(n) be the smallest
prime at least as large as n. Our generator PGen takes as inputN random integers
n1, . . . , nN ∈ [2K3−1, 2K3−1] and internal randomness r, and defines pi = p(ni).
To find pi it first redefines ni such that it is odd by incrementing by one if nec-
essary. Then it executes the Miller-Rabin primality test for ni, ni + 2, ni + 4, . . .
until it finds a prime. We put an explicit bound on the running time of the
generator by bounding the number of integers it considers and the number of
iterations of the Miller-Rabin test it performs in total. If the generator stops
due to one of these bounds it outputs ⊥. If N ≥ K3, the bound corresponds to
6K3

4

K1
3 N exponentiations modulo a K1-bit integer. The generator can be used in

the obvious way to turn the protocol above into a public-coin protocol. The ver-
ifier sends (n1, . . . , nN , r) to the prover instead of p1, . . . , pN and the prover and
verifier generates the primes by computing (p1, . . . , pN ) = PGen(n1, . . . , nN , r).
A result by Baker and Harman [4] implies that the resulting distribution is close
to uniform.

Theorem 2 (cf. [4]). For large integers n there exists a prime in [n−n0.535, n].

Corollary 1. For all primes p ∈ [2K3−1, 2K3−1], Pr[p(n) = p] ≤ 2−0.465(K3−1),
where the probability is taken over a random choice of n ∈ [2K3−1, 2K3 − 1]
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The corollary gives a very pessimistic bound. It is commonly believed that the
theorem is true with 0.465 replaced by any constant less than one. Further-
more, Cramér argues probabilistically that there is a prime in every interval
[n− log2 n, n]. See Ribenboim [46] for a discussion on this.

We must argue that the generator fails with negligible probability. There are
two ways the generator can fail. Either it outputs p1, . . . , pN , where pi �= p(ni)
for some i, or it outputs ⊥.

Lemma 1. The probability that PGen(n1, . . . , nN , r) �= (p(n1), . . . , p(nN )) con-
ditioned on PGen(n1, . . . , nN , r) �= ⊥ is negligible.

Unfortunately, the current understanding of the distribution of the primes does
not allow a strict analysis of the probability that PGen(n1, . . . , nN , r) = ⊥.
Instead we give a heuristic analysis in Cramér’s probabilistic model of the primes.

Definition 4 (Cramér’s Model). For each integer n, let Xn be an indepen-
dent binary random variable such that Pr[Xn = 1] = 1/ lnn. An integer n is
said to be prime∗ if Xn = 1.

The idea is to consider the primality of the integers as a typical outcome of
the sequence (Xn)n∈Z. Thus, when we analyze the generator we assume that
the primality of an integer n is given by Xn, and our analysis is both over the
internal randomness of PGen and the randomness of Xn.

Lemma 2. In Cramér’s model the probability that PGen(n1, . . . , nN , r) = ⊥ is
negligible.

We stress that zero-knowledge and soundness of the modified protocol are not
heuristic. The zero-knowledge property holds for arbitrarily distributed integers
pi. Soundness follows from Lemma 1. It is only completeness that is argued
heuristically. Although this is not always clear, similar heuristic arguments are
common in the literature, e.g. to generate safe primes and to encode arbitrary
messages in Gq. We assume that Lemma 2 is true from now on.

Although we now have a public-coin protocol it requires many random bits.
This can be avoided by use of a pseudo-random generator PRG as suggested by
Groth [28]. Instead of choosing n1, . . . , nN randomly and sending these integers
to the prover, the verifier chooses a random seed s ∈ [0, 2K1 − 1] and hands this
to the prover. The prover and verifier then computes (n1, . . . , nN ) = PRG(s)
and computes the primes from the integers as described above. The output
(p1, . . . , pN) may not appear to the prover as random, since he holds the seed s.
However, we prove in the full version [50] that if we define Pj = PGen(PRG(s))
and let P1, . . . , Pj−1 ∈ ZNq be any linearly independent vectors, the probability
that Pj ∈ Span(P1, . . . , Pj−1) or pj,i = pj,l for some i �= l is negligible for all
1 ≤ j ≤ N . This is all we need in our application.

Universal Verifiability and Random Oracles. If the Fiat-Shamir heuristic
is applied to a proof of a shuffle, any outsider can check, non-interactively, that
a mix-server behaves correctly. If the verification involves no trusted parameters
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the resulting mix-net is called “universally verifiable”. In our protocol the RSA
parameters (N,g,h) must be trusted by the verifier and we do not see how these
can be generated from public coins. Thus, if the Fiat-Shamir heuristic is applied
to our protocol the result is not really universally verifiable.

However, we can achieve universal verifiability under the root assumption in
class groups with prime discriminant. A class group is defined by its discrim-
inant Δ. It is conjectured that finding non-trivial roots in a class group with
discriminant Δ = −p for a prime p is infeasible (cf. [29]). The idea would be
to generate a prime p of suitable size from random coins handed to the prover
by the verifier in the first round. Then the integer part of the protocol would
be executed in the class group defined by Δ = −p. With this modification the
protocol gives a universally verifiable mix-net.

5.5 Complexity

Comparing the complexity of protocols is tricky, since any comparison must
take place for equal security rather than for equal security parameters. The
only rigorous method to do this is to perform an exact security analysis of
each protocol and choose the security parameters accordingly. Various opti-
mization and pre-computing techniques are also applicable to different degrees
in different protocols and in different applications. Despite this we argue in-
formally, but carefully, in the full paper [50] that the complexity of our pro-
tocol is at least as good as that of the most efficient previous proofs of a
shuffle.

More precisely, our protocol requires 5 rounds as the previously known most
round efficient proof of a shuffle [21] involving decryption. Furthermore, for prac-
tical parameters, e.g. K1 = 2048,K2 = 1024,K4 = 160,K3 = 100, and K5 = 50,
the complexity is less than 2.5N and 1.6N general exponentiations in Gq for the
prover and verifier. With optimizations as in [21] this corresponds to 0.5N and
0.8N general exponentiations in Gq, which indicates that the protocol is at least
as fast as that in [21].

6 Secure Realization of FRDP
ZK

In this section we transform the proof of a shuffle into a secure realization of
FRDP

ZK in a (FRSA,FCF,FBB)-hybrid model, where FRSA is an RSA common
reference string functionality, and FCF is a coin flipping functionality.

Functionality 4 (RSA Common Reference String). The ideal RSA Com-
mon Reference String, FRSA, with mix-servers M1, . . . ,Mk and ideal adversary
S proceeds as follows.

1. Generate two random K2/2-bit primes p and q such that (p − 1)/2 and
(q − 1)/2 are prime and compute N = pq. Then choose g and h randomly
in QRN. Finally, hand ((S, RSA,N,g,h), {(Mj, RSA,N,g,h)}k

j=1) to CI .
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There are protocols [6, 16] for generating a joint RSA modulus, but these
are not analyzed in the UC-framework, so for technical reasons we cannot apply
these directly. If these protocols cannot be used to give a UC-secure protocol,
general methods [11] can be used since this need only be done once.

Functionality 5 (Coin-Flipping). The ideal Coin-Flipping functionality,
FCF, with mix-servers M1, . . . ,Mk, and adversary S proceeds as follows.

1. Set JK, = ∅ for all K.
2. On reception of (Mj , GenerateCoins,K) from CI , set JK ← JK ∪ {j}. If
|JK | > k/2, then set JK ← ∅ choose c ∈ {0, 1}K and hand
((S, Coins, c), {(Mj, Coins, c)}k

j=1) to CI .

It is not hard to securely realize the coin-flipping functionality using a UC-
secure verifiable secret sharing scheme (cf. [1]). Each mix-server Mj chooses a
random string cj of K bits and secretly shares it. Then all secrets are recon-
structed and c is defined as ⊕k

j=1cj .
Finally, we give the protocol which securely realizes FRDP

ZK . This is essentially
a translation of Protocol 2 into a multiparty protocol in the UC-setting.

Protocol 3 (Zero-Knowledge Proof of Decryption-Permutation). The
protocol πDP = (M1, . . . ,Mk) consists of mix-serversMj and proceeds as follows.

Mix-Server Mj. Each mix-server Mj proceeds as follows.

1. Wait for (RSA,N,g,h) from FRSA. Then hand (GenerateCoins,NK1) to
FCF and wait until it returns (Coins, (g′1, . . . , g′N)). Then map these strings
to elements in Gq by gi = (g′i)

(p−1)/q mod p (recall that Gq ⊂ Z∗p).
2. On input (Prover, (g, z, y,L,L′), (w, x)), where ((g, z, y,L,L′), (w, x))∈LRDP

(a) Hand (Prover, (g, z, 1, 1),w) and (Prover, (g, y, 1, 1), x) to FRC
ZK .

(b) Denote by W the first message of the prover in Protocol 2. Then hand
(Write, W,W ) to FBB.

(c) Then hand (GenerateCoins,K1) to FCF and wait until it returns
(Coins, s). Then set P = PGen(PRG(s)). If P = ⊥ go to Step 2c, other-
wise let P be the primes used by the prover in Protocol 2.

(d) Denote by C the second message of the prover in Protocol 2. Hand
(Write, C,C) to FBB. Then hand (GenerateCoins,K4 − 1) to FCF and
wait until it returns (Coins, c′). Let c = c′+2K4−1 be the final challenge
in Protocol 2.

(e) Denote by R the third message of the prover in Protocol 2. Hand
(Write, R,R) to FBB.

3. On input (Question,Ml, (g, z, y,L,L′)), where L,L′ ∈ G2N
q and (z, y) ∈ Gq

(a) Hand (Question,Ml, (g, z, 1, 1)) to FRC
ZK and wait until it returns

(Verifier,Ml, bz,l). Then hand (Question,Ml, (g, y, 1, 1)) and wait un-
til it returns (Verifier,Ml, by,l). If bz,lby,l = 0 output (Verifier,Ml, 0).

(b) Then wait until (Ml, W,W ) appears on FBB. Hand (GenerateCoins,K1)
to FCF and wait until it returns (Coins, s). Then set P = PGen(PRG(s)).
If P = ⊥ go to Step 3b, otherwise let P be the primes used by the verifier
in Protocol 2.
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(c) Wait until (Ml, C,C) appears on FBB. Then hand (GenerateCoins,K4−
1) to FCF and wait until it returns (Coins, c′), and until (Ml, R,R) ap-
pears on FBB. Let c = c′ + 2K4−1 be the final challenge in Protocol 2.
Then verify (W, P,C, c,R) as in Protocol 2 and set bj = 1 or bj = 0
depending on the result.

(d) Hand (Write, Judgement,Ml, bj) to FBB and wait until
(Ml′ , Judgement,Ml, bl′) appears on FBB for l′ �= j. Set b = 1 if |{bl′ |
bl′ = 1}| > k/2 and otherwise b = 0. Output (Verifier,Ml,L,L′, b).

Theorem 3. The ideal functionality FRDP
ZK is securely realized by πDP in the

(FRC
ZK ,FCF,FRSA,FBB)-hybrid model with respect toMk/2-adversaries under the

DL-assumption and the strong RSA-assumption.

Corollary 2. The composition of πMN, πC, πDP, securely realizes FMN in the
(FSKS,FCF,FRSA,FBB)-hybrid model with respect to Mk/2-adversaries under
the DDH-assumption and the strong RSA-assumption.

As indicated in the body of the paper all assumptions except the assumption
of a bulletin board can be eliminated. The assumption of a bulletin board can
only be eliminated for blocking adversaries (cf. [49]).

7 Conclusion

We have introduced a novel way to construct a mix-net, and given the first
provably secure sender verifiable mix-net. We have also introduced a novel ap-
proach to construct a proof of a shuffle, and shown how this can be used to
securely realize the ideal zero-knowledge proof of knowledge functionality for a
decrypt-permutation relation. Combined, this gives the first universally compos-
able mix-net that is efficient for any number of mix-servers.
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Abstract. We first propose the notion of universally anonymizable
public-key encryption. Suppose that we have the encrypted data made
with the same security parameter, and that these data do not satisfy the
anonymity property. Consider the situation that we would like to trans-
form these encrypted data to those with the anonymity property with-
out decrypting these encrypted data. In this paper, in order to formal-
ize this situation, we propose a new property for public-key encryption
called universal anonymizability. If we use a universally anonymizable
public-key encryption scheme, not only the person who made the cipher-
texts, but also anyone can anonymize the encrypted data without using
the corresponding secret key. We then propose universally anonymizable
public-key encryption schemes based on the ElGamal encryption scheme,
the Cramer-Shoup encryption scheme, and RSA-OAEP, and prove their
security.

Keywords: encryption, anonymity, key-privacy, ElGamal, Cramer-
Shoup, RSA-OAEP.

1 Introduction

The classical security requirement of public-key encryption schemes is that it
provides privacy of the encrypted data. Popular formalizations such as indistin-
guishability or non-malleability, under either the chosen-plaintext or the chosen-
ciphertext attacks are directed at capturing various data-privacy requirements.

Bellare, Boldyreva, Desai, and Pointcheval [1] proposed a new security re-
quirement of encryption schemes called “key-privacy” or “anonymity.” It asks
that an encryption scheme provides (in addition to privacy of the data being en-
crypted) privacy of the key under which the encryption was performed. That is,
if an encryption scheme provides the key-privacy, then the receiver is anonymous
from the point of view of the adversary.

In addition to the notion of key-privacy, they provided the RSA-based anony-
mous encryption scheme, RSA-RAEP, which is a variant of RSA-OAEP (Bel-
lare and Rogaway [2], Fujisaki, Okamoto, Pointcheval, and Stern [7]). Recently,
Hayashi, Okamoto, and Tanaka [10] proposed the RSA-based anonymous encryp-
tion scheme by using the RSACD function. Hayashi and Tanaka [11] constructed

B. Roy (Ed.): ASIACRYPT 2005, LNCS 3788, pp. 293–312, 2005.
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RSA-OAEP Sampling Twice [11] RSA-RAEP [1] RSACD [10] Expanding
anonymity No Yes Yes Yes Yes

# of mod. exp. to encrypt
(average / worst)

1 / 1 2 / 2 1.5 / k1 1.5 / 2 1 / 1

# of random bits to encrypt
(average / worst)

k0
2k0 + k + 3
/ 2k0 + k + 3

1.5k0 / k1k0 1.5k0 / 1.5k0
k0 + 160
/ k0 + 160

size of ciphertexts k k k k k + 160

Fig. 1. The costs of the encryption schemes

the RSA-based anonymous encryption scheme by using the sampling twice tech-
nique. In [11], they also mentioned the scheme with the expanding technique for
comparison, however, there is no security proof.

With respect to the discrete-log based schemes, Bellare, Boldyreva, Desai,
and Pointcheval [1] proved that the ElGamal and the Cramer-Shoup encryption
schemes provide the anonymity property when all of the users use a common
group.

In this paper, we consider the following situation. In order to send e-mails,
all members of the company use the encryption scheme which does not provide
the anonymity property. They consider that e-mails sent to the inside of the
company do not have to be anonymized and it is sufficient to be encrypted the
data. However, when e-mails are sent to the outside of the company, they want
to anonymize them for preventing the eavesdropper on the public network.

A trivial answer for this problem is that all members use the encryption
scheme with the anonymity property. However, generally speaking, we require
some computational costs to create ciphertexts with the anonymity property.
In fact, the RSA-based anonymous encryption schemes proposed in [1,10,11],
which are based on RSA-OAEP, are not efficient with respect to the encryption
cost or the size of ciphertexts, compared with RSA-OAEP (See Figure 1. Here,
k, k0, k1 are security parameters and we assume that N is uniformly distributed
in (2k−1, 2k).). Since the members do not require to anonymize the e-mails, it
would be better to use the standard encryption scheme within the company.

We propose another way to solve this. Consider the situation that not only the
person who made the ciphertexts, but also anyone can transform the encrypted
data to those with the anonymity property without decrypting these encrypted
data. If we have this situation, we can make an e-mail gateway which can trans-
form encrypted e-mails to those with the anonymity property without using the
corresponding secret key when they are sent to the outside of the company.

Furthermore, we can use this e-mail gateway in order to guarantee the
anonymity property for e-mails sent to the outside of the company. The president
of the company may consider that all e-mails sent to the outside of the company
should be anonymized. In this case, even if someone tries to send e-mails to the
outside of the company without anonymization, the e-mails passing through the
e-mail gateway are always anonymized.

In this paper, in order to formalize this idea, we propose a special type
of public-key encryption scheme called a universally anonymizable public-key
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encryption scheme. A universally anonymizable public-key encryption scheme
consists of a standard public-key encryption scheme PE and two additional algo-
rithms, that is, an anonymizing algorithm UA and a decryption algorithm DA
for anonymized ciphertexts. We can use PE as a standard encryption scheme
which is not necessary to have the anonymity property. Furthermore, in this
scheme, by using the anonymizing algorithm UA, anyone who has a standard
ciphertext can anonymize it with its public key whenever she wants to do that.
The receiver can decrypt the anonymized ciphertext by using the decryption
algorithm DA for anonymized ciphertexts. Then, the adversary cannot know
under which key the anonymized ciphertext was created.

To formalize the security properties for universally anonymizable public-key
encryption, we define three requirements, the key-privacy, the data-privacy on
standard ciphertexts, and that on anonymized ciphertexts.

We then propose the universally anonymizable public-key encryption schemes
based on the ElGamal encryption scheme, the Cramer-Shoup encryption scheme,
and RSA-OAEP, and prove their security.

We show the key-privacy property of our schemes by applying an argument
in [1] with modification. The argument in [1] for the discrete-log based scheme
depends heavily on the situation where all of the users employ a common group.
However, in our discrete-log based schemes, we do not use the common group
for obtaining the key-privacy property. Therefore, we cannot straightforwardly
apply their argument to our schemes. To prove the key-privacy property of our
schemes, we employ the idea described in [5] by Cramer and Shoup, where we
encode the elements of QRp (a group of quadratic residues modulo p) where
p = 2q+1 and p, q are prime to those of Zq. This encoding plays an important role
in our schemes. We also employ the expanding technique. With this technique,
if we get the ciphertext, we expand it to the common domain. This technique
was proposed by Desmedt [6]. In [8], Galbraith and Mao used this technique for
the undeniable signature scheme. In [13], Rivest, Shamir, and Tauman also used
this technique for the ring signature scheme.

The organization of this paper is as follows. In Section 2, we review the defini-
tions of the Decisional Diffie-Hellman problem, the families of hash functions, and
the RSA family of trap-door permutations. In Section 3, we formulate the notion
of universally anonymizable public-key encryption and its security properties.
We propose the universally anonymizable public-key encryption scheme based
on the ElGamal encryption scheme in Section 4, that based on the Cramer-Shoup
encryption scheme in Section 5, and that based on RSA-OAEP in Section 6.

2 Preliminaries

2.1 The Decisional Diffie-Hellman Problem

In this section, we review the decisional Diffie-Hellman Problem.

Definition 1 (DDH). Let G be a group generator which takes as input a security
parameterk andreturns (q, g)where q is ak-bit integer andg is a generator of a cyclic
groupGq of order q. Let D be an adversary. We consider the following experiments:
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Experiment Expddh-real
G,D (k) Experiment Expddh-rand

G,D (k)

(q, g)← G(k); x, y R← Zq (q, g) ← G(k); x, y R← Zq

X ← gx; Y ← gy; T ← gxy X ← gx; Y ← gy; T
R← Gq

d← D(q, g,X,Y,T ) d ← D(q, g,X,Y,T )
return d return d

The advantage of D in solving the Decisional Diffie-Hellman (DDH) problem for
G is defined by

Advddh
G,D(k) =

∣∣Pr[Expddh-real
G,D (k) = 1]− Pr[Expddh-rand

G,D (k) = 1]
∣∣.

We say that the DDH problem for G is hard if the function Advddh
G,D(k) is negli-

gible for any algorithm D whose time-complexity is polynomial in k.

The “time-complexity” is the worst case execution time of the experiment plus
the size of the code of the adversary, in some fixed RAM model of computation.

2.2 Families of Hash Functions

In this section, we describe the definitions of families of hash functions and
universal one-wayness.

Definition 2 (Families of Hash Functions). A family of hash functions H =
(GH, EH) is defined by two algorithms. A probabilistic generator algorithm GH
takes the security parameter k as input and returns a key K. A deterministic
evaluation algorithm EH takes the key K and a string M ∈ {0, 1}∗ and returns
a string EHK(M) ∈ {0, 1}k−1.

Definition 3 (Universal One-Wayness). Let H = (GH, EH) be a family of
hash functions and let C = (C1,C2) be an adversary. We consider the following
experiment:

Experiment Expuow
H,C(k)

(x0, si)← C1(k); K ← GH(k); x1 ← C2(K, x0, si)
if ((x0 �= x1) ∧ (EHK(x0) = EHK(x1))) then return 1 else return 0

Note that si is the state information. We define the advantage of C via

Advuow
H,C(k) = Pr[Expuow

H,C(k) = 1].

We say that the family of hash functions H is universal one-way if Advuow
H,C(k)

is negligible for any algorithm C whose time-complexity is polynomial in k.

2.3 The RSA Family of Trap-Door Permutations

In this section, we describe the definitions of the RSA family of trap-door per-
mutations denoted by RSA and θ-partial one-wayness of RSA.
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Definition 4 (The RSA Family of Trap-Door Permutations). The RSA
family of trap-door permutations RSA = (K, E, I) is described as follows. The key
generation algorithm K takes as input a security parameter k and picks random,
distinct primes p, q in the range 2�k/2�−1 < p, q < 2�k/2� and 2k−1 < pq < 2k.
It sets N = pq and picks e, d ∈ Z∗φ(N) such that ed = 1 (mod φ(N)). The
public key is (N, e, k) and the secret key is (N, d, k). The evaluation algorithm is
EN,e,k(x) = xe mod N and the inversion algorithm is IN,d,k(y) = yd mod N .

Definition 5 (θ-Partial One-Wayness of RSA). Let k ∈ N be a security
parameter. Let 0 < θ ≤ 1 be a constant. Let A be an adversary. We consider the
following experiment:

Experiment Expθ-pow-fnc
RSA,A (k)

((N, e, k), (N, d, k)) ← K(k); x R← Z∗N ; y ← xe mod N
x1 ← A(pk, y) where |x1| = !θ · |x|"
if
(
(x1||x2)e mod N = y for some x2

)
return 1 else return 0

Here, “ ||” denotes concatenation. We define the advantage of the adversary via

Advθ-pow-fnc
RSA,A (k) = Pr[Expθ-pow-fnc

RSA,A (k) = 1]

where the probability is taken over K, x R← Z∗N , and A. We say that RSA is
θ-partial one-way if the function Advθ-pow-fnc

RSA,A (k) is negligible for any adversary
A whose time complexity is polynomial in k.

Note that when θ = 1 the notion of θ-partial one-wayness coincides with the
standard notion of one-wayness. Fujisaki, Okamoto, Pointcheval, and Stern [7]
showed that the θ-partial one-wayness of RSA is equivalent to the (1-partial)
one-wayness of RSA for θ > 0.5.

3 Universally Anonymizable Public-Key Encryption

In this section, we propose the definition of universally anonymizable public-key
encryption schemes and its security properties.

3.1 The Definition of Universally Anonymizable Public-Key
Encryption Schemes

We formalize the notion of universally anonymizable public-key encryption
schemes as follows.

Definition 6. A universally anonymizable public-key encryption scheme
UAPE = ((K, E ,D),UA,DA) consists of a public-key encryption scheme PE =
(K, E ,D) and two other algorithms.

– The key generation algorithm K is a randomized algorithm that takes as
input a security parameter k and returns a pair (pk, sk) of keys, a public key
and a matching secret key.
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– The encryption algorithm E is a randomized algorithm that takes the public
key pk and a plaintext m and returns a standard ciphertext c.

– The decryption algorithm D for standard ciphertexts is a deterministic algo-
rithm that takes the secret key sk and a standard ciphertext c and returns the
corresponding plaintext m or a special symbol ⊥ to indicate that the standard
ciphertext is invalid.

– The anonymizing algorithm UA is a randomized algorithm that takes the pub-
lic key pk and a standard ciphertext c and returns an anonymized ciphertext
c′.

– The decryption algorithm DA for anonymized ciphertexts is a deterministic
algorithm that takes the secret key sk and an anonymized ciphertext c′ and
returns the corresponding plaintext m or a special symbol ⊥ to indicate that
the anonymized ciphertext is invalid.

We require the standard correctness condition. That is, for any (pk, sk) outputted
by K and m ∈ M(pk) where M(pk) denotes the message space of pk, we have
m = Dsk(Epk(m)) and m = DAsk(UApk(Epk(m))).

In the universally anonymizable public-key encryption scheme, we can use
PE = (K, E ,D) as a standard encryption scheme. Furthermore, in this scheme,
by using the anonymizing algorithm UA, anyone who has a standard ciphertext
can anonymize it whenever she wants to do that. The receiver can decrypt the
anonymized ciphertext by using the decryption algorithm DA for anonymized
ciphertexts.

3.2 Security Properties of Universally Anonymizable Public-Key
Encryption Schemes

We now define security properties with respect to universally anonymizable
public-key encryption schemes.

Data-Privacy. We define the security property called data-privacy of univer-
sally anonymizable public-key encryption schemes. The definition is based on
the indistinguishability for standard public-key encryption schemes.

We can consider two types of data-privacy, that is, the data-privacy on stan-
dard ciphertexts and that on anonymized ciphertexts. We first describe the de-
finition of the data-privacy on standard ciphertexts.

Definition 7 (Data-Privacy on Standard Ciphertexts). Let b ∈ {0, 1} and
k ∈ N. Let Acpa = (A1

cpa,A
2
cpa), Acca = (A1

cca,A
2
cca) be adversaries that run in

two stages and where Acca has access to the oracles Dsk0 (·), Dsk1(·), DAsk0 (·),
and DAsk1 (·). Note that si is the state information. It contains pk,m0,m1, and
so on. For atk ∈ {cpa, cca}, we consider the following experiment:

Experiment ExpdataS-atk-b
UAPE,Aatk

(k)
(pk, sk)← K(k); (m0,m1, si)← A1

atk(pk); c← Epk(mb); d← A2
atk(c, si)

return d
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Note that m0,m1 ∈ M(pk). Above it is mandated that A2
cca never queries the

challenge c to either Dsk0 (·) or Dsk1(·). It is also mandated that A2
cca never

queries either the anonymized ciphertext c̃ ∈ {UApk0(c)} to DAsk0(·) or c̃ ∈
{UApk1(c)} to DAsk1(·). For atk ∈ {cpa, cca}, we define the advantage via

AdvdataS-atk
UAPE,Aatk

(k) =
∣∣∣Pr[ExpdataS-atk-1

UAPE,Aatk
(k) = 1]− Pr[ExpdataS-atk-0

UAPE,Aatk
(k) = 1]

∣∣∣.
We say that the universally anonymizable public-key encryption scheme UAPE
provides the data-privacy on standard ciphertexts against the chosen plaintext
attack (respectively the adaptive chosen ciphertext attack) if AdvdataS-cpa

UAPE,Acpa
(k)

(resp. AdvdataS-cca
UAPE,Acca

(k)) is negligible for any adversary A whose time complexity
is polynomial in k.

In the above experiment, if the challenge is c, then anyone can compute
UApk0(c). Therefore, in the CCA setting, we restrict the oracle access to DA as
described above.

We next describe the definition of the data-privacy on anonymized cipher-
texts.

Definition 8 (Data-Privacy on Anonymized Ciphertexts). Let b ∈ {0, 1}
and k ∈ N. Let Acpa = (A1

cpa,A
2
cpa), Acca = (A1

cca,A
2
cca) be adversaries that run

in two stages and where Acca has access to the oracles Dsk0(·), Dsk1(·), DAsk0 (·),
and DAsk1(·). For atk ∈ {cpa, cca}, we consider the following experiment:

Experiment ExpdataA-atk-b
UAPE,Aatk

(k)
(pk, sk)← K(k); (m0,m1, si)← A1

atk(pk)
c← Epk(mb); c′ ← UApk(c); d← A2

atk(c′, si)
return d

Note that m0,m1 ∈ M(pk). Above it is mandated that A2
cca never queries the

challenge c′ to either DAsk0(·) or DAsk1(·). For atk ∈ {cpa, cca}, we define the
advantage via

AdvdataA-atk
UAPE,Aatk

(k) =
∣∣∣Pr[ExpdataA-atk-1

UAPE,Aatk
(k) = 1]− Pr[ExpdataA-atk-0

UAPE,Aatk
(k) = 1]

∣∣∣.
We say that the universally anonymizable public-key encryption scheme UAPE
provides the data-privacy on anonymized ciphertexts against the chosen plaintext
attack (resp. the adaptive chosen ciphertext attack) if AdvdataA-cpa

UAPE,Acpa
(k) (resp.

AdvdataA-cca
UAPE,Acca

(k)) is negligible for any adversary A whose time complexity is
polynomial in k.

Remark 1. In the CPA setting, if there exists an algorithm which breaks the
data-privacy on anonymized ciphertexts, then we can break that on standard
ciphertexts by applying the anonymizing algorithm to the standard ciphertexts
and passing the resulting anonymized ciphertexts to the adversary which breaks
the data-privacy on anonymized ciphertexts. Therefore, in the CPA setting, it is
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sufficient that the universally anonymizable public-key encryption scheme pro-
vides the data-privacy of standard ciphertexts.

On the other hand, in the CCA setting, the data privacy on standard cipher-
texts does not always imply that on anonymized ciphertexts, since the oracle
access of the adversary attacking the data privacy on standard ciphertexts is
restricted more strictly than that on anonymized ciphertexts.

Key-Privacy. We define the security property called key-privacy of universally
anonymizable public-key encryption schemes. If the scheme provides the key-
privacy, the adversary cannot know under which key the anonymized ciphertext
was created.

Definition 9 (Key-Privacy). Let b∈{0, 1} and k∈N. Let Acpa =(A1
cpa,A

2
cpa),

Acca = (A1
cca,A

2
cca) be adversaries that run in two stages and where Acca has

access to the oracles Dsk0(·), Dsk1(·), DAsk0(·), and DAsk1(·). For atk ∈ {cpa,
cca}, we consider the following experiment:

Experiment Expkey-atk-b
UAPE,Aatk

(k)
(pk0, sk0) ← K(k); (pk1, sk1)← K(k)
(m0,m1, si) ← A1

atk(pk0, pk1); c← Epkb
(mb); c′ ← UApkb

(c); d← A2
atk(c

′, si)
return d

Note that m0 ∈ M(pk0) and m1 ∈ M(pk1). Above it is mandated that A2
cca

never queries the challenge c′ to either DAsk0(·) or DAsk1(·). For atk ∈ {cpa,
cca}, we define the advantage via

Advkey-atk
UAPE,Aatk

(k) =
∣∣∣Pr[Expkey-atk-1

UAPE,Aatk
(k) = 1]− Pr[Expkey-atk-0

UAPE,Aatk
(k) = 1]

∣∣∣.
We say that the universally anonymizable public-key encryption scheme UAPE
provides the key-privacy against the chosen plaintext attack (resp. the adaptive
chosen ciphertext attack) if Advkey-cpa

UAPE,Acpa
(k) (resp. Advkey-cca

UAPE,Acca
(k)) is neg-

ligible for any adversary A whose time complexity is polynomial in k.

Bellare, Boldyreva, Desai, and Pointcheval [1] proposed a security require-
ment of encryption schemes called “key-privacy.” Similar to the above definition,
it asks that the encryption provides privacy of the key under which the encryp-
tion was performed. In addition to the property of the universal anonymizability,
there are two differences between their definition and ours.

In [1], they defined the encryption scheme with some common-key which
contains the common parameter for all users to obtain the key-privacy property.
For example, in the discrete-log based schemes such that the ElGamal and the
Cramer-Shoup encryption schemes, the common key contains a common group
G, and the encryption is performed over the common group for all uses.

On the other hand, in our definition, we do not prepare any common key
for obtaining the key-privacy property. In the universally anonymizable public-
key encryption scheme, we can use the standard encryption scheme which is
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not necessary to have the key-privacy property. In addition to it, anyone can
anonymize the ciphertext by using its public key whenever she want to do that,
and the adversary cannot know under which key the anonymized ciphertext was
created.

The definition in [1], they considered the situation that the message space
was common to each user. Therefore, in the experiment of their definition, the
adversary chooses only one message m from the common message space and
receives a ciphertext of m encrypted with one of two keys pk0 and pk1.

In our definition, we do not use common parameter and the message spaces
for users may be different even if the security parameter is fixed. In fact, in
Sections 4 and 5, we propose the encryption schemes whose message spaces for
users are different. Therefore, in the experiment of our definition, the adversary
chooses two messages m0 and m1 where m0 and m1 are in the message spaces
for pk0 and pk1, respectively, and receives either a ciphertext of m0 encrypted
with pk0 or a ciphertext of m1 encrypted with pk1. The ability of the adversary
with two messages m0 and m1 might be stronger than that with one message m.

We say that a universally anonymizable public-key encryption scheme UAPE
is CPA-secure (resp. CCA-secure) if the scheme UAPE provides the data-privacy
on standard ciphertexts, that on anonymized ciphertexts, and the key-privacy
against the chosen plaintext attack (resp. the adaptive chosen ciphertext attack).

4 ElGamal and Its Universal Anonymizability

In this section, we propose a universally anonymizable ElGamal encryption
scheme.

4.1 The ElGamal Encryption Scheme

Definition 10 (ElGamal). The ElGamal encryption scheme PEEG=(KEG, EEG,
DEG) is as follows. Note that Q is a QR-group generator with a safe prime which
takes as input a security parameter k and returns (q, g) where q is k-bit prime,
p = 2q + 1 is prime, and g is a generator of a cyclic group QRp (a group of
quadratic residues modulo p) of order q.

Algorithm KEG(k) Algorithm EEG
pk (m) Algorithm DEG

sk (c1, c2)

(q, g)← Q(k) r
R← Zq m← c2 · c−x1

x
R← Zq; y ← gx c1 ← gr return m

return pk = (q, g, y) and sk = x c2 ← m · yr
return (c1, c2)

The ElGamal encryption scheme is secure in the sense of IND-CPA if the
DDH problem for Q is hard.

4.2 Universal Anonymizability of the ElGamal Encryption Scheme

We now consider the situation that there exists no common key, and in the above
definition of the ElGamal encryption scheme, each user chooses an arbitrary
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prime q where |q| = k and p = 2q + 1 is also prime, and uses a group of
quadratic residues modulo p. Therefore, each user Ui uses a different groups Gi
for her encryption scheme and if she publishes the ciphertext directly (without
anonymization) then the scheme does not provide the key-privacy. In fact, the
adversary simply checks whether the ciphertext y is in the group Gi, and if
y �∈ Gi then y was not encrypted by Ui. To anonymize the standard ciphertext
of the ElGamal encryption scheme, we consider the following strategy in the
anonymizing algorithm.

1. Compute a ciphertext c over each user’s prime-order group.
2. Encode c to an element c̄ ∈ Zq (the encoding function).
3. Expand c̄ to the common domain (the expanding technique).

We describe the encoding function and the expanding technique.

The Encoding Function. Generally speaking, it is not easy to encode the
elements of a prime-order group of order q to those of Zq. We employ the idea
described in [5] by Cramer and Shoup. We can encode the elements of QRp

where p = 2q + 1 and p, q are prime to those of Zq.
Let p be safe prime (i.e. q = (p − 1)/2 is also prime) and QRp ⊂ Z∗p a

group of quadratic residues modulo p. Then we have |QRp| = q and QRp =
{12 mod p, 22 mod p, · · · , q2 mod p}. It is easy to see that QRp is a cyclic group
of order q, and each g ∈ QRp\{1} is a generator of QRp.

We now define a function Fq : QRp → Zq as

Fq(x) = min
{
±x

p−1
4 mod p

}
.

Noticing that ± x p−1
4 mod p are the square roots of x modulo p, the function

Fq is bijective and we have F−1
q (y) = y2 mod p. We call the function Fq an

encoding function. We also define a t-encoding function F̄q,t : (QRp)t → (Zq)t.
F̄q,t takes as input (x1, · · · , xt) ∈ (QRp)t and returns (y1, · · · , yt) ∈ (Zq)t where
yi = Fq(xi) for each i ∈ {1, · · · , t}. It is easy to see that F̄q,t is bijective and we
can define F̄−1

q,t .

The Expanding Technique. This technique was proposed by Desmedt [6].
In [8], Galbraith and Mao used this technique for the undeniable signature
scheme. In [13], Rivest, Shamir, and Tauman also used this technique for the
ring signature scheme.

In the expanding technique, we expand c̄ ∈ Zq to the common domain

{0, 1}k+kb. In particular, we choose t R← {0, 1, 2, · · · , +(2k+kb − c̄)/q,} and set
c′ ← c̄+ tq.

Then, for any q where |q| = k, if c̄ is uniformly chosen from Zq, then the
statistical distance between the distribution of the output c′ by the expanding
technique and the uniform distribution over {0, 1}k+kb is less than 1/2kb−1. In
the following, we set kb = 160.
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Our Scheme. We now propose our universally anonymizable ElGamal encryp-
tion scheme. Our scheme provides the key-privacy against the chosen plaintext
attack even if each user chooses an arbitrary prime q where |q| = k and p = 2q+1
is also prime, and uses a group of quadratic residues modulo p.

Definition 11. Our universally anonymizable ElGamal encryption scheme
UAPEEG = ((KEG, EEG,DEG), UAEG,DAEG) consists of the ElGamal encryption
scheme PEEG = (KEG, EEG,DEG) and two algorithms described as follows.

Algorithm UAEG
pk (c1, c2) Algorithm DAEG

sk (c′1, c
′
2)

(c̄1, c̄2)← F̄q,2(c1, c2) c̄1 ← c′1 mod q; c̄2 ← c′2 mod q
t1

R← {0, 1, 2, · · · , +(2k+160 − c̄1)/q,} (c1, c2) ← F̄−1
q,2 (c̄1, c̄2)

t2
R← {0, 1, 2, · · · , +(2k+160 − c̄2)/q,} m← DEG

sk (c1, c2)
c′1 ← c̄1 + t1q; c′2 ← c̄2 + t2q return m
return (c′1, c′2)

4.3 Security

In this section, we prove that our universally anonymizable ElGamal encryption
scheme UAPEEG is CPA-secure assuming that the DDH problem for Q is hard.

We can easily see that our scheme provides the data-privacy on standard
ciphertexts against the chosen plaintext attack if the DDH problem for Q is
hard. More precisely, we can prove that if there exists a CPA-adversary attacking
the data-privacy on standard ciphertexts of our scheme with advantage ε, then
there exists a CPA-adversary attacking the indistinguishability of the ElGamal
encryption scheme with the same advantage ε.

Note that this implies our scheme provides the data-privacy on anonymized
ciphertexts against the chosen plaintext attack if the DDH problem forQ is hard.

We now prove our scheme provides the key-privacy against the chosen plain-
text attack. To prove this, we use the idea of Halevi [9].

Lemma 1 (Halevi [9]). Let PE = (K, E ,D) be a (standard) encryption scheme
that is CCA secure (resp. CPA secure) for the indistinguishability (data-privacy).
Then a sufficient condition for PE to be also CCA secure (resp. CPA secure) for
the key-privacy (defined by Bellare, Boldyreva, Desai, and Pointcheval) if the
statistical distance between the two distributions

D0 = {(pk0, pk1, Epk0(m)) : (pk0, sk0), (pk1, sk1)← K(k); m R←M(pk0)}
D1 = {(pk0, pk1, Epk1(m)) : (pk0, sk0), (pk1, sk1)← K(k); m R←M(pk1)}

is negligible.

This lemma shows the relation between the indistinguishability and the key-
privacy for standard encryption scheme. We can apply this lemma to our univer-
sally anonymizable encryption scheme. That is, if the universally anonymizable
encryption scheme UAPE = ((K, E ,D),UA,DA) provides the data-privacy on
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anonymized ciphertexts against CCA (resp. CPA) and the statistical distance
between the two distributions

D′0 ={(pk0, pk1,UApk0(Epk0(m))) : (pk0, sk0), (pk1, sk1) ← K(k); m R←M(pk0)}
D′1 ={(pk0, pk1,UApk1(Epk1(m))) : (pk0, sk0), (pk1, sk1) ← K(k); m R←M(pk1)}

is negligible, then UAPE provides the key-privacy against CCA (resp. CPA).
By using this, in order to prove that our scheme provides the key-privacy

against the chosen plaintext attack, all we have to do is to see that the two
distributions D′0 and D′1 derived by our scheme satisfy the property defined
above. It is easy to see that the statistical distance between D′0 and D′1 is less
than 2× (1/2159)2.

In conclusion, our universally anonymizable ElGamal encryption scheme is
CPA-secure assuming that the DDH problem for Q is hard.

5 Cramer-Shoup and Its Universal Anonymizability

In this section, we propose a universally anonymizable Cramer-Shoup encryption
scheme.

5.1 The Cramer-Shoup Encryption Scheme

Definition 12 (Cramer-Shoup). The Cramer-Shoup encryption scheme
PECS = (KCS, ECS, DCS) is defined as follows. Let H = (GH, EH) be a family
of hash functions. Note that Q is a QR-group generator with a safe prime.

Algorithm KCS(k) Algorithm ECS
pk (m) Algorithm DCS

sk (u1, u2, e, v)

(q, g)← Q(k); K ← GH(k) r
R← Zq α← EHK(u1, u2, e)

g1 ← g; g2
R← QRp u1 ← gr1; u2 ← gr2 if (ux1+y1α

1 ux2+y2α
2 = v)

x1, x2, y1, y2, z
R← Zq e ← hrm then m← e/uz

1

c← gx1
1 gx2

2 ; d← gy1
1 g

y2
2 α← EHK(u1, u2, e) else m←⊥

h← gz
1 v ← crdrα return m

pk ← (q, g1, g2, c, d, h,K) return (u1, u2, e, v)
sk ← (x1, x2, y1, y2, z)
return (pk, sk)

Cramer and Shoup [5] proved that the Cramer-Shoup encryption scheme is
secure in the sense of IND-CCA2 assuming that H is universal one-way and
the DDH problem for Q is hard. Lucks [12] recently proposed a variant of the
Cramer-Shoup encryption scheme for groups of unknown order. This scheme is
secure in the sense of IND-CCA2 assuming that the family of hash functions in
the scheme is universal one-way, and both the Decisional Diffie-Hellman problem
in QRN (a set of quadratic residues modulo N) and factoring N are hard.
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5.2 Universal Anonymizability of the Cramer-Shoup Encryption
Scheme

We propose our universally anonymizable Cramer-Shoup encryption scheme. Our
scheme provides the key-privacy against the adaptive chosen ciphertext attack
even if each user chooses an arbitrary prime q where |q| = k and p = 2q + 1 is
also prime, and uses a group of quadratic residues modulo p.

Note that in our scheme we employ the encoding function and the expanding
technique appeared in Section 4.

Definition 13. Our universally anonymizable Cramer-Shoup encryption scheme
UAPECS = ((KCS, ECS,DCS),UACS,DACS) consists of the Cramer-Shoup encryp-
tion scheme PECS = (KCS, ECS,DCS) and two algorithms described as follows.

Algorithm UACS
pk(u1, u2, e, v) Algorithm DACS

sk (u′1, u
′
2, e

′, v′)
(ū1, ū2, ē, v̄)← F̄q,4(u1, u2, e, v) ū1 ← u′1 mod q; ū2 ← u′2 mod q
t1

R← {0, 1, 2, · · · , +(2k+160 − ū1)/q,} ē← e′ mod q; v̄ ← v′ mod q
t2

R← {0, 1, 2, · · · , +(2k+160 − ū2)/q,} (u1, u2, e, v)← F̄−1
q,4 (ū1, ū2, ē, v̄)

t3
R← {0, 1, 2, · · · , +(2k+160 − ē)/q,} m← DCS

sk (u1, u2, e, v)
t4

R← {0, 1, 2, · · · , +(2k+160 − v̄)/q,} return m
u′1 ← ū1 + t1q; u′2 ← ū2 + t2q
e′ ← ē + t3q; v′ ← v̄ + t4q
return (u′1, u

′
2, e

′, v′)

5.3 Security

In this section, we prove that our universally anonymizable Cramer-Shoup en-
cryption scheme UAPEEG is CCA-secure assuming that the DDH problem for
Q is hard and H is universal one-way.

We can prove that our scheme provides the data-privacy on standard cipher-
texts against the adaptive chosen ciphertext attack if the DDH problem for Q
is hard and H is universal one-way. More precisely, we can prove that if there
exists a CCA-adversary A attacking the data-privacy on standard ciphertexts of
our scheme with advantage ε, then there exists a CCA2-adversary B attacking
the indistinguishability of the Cramer-Shoup encryption scheme with the same
advantage ε. In the reduction of the proof, we have to simulate the decryption or-
acles for anonymized ciphertexts for A. If A makes a query c′ = (u′1, u

′
2, e

′, v′) to
DAsk0(·), we simply compute c = (u′1 mod q0, u′2 mod q0, e′ mod q0, v′ mod q0)
and decrypt c by using the decryption algorithmDsk0 (·) for standard ciphertexts
for B. We can simulate DAsk1(·) in a similar way.

In order to prove that our scheme provides the key-privacy and the data-
privacy on anonymized ciphertexts against the adaptive chosen ciphertext at-
tack, we need restriction as follows.

We define the set of ciphertexts ECCS((u′1, u′2, e′, v′), pk) called “equivalence
class” as
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ECCS((u′1, u
′
2, e

′, v′), pk) = {(ǔ1, ǔ2, ě, v̌) ∈ ({0, 1}k+160)4|
ǔ1 = u′1 (mod q) ∧ ǔ2 = u′2 (mod q) ∧ ě = e′ (mod q) ∧ v̌ = v′ (mod q)}.

If c′ = (u′1, u
′
2, e

′, v′) ∈ ({0, 1}k+160)4 is an anonymized ciphertext ofm under
pk = (q, g1, g2, c, d, h,K) then any element č = (ǔ1, ǔ2, ě, v̌) ∈ ECCS(c′, pk) is
also an anonymized ciphertext of m under pk. Therefore, when c′ is a challenge
anonymized ciphertext, the adversary can ask an anonymized ciphertext č ∈
ECCS(c′, pk0) to the decryption oracle DACS

sk0 for anonymized ciphertexts, and
if the answer of DACS

sk0 is m0 then the adversary knows that c′ is encrypted by
pk0 and the plaintext of c′ is m0.

Furthermore, the adversary can ask (u′1 mod q0, u′2 mod q0, e′ mod q0, v′ mod
q0) to the decryption oracle DCS

sk0
for standard ciphertexts. If the answer of DCS

sk0
is m0, then the adversary knows that c′ is encrypted by pk0 and the plaintext
of c′ is m0.

To prevent these attacks, we add some natural restriction to the adversaries
in the definitions of the key-privacy and the data-privacy on anonymized ci-
phertexts. That is, it is mandated that the adversary never queries either č ∈
ECCS(c′, pk0) to DACS

sk0 or č ∈ ECCS(c′, pk1) to DACS
sk1 . It is also mandated that

the adversary never queries either (u′1 mod q0, u′2 mod q0, e′ mod q0, v′ mod q0)
to DCS

sk0
or (u′1 mod q1, u′2 mod q1, e′ mod q1, v′ mod q1) to DCS

sk1
.

We think these restrictions are natural and reasonable. Actually, in the case of
undeniable and confirmer signature schemes, Galbraith and Mao [8] defined the
anonymity on undeniable signature schemes with the above restriction. In [11],
Hayashi and Tanaka also employed the same restriction in order to prove the
anonymity of their encryption scheme. Incidentally, Canetti, Krawczyk, and
Nielsen [4] proposed a relaxed notion of CCA security, called Replayable CCA
(RCCA). In their security model, the schemes which require restriction such
as equivalence class for proving their CCA security satisfy a variant of RCCA,
pd-RCCA (publicly-detectable replayable-CCA) secure.

If we add these restrictions then we can prove that our scheme provides the
data-privacy on anonymized ciphertexts against the adaptive chosen ciphertext
attack if the DDH problem for Q is hard and H is universal one-way. More
precisely, we can prove that if there exists a CCA-adversary attacking the data-
privacy on anonymized ciphertexts of our scheme with advantage ε, then there
exists a CCA-adversary attacking the data-privacy on standard ciphertexts of
our scheme with the same advantage ε.

We now prove our scheme provides the key-privacy against the adaptive
chosen ciphertext attack. If we add the restrictions described above, we can
prove this in a similar way as that for our universally anonymizable ElGamal
encryption scheme. Note that the statistical distance between D′0 and D′1 (See
Section 4.3.) is less than 2× (1/2159)4.

In conclusion, our universally anonymizable Cramer-Shoup encryption
scheme is CCA-secure assuming that the DDH problem for Q is hard and H
is universal one-way.
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6 RSA-OAEP and Its Universal Anonymizability

In this section, we propose a universally anonymizable RSA-OAEP scheme.

6.1 RSA-OAEP

Definition 14 (RSA-OAEP). RSA-OAEP PERO = (KRO, ERO,DRO) is as
follows. Let k, k0 and k1 be security parameters such that k0 + k1 < k. This de-
fines an associated plaintext-length n = k−k0−k1. The key generation algorithm
KRO takes as input a security parameter k and runs the key generation algorithm
of RSA to get N, e, d. It outputs the public key pk = (N, e) and the secret key
sk = d. The other algorithms are depicted below. Let G : {0, 1}k0 → {0, 1}n+k1

and H : {0, 1}n+k1 → {0, 1}k0 be hash functions. Note that [x]� denotes the 

most significant bits of x, and [x]�′ denotes the 
′ least significant bits of x.

Algorithm ERO
pk (m) Algorithm DRO

sk (c)

r
R← {0, 1}k0 s← [cd mod N ]n+k1 ; t← [cd mod N ]k0

s← (m||0k1)⊕G(r) r ← t⊕H(s)
t← r ⊕H(s) m← [s⊕G(r)]n; p← [s⊕G(r)]k1
c← (s||t)e mod N if (p = 0k1) z ← m else z ←⊥
return c return z

Fujisaki, Okamoto, Pointcheval, and Stern [7] proved that OAEP with partial
one-way permutations is secure in the sense of IND-CCA2 in the random oracle
model. They also showed that RSA is one-way if and only if RSA is θ-partial
one-way for θ > 0.5. Thus, RSA-OAEP is secure in the sense of IND-CCA2 in
the random oracle model assuming RSA is one-way.

6.2 Universal Anonymizability of RSA-OAEP

A simple observation that seems to be folklore is that if one publishes the ci-
phertext of the RSA-OAEP scheme directly (without anonymization) then the
scheme does not provide the key-privacy. Suppose an adversary knows that the
ciphertext c is created under one of two keys (N0, e0) or (N1, e1), and suppose
N0 ≤ N1. If c ≥ N0 then the adversary bets it was created under (N1, e1), else
the adversary bets it was created under (N0, e0). It is not hard to see that this
attack has non-negligible advantage.

To anonymize ciphertexts of RSA-OAEP, we do not have to employ the
encoding function and we only use the expanding technique.

Definition 15. Our universally anonymizable RSA-OAEP scheme UAPERO =
((KRO, ERO,DRO),UARO, DARO) consists of RSA-OAEP PERO=(KRO, ERO,DRO)
and two algorithms described as follows.

Algorithm UARO
pk (c) Algorithm DARO

sk (c′)

α
R← {0, 1, 2, · · · , +(2k+160 − c)/N,} c← c′ mod N

c′ ← c+ αN z ← DRO
sk (c)

return c′ return z
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6.3 Security

In this section, we prove that our universally anonymizable RSA-OAEP scheme
UAPERO is CCA-secure in the random oracle model assuming RSA is one-
way.

We can prove that our scheme provides the data-privacy on standard cipher-
texts against the adaptive chosen ciphertext attack in the random oracle model
assuming RSA is θ-partial one-way for θ > 0.5. More precisely, if RSA-OAEP is
secure in the sense of IND-CCA2 then our scheme provides the data-privacy on
standard ciphertexts against the adaptive chosen ciphertext attack. The proof
is similar to that for our universally anonymizable Cramer-Shoup encryption
scheme.

In order to prove that our scheme provides the key-privacy and the data-
privacy on anonymized ciphertexts against the adaptive chosen ciphertext at-
tack, we need the restrictions similar to those for our universally anonymizable
Cramer-Shoup encryption scheme. We define the equivalence class for our uni-
versally anonymizable RSA-OAEP scheme as

ECRO(c′, pk) = {č ∈ {0, 1}k+160|č = c′ (mod N)}

where pk = (N, e) and it is mandated that the adversary never queries either
č ∈ ECRO(c′, pk0) to DARO

sk0 or č ∈ ECRO(c′, pk1) to DARO
sk1 . It is also man-

dated that the adversary never queries either c′ mod N0 to DRO
sk0

or c′ mod N1

to DRO
sk1

.
If we add these restrictions then we can prove that our scheme provides the

data-privacy on anonymized ciphertexts against the adaptive chosen ciphertext
attack in the random oracle model assuming RSA is θ-partial one-way for θ >
0.5 in a similar way as that for our universally anonymizable Cramer-Shoup
encryption scheme.

Furthermore, if we add the restrictions described above, then we can prove
that our scheme provides the key-privacy against the adaptive chosen ciphertext
attack in the random oracle model assuming RSA is θ-partial one-way for θ > 0.5.
More precisely, we show the following theorem 1.

Theorem 1. For any adversary A attacking the key-privacy of our scheme un-
der the adaptive chosen ciphertext attack, and making at most qdec queries to
decryption oracle for standard ciphertexts, q′dec queries to decryption oracle for
anonymized ciphertexts, qgen G-oracle queries, and qhash H-oracle queries, there
exists a θ-partial inverting adversary B for RSA, such that for any k, k0, k1, and
θ = k−k0

k ,

Advkey-cca
UAPERO,A

(k) ≤ 8qhash · ((1− ε1) · (1− ε2))−1 ·Advθ-pow-fnc
RSA,B (k)

+qgen · (1− ε2)−1 · 2−k+2

1 Halevi [9] noted that we cannot apply Lemma 1 directly to the schemes analyzed in
the random oracle model.
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where ε1 = 2
2k/2−3−1

+ 1
2159 , ε2 = 2qgen+qdec+q

′
dec+2qgen(qdec+q

′
dec)

2k0 + 2(qdec+q
′
dec)

2k1 +
2qhash
2k−k0 , and the running time of B is that of A plus qgen · qhash ·O(k3).

In conclusion, since RSA is θ-partial one-way if and only if RSA is one-way
for θ > 0.5, our universally anonymizable RSA-OAEP scheme is CCA-secure in
the random oracle model assuming RSA is one-way.

6.4 Proof of Theorem 1

The proof is similar to that for RSA-RAEP. We construct the partial inverting
algorithm M for the RSA function using a CCA-adversary A attacking the key-
privacy of our encryption scheme. We describe the partial inverting algorithm
M for RSA using a CCA-adversary A attacking the anonymity of our encryption
scheme. M is given pk = (N, e, k) and a point y ∈ Z∗N where |y| = k = n+k0+k1.
Let sk = (N, d, k) be the corresponding secret key. The algorithm is trying to
find the n+ k1 most significant bits of the e-th root of y modulo N .

1) M picks μ R← {0, 1, 2, . . . , +(2k+160 − y)/N,} and sets Y ← y + μN .
2) M runs the key generation algorithm of RSA with security parameter k to

obtain pk′ = (N ′, e′, k) and sk′ = (N ′, d′, k). Then it picks a bit b R← {0, 1},
and sets pkb ← (N, e) and pk1−b ← (N ′, e′). If the above y does not satisfy
y ∈ (Z∗N0

∩ Z∗N1
) then M outputs Fail and halts; else it continues.

3) M initializes four lists, called G-list, H-list, Y0-list, and Y1-list to empty. It
then runs A as follows. Note that M simulates A’s oracles G, H , Dsk0 , and
Dsk1 as described below.

3-1) M runs A1(pk0, pk1) and gets (m0,m1, si) which is the output of A1.
3-2) M runs A2(Y, si) and gets a bit d ∈ {0, 1} which is the output of A2.

4) M chooses a random element on the H-list and outputs it as its guess for
the n+ k1 most significant bits of the e-th root of y modulo N .

M simulates A’s oracles G, H , Dsk0 , and Dsk1 as follows:

– When A makes an oracle query g to G, then for each (h,Hh) on the H-
list, M builds z = h||(g ⊕ Hh), and computes yh,g,0 = ze0 mod N0 and
yh,g,1 = ze1 mod N1. For i ∈ {0, 1}, M checks whether y = yh,g,i. If for some
h and i such a relation holds, then we have inverted y under pki, and we can
still correctly simulate G by answering Gg = h ⊕ (mi||0k1). Otherwise, M
outputs a random value Gg of length n+ k1. In both cases, M adds (g,Gg)
to the G-list. Then, for all h, M checks if the k1 least significant bits of
h⊕Gg are all 0. If they are, then it adds yh,g,0 and yh,g,1 to the Y0-list and
the Y1-list, respectively.

– When A makes an oracle query h to H , M provides A with a random string
Hh of length k0 and adds (h,Hh) to the H-list. Then for each (g,Gg) on the
G-list, M builds z = h||(g ⊕ Hh), and computes yh,g,0 = ze0 mod N0 and
yh,g,1 = ze1 mod N1. M checks if the k1 least significant bits of h ⊕Gg are
all 0. If they are, then it adds yh,g,0 and yh,g,1 to the Y0-list and the Y1-list,
respectively.
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– When for i ∈ {0, 1}, A makes an oracle query ŷ ∈ Z∗Ni
to Dski , M checks if

there exists some yh,g,i in the Yi-list such that ŷ = yh,g,i. If there is, then it
returns the n most significant bits of h ⊕ Gg to A. Otherwise it returns ⊥
(indicating that ŷ is an invalid ciphertext).

– When for i ∈ {0, 1}, A makes an oracle query Ŷ ∈ {0, 1}k+160 to DAski , M
checks if there exists some yh,g,i in the Yi-list such that Ŷ mod Ni = yh,g,i. If
there is, then it returns the n most significant bits of h⊕Gg to A. Otherwise
it returns ⊥ (indicating that Ŷ is an invalid anonymized ciphertext).

In order to analyze the advantage of M , we define some events. For i ∈ {0, 1},
let wi = ydi mod Ni, si = [wi]n+k1 , and ti = [wi]k0 .

– DSBad denotes the event that
• A Dsk0 query is not correctly answered, or
• A Dsk1 query is not correctly answered.

– DABad denotes the event that
• A DAsk0 query is not correctly answered, or
• A DAsk1 query is not correctly answered.

– DBad = DSBad ∨ DABad.
– YBad denotes the event that y �∈ (Z∗N0

∩ Z∗N1
).

– AskR denotes the event that (r0, Gr0) or (r1, Gr1) is on the G-list at the end
of step 3-2.

– AskS denotes the event that (s0, Hs0) or (s1, Hs1) is on the H-list at the end
of step 3-2.

We let Pr[·] denote the probability distribution in the game defining advan-
tage and Pr1[·] the probability distribution in the simulated game where ¬YBad
occurs. We can bound Pr1[AskS] in a similar way as in the proof of the anonymity
for RSA-RAEP [1], and we have

Pr1[AskS] ≥ 1
2
· Pr1[AskR ∧ AskS|¬DBad] · Pr1[¬DBad|¬AskS].

We next bound Pr1[AskR ∧ AskS|¬DBad]. Let ε = Advkey-cca

UAPERO,A
(k). The

proof of the following lemma is similar to that for RSA-RAEP.

Lemma 2.

Pr1[AskR ∧ AskS|¬DBad] ≥ ε

2
·
(
1− 2qgen · 2−k0 − 2qhash · 2−n−k1

)
− 2qgen · 2−k.

We next bound Pr1[¬DBad|¬AskS]. It is easy to see that Pr1[¬DBad|¬AskS]≤
Pr1[¬DSBad|¬AskS]+Pr1[¬DABad|¬AskS], and the proof of the following lemma
is similar to that for RSA-RAEP.
Lemma 3.

Pr1[DSBad|¬AskS] ≤ qdec ·
(
2 · 2−k1 + (2qgen + 1) · 2−k0

)
,

Pr1[DABad|¬AskS] ≤ q′dec ·
(
2 · 2−k1 + (2qgen + 1) · 2−k0

)
.
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By applying Lemmas 2 and 3, we can bound Pr1[AskS] as

Pr1[AskS]
≥ 1

2 ·
(
ε
2 ·
(
1− 2qgen

2k0 − 2qhash
2n+k1

)
− 2qgen

2k

)
·
(
1− (qdec + q′dec) ·

(
2

2k1 + 2qgen+1

2k0

))
≥ ε

4 ·
(
1− 2qgen+qdec+q

′
dec+2qgen(qdec+q

′
dec)

2k0 − 2(qdec+q
′
dec)

2k1 − 2qhash
2k−k0

)
− qgen

2k .

We next bound the probability that ¬YBad occurs.
Lemma 4.

Pr[YBad] ≤ 2
2k/2−3 − 1

+
1

2159
.

Proof (Lemma 4). Let N = pq and N ′ = p′q′. We define a set S[N ] as {Ỹ |Ỹ ∈
[0, 2k+160) ∧ (Ỹ mod N) ∈ Z∗N}. Then, we have

Pr[YBad]
= Pr[y R← Z∗N ; μ R← {0, 1, 2, . . . , +(2k+160 − y)/N,}; Y ← y + μN : Y �∈ S[N ′]]
≤ Pr[Y ′ R← S[N ] : Y ′ �∈ S[N ′]] + 1/2159

since the distribution of Y ′ is statistical indistinguishable from that of Y , and
the statistically distance is less than 1/2159.

Since 2160 · φ(N) ≤ |S[N ]| ≤ 2k+160, we have

Pr[Y ′ R← S[N ] : Y ′ �∈ S[N ′]] ≤ 2k+160−|S[N ′]|
|S[N ]| ≤ 2k+160−|S[N ′]|

2160·φ(N) .

Furthermore, we have

2k+160 − |S[N ′]| =
∣∣{Y ′|Y ′ ∈ [0, 2k+160) ∧ (Y ′ mod N ′) �∈ Z∗N ′}

∣∣
≤
∣∣{Y ′|Y ′ ∈ [0, 2N ′ · 2160) ∧ (Y ′ mod N ′) �∈ Z∗N ′}

∣∣
= 2161 × |{Y ′|Y ′ ∈ [0,N ′) ∧ Y ′ �∈ Z∗N ′}|
= 2161(N ′ − φ(N ′)).

Noticing that 2�k/2�−1 < p, q, p′, q′ < 2�k/2� and 2k−1 < N,N ′ < 2k, we have

Pr[Y ′ R← S[N ] : Y ′ �∈ S[N ′]]
≤ 2161(N ′−φ(N ′))

2160·φ(N) ≤ 2(p′+q′)
N−p−q ≤

2(2
k/2�+2
k/2�)
2k−1−2
k/2�−2
k/2� ≤ 2

2k/2−3−1
.

Assuming ¬YBad occurs, we have by the random choice of b and symmetry,
that the probability of M outputting s is at least 1

2qhash
· Pr1[AskS]. Thus,

Advθ-pow-fnc
RSA,B (k) ≥ (1− Pr[YBad]) ·

(
Pr1[AskS]

2qhash

)
.

Substituting the bounds for the above probabilities and re-arranging the terms,
we get the claimed result.

Finally, we estimate the time complexity of M . It is the time complexity of A
plus the time for simulating the random oracles. In the random oracle simulation,
for each pair ((g,Gg), (h,Hh)), it is sufficient to compute yh,g,0 = ze0 mod N0

and yh,g,1 = ze1 mod N1. Therefore, the time complexity of M is that of A plus
qgen · qhash ·O(k3).
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Abstract. Let X1, X2, . . . , Xk be independent n bit random variables. If
they have arbitrary distributions, we show how to compute distributions
like Pr{X1 ⊕X2 ⊕ · · · ⊕Xk} and Pr{X1 � X2 � · · ·� Xk} in complexity
O(kn2n). Furthermore, if X1, X2, . . . , Xk are uniformly distributed we
demonstrate a large class of functions F (X1, X2, . . . , Xk), for which we
can compute their distributions efficiently.

These results have applications in linear cryptanalysis of stream ci-
phers as well as block ciphers. A typical example is the approximation
obtained when additions modulo 2n are replaced by bitwise addition.
The efficiency of such an approach is given by the bias of a distribution
of the above kind. As an example, we give a new improved distinguishing
attack on the stream cipher SNOW 2.0.

Keywords: cryptanalysis, complexity, algorithms, convolution, approx-
imations, large distributions, pseudo-linear functions.

1 Introduction

Linear cryptanalysis is one of the most powerful techniques for cryptanalysis.
It can be regarded as a generic attack. It is for example the fastest known
attack on DES. More recently, we have seen that linear cryptanalysis also plays
a major role in the area of stream ciphers. Many recent proposals have been
analyzed through the idea of replacing nonlinear operations by linear ones, and
then hoping that obtained linear equations are correct with a probability slightly
larger than otherwise expected. Actually, the best known attacks on many recent
stream cipher proposals are linear attacks. This includes stream ciphers like
Scream [1], SNOW [2,3], SOBER [4,5], RC4 [6], A5/1 [7], and many more.

Most work in linear cryptanalysis on block ciphers are based on bitwise linear
approximations. To oversimplify, we find a sum of certain plaintext bits, cipher-
text bits and key bits such that this sum is zero with a probability 1/2 + ε,
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where ε is usually small. By getting access to a large number of different plain-
text/ciphertext pairs we can eventually find out the value of the sum of key bits.
This results in a key recovery attack.

In linear attacks on stream ciphers, it is mostly the case that a linear approxi-
mation will give us a set of keystream symbols that sum to zero with probability
1/2 + ε. Since no key bits are involved in the expression, this gives us a dis-
tinguishing attack. In some linear attacks on stream ciphers, one has moved
from the binary alphabet to instead consider a sum of variables defined over a
larger set. For example, we can consider a sum of different bytes from keystream
sequence if it is byte oriented. Distinguishers based on symbols from a larger
alphabet have been considered in for example [8,9,10].

It is clear that moving to a larger alphabet gives improved results. However,
the computational complexity of finding the result increases. To be a bit more
specific, assume for example that the operation X1 �X2 is replaced by X1⊕X2,
where � denotes mod 2n addition. The usefulness of such an approximation
is given by the distribution Pr{(X1 � X2) ⊕ (X1 ⊕ X2) = γ}. However, the
complexity of computing this distribution can be large. For example, for n = 32
bits a straight forward approach would require complexity 264, an impossible
size to implement.

Several previous papers studied related problems. For example, in [11] differ-
ential properties of addition, such as DC+(α, β → γ) := Pr{(x� y)⊕ ((x⊕ α) �
(y ⊕ β)) = γ}, were studied in details, including different useful and efficient
computational algorithms. There are a few other results where different classes
of similar functions (mostly related to differential properties) were achieved, e.g.,
in [12,13,14], and others. However, these papers focus only on a small class of
functions, which can be regarded as a subclass of the functions studied in this
paper, refered to as pseudo-linear functions. Moreover, our main concern is the
algorithms on large distribution tables, i.e., to provide a practical tool for crypt-
analysis over large distributions (or a large alphabet). When, for example, the
probability space is |Ω| = 232, our algorithms and data structures allow us to
store and perform the most common operations over such huge distributions,
with a reasonable time on a usual PC.

Consider X1,X2, . . . ,Xk to be independent n bit random variables. If they
have arbitrary distributions, we show how to compute distributions like Pr{X1⊕
X2 ⊕ · · · ⊕Xk} and Pr{X1 � X2 � · · ·� Xk} in complexity O(kn2n). For exam-
ple, we compute the distribution Pr{(X1 � X2) ⊕ (X1 ⊕X2) = γ} in complex-
ity 237 · c for some small c. The presented algorithms makes use of techniques
from Fast Fourier Transform and Fast Hadamard Transform. Although some of
these techniques were also mentioned in a recent paper [15], we include the full
approach for completeness. We show how they can be performed when more
complicated data structures are used, introduced due to a high memory com-
plexity.

Next, if X1,X2, . . . ,Xk are uniformly distributed we demonstrate a large
class of functions F (X1,X2, . . . ,Xk), for which we can compute the distribution
Pr{F (X1,X2, . . . ,Xk) = γ} efficiently. Here, the algorithms are based on per-
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forming a combinatorial count in a bitwise fashion, taking the “carry depth” into
account. These results give us efficient methods of calculating distributions of
certain functions F (X1,X2, . . . ,Xk). Fortunately, this includes many functions
that appear in linear analysis of ciphers.

As an example, we show an application in linear cryptanalysis of stream ci-
phers. A typical operation is the approximation obtained when additions modulo
2n are replaced by bitwise addition. The efficiency of such an approach is given
by the bias of a distribution of the above kind. In our example, we give a new
improved distinguishing attack on the stream cipher SNOW 2.0.

In Section 2 we define a pseudo-linear class of functions and derive an algo-
rithm to calculate their distributions. In Section 3 we show how a convolution
of several distributions can be calculated efficiently. In Section 4 an application
example of our approach to attack SNOW 2.0 is given. Finally, we summarize
our results and make conclusions.

2 A Pseudo-Linear Function Modulo 2n and Its
Distribution

For notation purposes we denote n-bit variables by a capital letter X , and 1-bit
variables by a small letter x. Individual bits of X in a vector form are repre-
sented as X = xn−1 . . . x1x0. By X [a : b] we denote an integer number of the
form xb . . . xa+1xa. If Y = ym−1 . . . y0, then X ||Y = xn−1 . . . x0ym−1 . . . y0 is
another integer number (concatenation). We use ‘�’ and ‘�’ to denote arith-
metical addition and subtraction modulo 2n, respectively. However, when the
inputs to a function F (·) are from the ring Z2n , we assume ‘+’ to be an addition
in the ring as well. Matrix multiplication is denoted as ‘×’. When ‘·’ is applied to
two vectors, then it denotes element-by-element multiplication of corresponding
positions from the vectors.

2.1 A Pseudo-Linear Function Modulo 2n

Let X be a set of k uniformly distributed n-bit (nonnegative) integer random
variables X = {X1, . . . ,Xk}, Xi ∈ Z2n . Let C be a set of n-bit constants
C = {C1, . . . ,Cl}. Let Ti be some symbol or expression on X and C. We de-
fine arithmetic, Boolean, and simple terms as follows.

Definition 1. Given X and C we say that: (1) A is an ‘arithmetic term’, if it
has only the arithmetic + operator between the input terms (e.g., A = T1 +T2 +
. . .); (2) B is a ‘Boolean term’ if it contains only bitwise operators such as NOT,
OR, AND, XOR, and others (e.g., B = (T1 ⊕ T2)|T3&T4 . . .); (3) S is a ‘simple
term’ if it is a symbol either from X or C (e.g., S = Xi). �

Next, we define a pseudo-linear function modulo 2n.

Definition 2. F (X1, . . . ,Xk) is called a ‘pseudo-linear function modulo 2n’
(PLFM) on X if it can recursively be expressed in arithmetic (A), Boolean (B),
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and simple (S) terms 1. We also refer the number of A, B, and S terms to be
a, b, and s, respectively. �

Note, if a given function contains a subtraction �, then it can easily be
substituted by � using

X � Y ≡ X � ( NOT Y ) � 1 mod 2n, (1)

which is valid in the ring modulo 2n. Note that the number of A-terms does not
grow during the substitution

As an example, let us consider a linear approximation of a modulo sum of the
following kind ‘X1�X2�X3 → X1⊕X2⊕X3⊕N ’, where N is the noise variable
introduced due to the approximation. The expression for the noise variable is a
PLFM: N = F (X1,X2,X3) = (X1 + X2 + X3)⊕X1 ⊕X2 ⊕X3.

Finding the distribution of such an approximation could be the bottleneck
in cryptanalysis work. The trivial algorithm for solving this problem would be
as follows.
1. Loop for all (X1,X2,X3) ∈ Z3

2n

2. T [(X1 � X2 � X3)⊕X1 ⊕X2 ⊕X3] + +;

After termination of the algorithm we have Pr{N = γ} = T [γ]/23n. The
complexity of this classical solution when the variables are 32-bits integers, is
O(296), infeasible for a common PC. Instead, we suggest another principle to
solve this problem, as follows.
1. for γ = 0 . . . 2n − 1
2. T [γ] = some combinatorial function.

In the upcoming section we show how this combinatorial function is con-
structed.

2.2 Algorithm for Calculating the Distribution for a PLFM

The problem we are considering in this subsection is the following. Given a
PLFM F (X1,X2, . . . ,Xk) on X and C, we want to calculate the probability
Pr{F (X1,X2, . . . ,Xk) = γ}, for a fixed value γ, in an efficient way.

Let some arithmetic termA have k+ operators ‘+’, i.e., A = T0+T1+. . .+Tk,
where Tj are some other terms, possibly B or S. Then, considering 1-bit inputs,
the evaluation of the A term can, potentially, produce the local maximum carry
value ωmax = +k++1

2 ,. This carry value at some bit t can influence on the next
bits of the sum at positions t+1, t+2, etc. Therefore, the maximum carry value
σmax at every bit t of the sum for A is then derived as the minimum integer
solution for the equation σmax = +(k+ +1+σmax)/2,. Thus, for every arithmetic
term Ai the maximum local carry value is

σimax = k+
i , (2)

where k+
i is the number of additions in Ai.

1 Note that a PLFM is a T-function [16], but not vice versa.
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For any t-bit truncated input tuple (X1, . . . ,Xk) to the function F (·) we can
define a tuple of local carry values for each of the Ai-terms, as follows:

Ψ |t = (σ1, σ2, . . . , σa)|t, (3)

where σi is the corresponding local carry value for the Ai-term, when the inputs
are t-bit truncated, and it can also be expressed as

σi|t =

⎛⎝ k+
i∑

j=0

(Ti,j(X1, . . . ,Xk) mod 2t)

⎞⎠ div 2t, (4)

when Ai = Ti,0 + . . .+ Ti,k+
i
.

Assume there is an oracle Pt(Ψ0, γ) which can tell us the number of choices
of the tuple (X1[0 : t − 1], . . . ,Xk[0 : t − 1]) out of 2t·k possible combinations,
such that for each choice the function F produces a required vector of local carry
values Ψ |t = Ψ0, and the condition F (X1, . . . ,Xk) = γ mod 2t is satisfied, i.e.
F (X1, . . . ,Xk)[0 : t − 1] = γ[0 : t − 1]. The probability we are seeking can now
be written as

Pr{F (X1, . . . ,Xk) = γ} =
1

2k·n
∑
Ψ

Pn(Ψ, γ). (5)

It remains to show how to construct the oracles Pt(Ψ0, γ). Assume we know
the answer Pt(Ψ0, γ) for every Ψ0. When Ψ |t = Ψ0 is fixed, then, by trying all
combinations for tth bits of the inputs, i.e., testing each k-bit vector (X1[t :
t], . . . ,Xk[t : t]), we can calculate the exact value of F (X1, . . . ,Xk)[t : t], as well
as the exact resulting local carries vector Ψ |t+1. Clearly, the oracle Pt+1(Ψ ′, γ)
makes calls to Pt(Ψ0, γ), for various values of Ψ0. That relation is linear, and can
easily be represented in a matrix form. For this purpose, let us introduce a one-to-
one index mapping function Index(Ψ) : (σ1×σ2× . . .×σa)→ θ ∈ [0 . . . θmax−1],
as follows.

Index(Ψ) = ((σ1 · (σ2max + 1) + σ2) · (σ3max + 1) + σ3) · . . .

θmax =
a∏
j=1

(σjmax + 1) =
a∏
j=1

(k+
j + 1).

(6)

Now, Pt(Ψ, γ) for all Ψ can be regarded as a vector
(
Pt(Index−1(0), γ), . . . ,

Pt(Index−1(θmax − 1), γ)
)
, also referred for simplicity as Pt, for all the consec-

utive valid tuples Ψ . The transformation from Pt to Pt+1 is a linear function,
i.e., it can be written as

Pt+1 = Mγt|t × Pt, (7)

where Mγt|t is some fixed connection matrix of size (θmax × θmax), which, in
general, is different for different t’s. It depends on the tth bits of the constants
involved in F (·), and it also depends on the value of the tth bit γt from the given
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γ, since the oracle Pt+1(Ψ, γ) must satisfy γ taken modulo 2t+1 as well. If the
input variables are 0-truncated, then the only one vector Ψ |0 = (0, 0, . . . , 0) of
local carry values is possible, i.e., P0 = (1 0 . . . 0). Therefore, we assign the
oracle P0 to be just a zero vector, but P0(0, γ) = 1.

In this way, 2n such matrices have to be constructed. However, in most cases
this number is much less. The algorithm to construct matrices from (7) and then
calculate (5) is given as follows.

Theorem 1. For a given PLFM F (X1, . . . ,Xk), and a fixed γ ∈ Z2n , we have:

Pr{F (X1, . . . ,Xk) = γ} =
1

2k·n
(1 1 . . . 1)×

(
0∏

t=n−1

Mγt|t

)
×(1 0 . . . 0)T, (8)

where Mγt|t are connection matrices of size (θmax× θmax), precomputed with the
algorithm below.

Algorithm: Construction of 2n matrices Mγt|t.

1. Input:
F (X1, . . . ,Xk) – a PLFM with a arithmetical terms Ai, each having
k+
i operators ‘+’, correspondingly;

2. Data structures:
θmax =

∏a
i=1(k

+
i + 1);

M{0,1}|t=[0...n−1][θmax][θmax] – 2n square matrices of size (θmax×θmax),
initialised with zeros;

3. Precomputation algorithm:
for t = 0 . . . n− 1

Temporary set the constants from C to be just tth bit of the
original ones, i.e., set (C1, . . . ,Cl) = (C1[t : t], . . . ,Cl[t : t])

for (X1, . . . ,Xk) ∈ {0, 1}k – (all combinations for the tth bits of X’s)

for θ = 0 . . . θmax − 1 – (all combinations for Ψ)

(σ1, . . . , σa) = Index−1(θ)
z Evaluate all μi = σi +Ai(X1, . . . ,Xn), but in Ai substitute

all sub terms Aj with the values (μj mod 2), correspondingly
θ′ = Index(μ1 div 2, . . . , μa div 2) – (a new resulting Ψ ′)
Evaluate the function f = F (·) mod 2, but substitute

all terms Aj with the values μj , correspondingly
Mf |t[θ′][θ] := Mf |t[θ′][θ] + 1

- Time Complexity: O(n · θmax · 2k)
- Memory Complexity: O(2n · θ2

max)

z Variables μi, which correspond to the terms Ai, should be calculated recursively.
The deepest A term should be calculated first, and so on.

�
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Below we give an example that demonstrates all the steps of the algorithm.

Example 1. Let k = 3, n = 5. Assume that our goal is to calculate the probability
Pr{F (X1,X2,X3) = 101102}, where:

F (X1,X2,X3) = (X1 � (X2 ⊕ (X1 � X2 � 25))))⊕ (X1 AND X3). (9)

The first step is to cancel the operator � by (1), and by rewriting the ex-
pression we get

F (X1,X2,X3) = (

A2︷ ︸︸ ︷
X1 + (

B2︷ ︸︸ ︷
X2 ⊕ (X1 + ( NOT X2︸ ︷︷ ︸

B1

) + 26

︸ ︷︷ ︸
A1

)))⊕ (X1 AND X3)

︸ ︷︷ ︸
B3

.

The function F (·) is a PLFM,
since it can be expressed in A
and B terms, marked above (the
S terms are simply elements from
the set {X1,X2,X3, 26}). I.e.,

B1(X , C) = NOT X2

A1(X , C) = X1 + B1(X , C) + 26︸ ︷︷ ︸
k+
1 =2

B2(X , C) = X2 ⊕A1(X , C)
A2(X , C) = X1 + B2(X , C)︸ ︷︷ ︸

k+
2 =1

B3(X , C) = A2(X , C)⊕ (X1 AND X3), where F (X1,X2,X3) = B3(X , C).

1.θmax = (k+
1 + 1)(k+

2 + 1) = 3 · 2 = 6;
2.for t = 0 . . . 4
3. C = 26[t : t]
4. for (X1,X2,X3) ∈ {0, 1}3
5. for (σ1, σ2) = (0 . . . 2, 0 . . . 1)
6. μ1 = σ1 + X1 + ( NOT X2) + C
7. μ2 = σ2 + X1 + (X2 ⊕ μ1 mod 2)
8. f = (μ2 ⊕ (X1 AND X3)) mod 2
9. Mf |t[(μ1 div 2) · 2 + (μ2 div 2)]

[σ1 · 2 + σ2] + +.
Applying Theorem 1 to construct 2n
matrices.

After all computations we receive the following matrices
Mγ0=0|t=0 =⎛⎜⎜⎜⎜⎜⎜⎝

1 0 2 0 0 0
0 5 0 0 0 0
1 0 2 0 1 0
0 1 2 2 0 5
0 0 0 0 1 0
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠

Mγ0=1|t=0 =⎛⎜⎜⎜⎜⎜⎜⎝
5 0 0 2 0 0
0 1 0 0 0 0
1 0 0 2 5 0
0 1 2 2 0 1
0 0 0 0 1 0
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠

Mγ1=0|t=1 =⎛⎜⎜⎜⎜⎜⎜⎝
2 0 0 0 0 0
0 0 0 0 0 0
2 0 1 0 2 0
2 2 0 5 0 0
0 0 1 0 2 0
0 0 0 1 2 2

⎞⎟⎟⎟⎟⎟⎟⎠

Mγ1=1|t=1 =⎛⎜⎜⎜⎜⎜⎜⎝
0 2 0 0 0 0
0 0 0 0 0 0
0 2 5 0 0 2
2 2 0 1 0 0
0 0 1 0 0 2
0 0 0 1 2 2

⎞⎟⎟⎟⎟⎟⎟⎠ .

No need to construct the matrices for t = 2, 3, 4, because they will repeat as
M∗|t=2 = M∗|t=0 and M∗|t=4 = M∗|t=3 = M∗|t=1. This happens since there are
only two different combinations for any tth “bit slice” of constants from the set
C = {26}. In particular, for every bit t we have 26[t : t] = 0 or 1 in step 3 in the
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figure above. Finally, from (8) we calculate

Pr{F (X1,X2,X3) = 101102} =
1

215
(1 1 1 1 1 1)×M1|4 ×M0|3 ×M1|2×

×M1|1 ×M0|0 × (1 0 0 0 0 0)T =
1

215
· 404 ≈ 0.0123291015625.

One can check this probability by the classical solution, trying all possible
values for (X1,X2,X3) ∈ Z3

25 and calculating the function F (·) directly from (9).
Preparing the matrices requires 2 · 23 · 6 = 96 steps (2 values for t, 8 combi-

nations for (X1,X2,X3), and the number of different local carries is θmax = 6);
each step requires one function evaluation. To calculate one probability we need
to make 5 multiplications of a matrix and a vector, which takes 5 ·62 operations,
plus one scalar product of two vectors at the end, i.e., in total 186 operations.
Calculating the complete distribution for all possible γ’s takes 25 · 186 = 5952
operations in total. Note that the classical way requires 23·5 = 32768 steps with
the function evaluation each step. �

The second example presented in Appendix A is taken from the real cryptanaly-
sis. In that example we, additionally, demonstrate a new trick and show how
time complexity can be reduced even more than in Theorem 1. With a precom-
putation, which usually takes a negligible time, the construction of the complete
distribution can have a very small time complexity O(θmax · 2n). That exam-
ple also shows the advantage of using proposed technique as the computation
complexity 296 from the classical solution is reduced down to 232.585.

3 Distributions of Functions with Arbitrarily Distributed
Inputs

The previous section assumed X1,X2, . . . to be uniformly distributed, allowing
a combinatorial approach. In this section we consider X1,X2, . . . independent
but with arbitrary distributions. Despite the ideas described in this section were
partly mentioned in [15], we include them for completeness.

Let us have a probability space Ω of size q = |Ω| = 2n and two distributions
DX and DY over Ω for two random variables X and Y , respectively. Given the
distributions DX and DY we consider two major types of convolution, defined
as

DZ = DX ∗DY :⇒
Pr{Z = Z0} =

∑
∀X0, Y0 ∈ Ω :
X0 ∗ Y0 = Z0

Pr{X = X0} · Pr{Y = Y0}, ∀Z0 ∈ Z2n , (10)

where ∗ is either � or ⊕.
In both cases the time complexity to calculate the resulting distribution

DZ is O(q2), i.e., quadratic. Due to such a high complexity, many attacks in
cryptanalysis deal with at most 16-18-bit distributions only. Nowadays, when
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design of ciphers is often 32-bit oriented, it would be a challenging and useful task
to perform a convolution of two 32-bit distributions, i.e., calculating Pr{X+Y =
γ} for all γ when X and Y have some arbitrary distributions.

For notation purposes the distribution DX will also be represented as a vec-
tor of size 2n of probabilities as [DX ] = {pX(0), pX(1), . . . , pX(2n − 1)}, where
pX(X0) = Pr{X = X0}.
Convolution over �. If [DX ] and [DY ] are represented as two polynomials with
coefficients from these two vectors, then the resulting vector [DZ ] has coefficients
of the product of the polynomials [DX ] and [DY ]. Fast multiplication of two
polynomials can be done via Fast Fourier Transform (FFT) [17], the complexity
of which is O(q log q) 2. The convolution over � can now easily be calculated as

[DZ ] = [DX � DY ] = FFT−1
n (FFTn([DX ])·FFTn([DY ])). (11)

Convolution over ⊕. A similar idea can be applied to this type of convolution.
Instead, we use Fast Hadamard Transform (FHT) [17].

FHT is a linear transformation of a vector of size 2n. This transformation
can also be done by a matrix multiplication Hn × [V ], where Hn is a well-
known Hadamard matrix. FHT, however, performs this matrix multiplication
for time O(q log q = n · 2n), the same as FFT. In practice, however, FHT is
much faster than FFT, since it does not need to work with complex and float
numbers. Therefore, approximations of kind � ⇒ ⊕ are more preferable, than
otherwise. Additionally, the implementation of FHT is extremely simple and
small in C/C++, and we present it in Appendix C.

Since FHT−1
n differs from FHTn by only the coefficient 2−n, then the convo-

lution over ⊕ via FHT is computed as

[DZ ] = [DX ⊕DY ] =
1
2n
· FHTn(FHTn([DX ])·FHTn([DY ])). (12)

Finally, we point out that the convolution of a linear composition of k inde-
pendent terms is derived as

D(Z=C1X1⊕C2X2⊕...⊕CkXk) =
1
2n
·FHTn (FHTn([DC1X1 ]) · . . . · FHTn([DCkXk

])) ,

where Ci are some constants. In practice, this also means that if these distribu-
tion tables for X1, . . . ,Xk are stored with precisions ξ1, . . . , ξk bits after point,
respectively, then for probabilities of Z the precision of only ξ = n +

∑k
j=1 ξj

bits after point should be considered (or reserved) before the FHT procedure.
In sections above several algorithms have been derived with good time com-

plexities, which, in most cases, allow us to operate on large distributions. How-
ever, memory complexity problems become to be the main concern for imple-
mentation aspects. We have algorithms that operate with 32-bit distributions,
2 The resulting polynomial [DX ] · [DY ] is of degree 2q, but its powers have to be taken

modulo q. It means that the second half just need to be added to the first half of 2n
coefficients, in order to receive [DZ ]. However, this is done automatically when FFT
of size q is applied to [DX ] and [DY ] directly.
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but how to manage the memory? We present a possible solution in Appendix B,
suggest our data structures for large distributions and show how typical opera-
tions can be mounted.

4 Application: 32-Bit Cryptanalysis of SNOW 2.0

A stream cipher is a cryptographic primitive used to ensure privacy on a com-
munication channel. The SNOW family is a typical example of word-oriented
KSGs based on a linear feedback shift register (LFSR). SNOW 2.0 is an im-
proved version of SNOW 1.0 aimed to be more secure and still more efficient in
performance. The most powerful attack on SNOW 2.0 was presented by Watan-
abe, Biryukov and De Cannie’re [18] in 2003. It is a linear distinguishing attack
similar to the general framework presented in [19,20] and it requires a received
keystream sequence of length 2225 bits and has a similar time complexity.

In this section we propose an improved attack on SNOW 2.0. Whereas the
attack in [18] uses a binary linear approximation approach, the new attack is
based on approximations of words, i.e., 32-bit vectors. This technique is more
powerful and we get a reduction of the required keystream length to 2202. To
make the calculation of 32-bit distributions possible we use our algorithms and
data structures from Appendix B.

4.1 A Short Description of SNOW 2.0

The structure of SNOW 2.0 is shown in Figure 1. It has 128- or 256-bit secret key
and a 128-bit initial vector. It is based on LFSR over F232 [x] and the feedback
polynomial is given by

π(x) = αx16 + x14 + α−1x5 + 1, (13)

where α is a root of the polynomial

y4 + β23y3 + β245y2 + β48y + β239 ∈ F28 [y], (14)

and β is a root of
z8 + z7 + z5 + z3 + 1 ∈ F2[z]. (15)

The state of the LFSR is denoted by (st+15, st+14, . . . , st). Each st+i is an el-
ement of the field F232 . The Finite State Machine (FSM) has two 32-bit registers,
R1 and R2. The output of the FSM Fi is given by

Fi = (st+15 � R1t)⊕R2t, t ≥ 0, (16)

and the keystream zt is given by

zt = Ft ⊕ st, t ≥ 1. (17)

Two registers R1 and R2 are updated as follows,

R1t+1 = st+5 � R2t,
R2t+1 = S′(R1t).

(18)
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s0s1s2s3s4s5s6s7s8s9s10s11s12s13s14s15

S′R1 R2

αα−1

zi

FSM

running key

Fig. 1. The structure of SNOW 2.0

where S′(W ) is a one-to-one mapping transformation S′ : F232 → F232 . If a 32-
bit integer W is represented as a vector of 4 8-bit bytes W = (w0 w1 w2 w3 )T,
then

S′(W ) =

⎛⎜⎜⎝
x x+ 1 1 1
1 x x+ 1 1
1 1 x x+ 1

x+ 1 1 1 x

⎞⎟⎟⎠ ·
⎛⎜⎜⎝
SR[w0]
SR[w1]
SR[w2]
SR[w3]

⎞⎟⎟⎠ , (19)

where SR is the Rijndael 8-to-8-bit S-box, and the linear transformation (matrix
multiplication) is done in the field F28 with generating polynomial

g(x) = x8 + x4 + x3 + x+ 1 ∈ F2[x]. (20)

4.2 Basic Idea Behind the New Attack

The basic idea behind the new attack is to find such a linear combination of
the output words zi that is equal to 0 if the system is linear, or producing some
biased noise if the system is approximated by a linear function. From the other
hand, the linear combination representing the noise should be unbiased if the
given sequence zi is truly random.

Consider the feedback polynomial of the LFSR given in equation (13), i.e.,
π(x) = αx16 + x14 + α−1x5 + 1. A similar relation holds for the LFSR’s output
st at any time t, i.e.,

st+16 ⊕ α−1st+11 ⊕ st+2 ⊕ αst = 0, t ≥ 1. (21)



324 A. Maximov and T. Johansson

Next we make an approximation of the FSM to make it look linear. For any
time t ≥ 1 two output words zt and zt+1 can be expressed as{

zt = st ⊕ (R1 � st+15)⊕R2
zt+1 = st+1 ⊕ S′(R1)⊕ (R2 � st+5 � st+16).

(22)

Let us substitute � → ⊕ and change S′(R) → R. Then the sum zt ⊕ zt+1 is
expressed as

zt ⊕ zt+1 = st ⊕ (R1⊕ st+15 ⊕Nc2(R1, st+15))⊕R2
⊕st+1 ⊕ (R1⊕NS(S′(R1),R1))
⊕(R2⊕ st+5 ⊕ st+16 ⊕Nc3(R2, st+5, st+16))

= st ⊕ st+1 ⊕ st+5 ⊕ st+15 ⊕ st+16 ⊕N0(t),

(23)

where N0(t) is a variable representing the error introduced by the linear ap-
proximation in time t,

N0(t) = Nc2(R1, st+15)⊕NS(S′(R1),R1)⊕Nc3(R2, st+5, st+16). (24)

Here Nc2(R1, st+15) is a noise random variable introduced by the approxi-
mation of the modulo sum of two variables of the following kind “R1 � st+15 →
R1⊕ st+15 ⊕Nc2”. The variable Nc3(R2, st+5, st+16) is a similar approximation
noise, but for the modulo sum of three variables. Finally, NS(S′(R1),R1)) is the
noise variable from the approximation “S′(R1) → R1 ⊕ NS”. Let us derive a
linear relation, based on (21).

0
Eq(21)

= (st+16 ⊕ α−1st+11 ⊕ st+2 ⊕ αst)⊕ (st+17 ⊕ α−1st+12 ⊕t+3 ⊕αst+1)

⊕ (st+21 ⊕ α−1st+16 ⊕ st+7 ⊕ αst+5)⊕ (st+31 ⊕ α−1st+26 ⊕ st+17

⊕ αst+15)⊕ (st+32 ⊕ α−1st+27 ⊕ st+18 ⊕ αst+16)

= (st+16 ⊕ st+17 ⊕ st+21 ⊕ st+31 ⊕ st+32)⊕ α−1 · (st+11 ⊕ st+12

⊕ st+16 ⊕ st+26 ⊕ st+27)⊕ (st+2 ⊕ st+3 ⊕ st+7 ⊕ st+17 ⊕ st+18)
⊕ α · (st ⊕ st+1 ⊕ st+5 ⊕ st+15 ⊕ st+16)

Eq(22)
= (zt+2 ⊕ zt+3 ⊕ zt+16 ⊕ zt+17)⊕ α−1 · (zt+11 ⊕ zt+12)

⊕ α · (zt ⊕ zt+1)⊕ (N0(t+ 2)⊕N0(t+ 16))⊕ α−1 ·N0(t+ 11)
⊕ α ·N0(t) = Z(t) ⊕N(t),

(25)

where N(t) is the 32-bit total sum of noise variables introduced by several ap-
proximations, expressed as N(t) = (N0(t+2)⊕N0(t+16))⊕α−1 ·N0(t+11)⊕α ·
N0(t), and Z(t) is the “known” part calculated from the output sequence at any
time t, Z(t) = (zt+2 ⊕ zt+3 ⊕ zt+16 ⊕ zt+17)⊕ α−1(zt+11 ⊕ zt+12)⊕ α(zt ⊕ zt+1).
Obviously, N(t)⊕ Z(t) = 0.

After all, a linear distinguishing attack can now be performed, if we know
the distribution DN of the 32-bit noise variable N. For a sufficiently large num-
ber of received symbols from either the random distribution DRandom, or the
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distribution of the noise DN, one can construct the type (or empirical distribu-
tion) DType. We then make a decision whether the stream comes from a truly
random generator or from the cipher, according to the distances from DType to
DN and DRandom. Note, the 32-bit noise distribution definitely contains the best
binary approximation found in [18], but, clearly, it also contains some additional
information, which makes the bias of the noise larger.

We will explain this procedure more in detail in the full version of the paper,
but since this is a standard hypothesis testing we simply refer to e.g., [9,21].

4.3 Computational Aspects

To calculate the bias of the 32-bit noise variable N, its distribution table has to
be constructed. It can be calculates via the distribution of N0, expressed in (24)
3. To construct the distributions of Nc2 and Nc3 we use Theorem 1 (PLFM con-
struction). The expression for NS is a function on one variable, i.e., it takes no
more than O(232) operations to build the distribution DNS . Next, the distribu-
tion of N0 is calculated via FHT with the algorithm from Section 3 (convolution
over ⊕) and Appendix B (FHT for large distributions). Afterwards, the distribu-
tion ofα·N0 andα−1 ·N0 was computed using algorithms described in Appendix B
(function evaluation). Finally, we again use FHT to calculate the distribution of
the total noise variable DN, and then calculate the bias ε = |DN −DRandom|.

All these operations took us less than 2 weeks on a usual Pentium IV 3.4GHz,
2Gb of memory and 256Gb of HDD.

4.4 Simulation Results and Discussions

At the end of our simulations we received the distance ε = |DN −DRandom| ≈
2−101, which means that SNOW 2.0 can be distinguished from random with the
known keystream of size 2202, and with a similar time complexity. The advantage
of our attack is presented in the following table.

Attack on SNOW 2.0 bit(s) considered bias (ε) complexity
Watanabe et. al. [18] 1 2−112.25 2225

our attack 32 2−101 2202

For future research work on this topic it is left to note that the expres-
sion for the noise variable N(t) (25) contains two parts: Nc3(R2t, st+5, st+16)
and Nc3(R2t+11, st+16, st+27), which, in our simulations, were considered as in-
dependent. However, since they both use the same input st+16, they are not
really independent and, theoretically, the result should be slightly improved if
one consider them as dependent.
3 We adopted the data structures from Appendix B for our simulations as follows: we

use 210 files, each containing 222 points of a sub distribution. Since the precision of
the probabilities have to be at least 2−(192·4+32) (four noises N0, each containing NS

with precision 2−32, Nc2 with precision 2−64, and Nc3 with precision 2−96; plus 32
bits must be reserved for FHT),each cell has to be of size at least 100 bytes. I.e.,
each sub distribution in the memory takes at least 400Mb. However, this estimate is
conservative, and in our simulations we used almost 2Gb of operation memory.
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5 Results and Conclusions

In this paper we have proposed new algorithms for computation of distributions
of certain functions where the input variables are from a large alphabet. In the
case when the input variables were uniformly distributed, the distribution for
a class of functions called PLFM was shown to be efficiently calculated. The
second case considered the same problem but for arbitrary distribution of input
variables. Efficient methods of calculating the distribution of sums of variables
both in Z2n and F2n were proposed, based on Fast Fourier Transform and Fast
Hadamard Transform, respectively.

The cryptologic applications of the results were demonstrated by extending
the linear cryptanalysis of the stream cipher SNOW 2.0 to work over a larger
alphabet. We believe that there are many instances of stream ciphers as well
as block ciphers, where cryptanalytic results can be improved by considering
analysis over a larger alphabet. In all these cases, the algorithms derived in this
paper will be essential for calculating the performance of such attacks.

We also believe that the technique considering “local carries” presented in
algorithms for PLFMs can easily be transformed for finding one or even all solu-
tions for equations like F (X1, . . . ,Xk) = 0. Finding solutions for other kinds of
equations, including F (X1, . . . ,Xk) = γ and systems of equations, is obviously
converted to finding one or all solutions for an equation of the first kind. Conse-
quently, many properties of PLFM functions can be derived, similarly as it was
done for smaller classes in, e.g., [11,12,14]. More details will be included in the
extended version of this paper.

A few open problems can be mentioned. Clearly, we would like to find other
classes of functions where we can compute the distribution efficiently. Also, we
would like to find further instances of existing ciphers where linear attacks over
larger alphabets are applicable.
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Appendix A: Second Example from Real Cryptanalysis

Example 2. Let us have k = 3 uniformly distributed independent random vari-
ables X1,X2, X3 ∈ Z232 , i.e., n = 32. Assume in some cryptanalysis we perform
a linear approximation ‘X1 � X2 � X3 → X1 ⊕ X2 ⊕ X3 ⊕ N ’, where N is a
noise variable introduced due to the approximation. The task is to find the bias
ε of the noise variable N .

The expression for N is: N = (X1 + X2 + X3︸ ︷︷ ︸
A1

)⊕X1 ⊕X2 ⊕X3

︸ ︷︷ ︸
B1

mod 232,

which is a PLFM with only one A term. The maximum carry-bit index value is
θmax = (k+

1 + 1) = 3. Since no constants are involved all matrices M∗|t for all t’s
are the same. Hence, only two matrices M0|0 and M1|0 have to be constructed,
using Theorem 1.

Mγ0=0|t=0 =

⎛⎝4 0 0
4 0 4
0 0 4

⎞⎠ , Mγ0=1|t=0 =

⎛⎝0 1 0
0 6 0
0 1 0

⎞⎠ . (26)

The probability Pr{N = γ} can now be calculated efficiently. For example,
Pr{N = γ = 0x72A304F8} = 1

23·32 (1 1 1)×
(∏0

t=n−1 Mγ[t:t]|0

)
× (1 0 0)T =

1
296 ·2187 ·251 ≈ 0.266967773/232. Note that the probability for an odd γ is 0. To
calculate one probability the number of 32 · 32 + 3 = 291 operations is required.
Hence, to calculate the complete distribution would take 291 · 232 operations.

However, this time com-
plexity can be reduced sig-
nificantly with specific data
structures use, which we call
“fast-tables”. Each table is
of size 216 entries, which
contain 3-dimentional vec-
tors. These tables are pre-
computed as shown in Fig-
ure on the right. This pre-
computation requires 216·2·
32 = 9 · 217 operations. The
advantage is that any prob-
ability can now be derived
as just one scalar product

1. Data structures:
FastT[2][0 . . .216 − 1] – two ‘fast-tables’

2. Initialisation:
FastT[0][0] = (1 0 0), FastT[1][0] = (1 1 1)

3. Precomputation of the tables:
for t = 0 . . . 15
for x = 1, 0 (note, the order is backward)
for Y = 0 . . . 2t − 1
z FastT[0][x||Yt] = Mx|t×FastT[0][Y ]

FastT[1][x||Yt] = FastT[1][Y ]×Mx|n−t−1

Fast-tables precomputation algorithm.
z Yt is a t-bit value of Y . I.e., in C/C++ it would

look like: (x||Yt) ⇒(x<<t)|Y

Pr{N = γ} =
1

23·32 ·<FastT[0][γ15 . . . γ0], FastT[1][γ16 . . . γ31] > 4, (27)

which takes only 3 operations (instead of 291). Finally, the bias ε can be derived
as follows:
4 Note, the input for FastT[1][·] is bit-reversed.
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1. ε = 0.5 (the bias for odd values of γ)
2. for γ = 0 . . . 231 − 1 (only even 2γ’s are considered)

3. ε+ = |Pr{N = 2γ} − 2−32|

The total time for this solution is the following sum: 2 · 23 · 3 = 48 – to
compute matrices, 9 · 217 – to precompute fast-tables, and 3 · 231 – to calculate
the bias ε. In total 6443630640 ≈ 232.585 number of operations is required. To
calculate the distribution of the noise variable N the same number of operations
is needed, whereas the classical solution requires 296 operations. Note, when the
question is only to find the bias ε for some large distribution with memory limits
conditions, the classical solution will fail with respect to the memory limits. �

Appendix B: Data Structures for Large Distributions and
Operations

B.1 Data Structure Proposal

Assume we want to operate on a distribution of size 2n, but, however, the op-
eration memory allows us to work only with a distribution of size at most 2m,
where m < n. If this is the case, to be able to work with large distributions of
size 2n we then propose to use hard disk memory (HDD). Let

r = n−m,

then one need to create 2r files on HDD, which we denote as Filer(0...2r−1), to
store one distribution table. The upper parameter r denotes the number of files
to be created (2r), and the index on the bottom is the selector of a particular file.
Sometimes we will write also FilerX:(A) to show that this is the sub distribution file
A for the random variable X . Each file stores the corresponding sub distribution
of size 2m. I.e., the probability Pr{X = X0} can be accessed by

Pr{X = X0} = FilerX:(X0[m:n−1])[X0 mod 2m]. (28)

Note that the upper r = (n−m) bits select the file, and the lower m bits are
the cell index in the sub distribution.

The operation memory is regarded as a fast memory, whereas the HDD
memory is regarded as a very slow memory. Working with such data structure
frequent access (loading and saving) to the files on HDD should be avoided, since
these operations are extremely much slower than an access to the memory. I.e.,
the most operations have to be done in the operation memory domain, and the
number of access to the files has to be reduced as much as possible. In the next
parts of this Appendix we present efficient solutions to apply common algorithms
when operating on large distributions with the proposed data structures.

B.2 A PLFM Distribution Construction

For a given pseudo-linear function F (·) modulo 2n its distribution can be con-
structed as follows.
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1. for A = 0 . . . 2r − 1
2. load sub distribution SubDist[·]←Filer(A)

3. calculate the vector v = (1 1 . . . 1)× (
∏0
t=r−1 MA[t:t]|t+m)

4. for B = 0 . . . 2m

5. SubDist[B]=Pr{F = AB}=v × (
∏0
t=m−1 MB[t:t]|t)× (1 0 . . . 0)T

6. save sub distribution Filer(A)←SubDist[·]
This algorithm requires to access each file once. Additionally, the steps 3 and 5

could be done more efficient with precomputed fast-tables (see, e.g. Appendix A).

B.3 A Function Y = F (X) Evaluation Distribution

Let us have a distribution DX of a random variable X , stored in data structures
as suggested before. Let us also have a function defined on one variable F (X). We
need to construct the distribution of Y = F (X) in an efficient way. As an exam-
ple, this function could be a multiplication α·X in some finite field, a permutation
of X , a multiplication on a matrix, or some other function on X in general.

One could take the values of X consecutively, and then each time calculate
Y . The problem appears when the consecutive values Y should be stored in
different files. It could happen that we need to access the Y ’s files O(2n) times,
which is expensive in time.

We suggest the following algorithm containing three stages. In the first stage
the function is evaluated and the resulting Y ’s are separated into two files (bins),
according to the upper bit value. In the second stage we perform binary sorting
algorithm, each time dividing each bin into two new bins. The third stage accu-
mulates probabilities from the bins and transfer the resulting sub distributions
to the data structures of Y (files).

Stage I: Evaluate Y = F (X) and separate into two files (narrowed distribution)

1. create two files (bins) f0 = ∗File1
Y :(0) and f1 = ∗File1

Y :(1)

2. for all A = 0 . . . 2n−m − 1
3. load sub distribution SubDistX[·] ←FilerX:(A)

4. for all B = 0 . . . 2m − 1
5. Evaluate Y0 = F (A||B)
6. Save the pair fY0[n−1:n−1] ← (SubDistX[B], Y0)
7. close the files f0 and f1

Stage II: Expand the files ∗File1
Y :(A1)

→ ∗File2
Y :(A2)

→ . . .→ ∗FilerY :(Ar)

1. for k = 1 . . . r − 1
2. for all A = 0 . . . 2k − 1
3. open two files f0 = ∗Filek+1

Y :(A||0) and f1 = ∗Filek+1
Y :(A||1)

4. while( not the end of the file ∗FilekY :(A) )
5. read the pair (p,Y0) ← ∗FilekY :(A)

6. save the pair fY0[n−k−1:n−k−1] ← (p,Y0)
7. close the files f0 and f1

Stage III: Construct FilerY :(A) from ∗FilerY :(A)
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1. for all A = 0 . . . 2r

2. clear SubDistY [0 . . . 2m − 1]
3. while( not the end of the file ∗FilerY :(A) )
4. read the pair (p,Y0) ← ∗FilekY :(A)

5. SubDistY [Y0]=SubDistY [Y0]+p
6. save sub distribution FilerY :(A)←SubDistY [·]

The complexity of this algorithm is O((1+ r) ·2n). However, the coefficient r
in the complexity can be reduced with a small programming trick. If at the step
II.3 we, instead, open 2d files (in Windows at most 29 files can be open at the
same time), and perform not a binary sorting but a d-tuple bits sorting at once,
then the complexity will be reduced to O((1 + r/d) · 2n). For example, if the
number of files is 216 (r=16), then with d = 8 we can compute the distribution
of any function F (X) by reading and storing distributions of size 2n from the
files only 3 times (instead of 17).

Note that in the implementation of FFT the first operation is the construc-
tion of the distribution DRev(X) for the bit reverse of the random variable X ,
which is just a sub case of the general problem of this sub section. We simply
define the function Y = F (X) such that Y is the bit-reverse of X , and apply
the algorithm above. There are other more nice and efficient solutions for this
particular problem, but we only mention their existence.

B.4 Convolution over ⊕
To perform a convolution over ⊕ we need to be able to perform FHT on the
proposed data structures. We propose a modified FHT algorithm, where first
local FHTs for sub distributions are separately performed, and then evaluate
the “convolution” over the files as follows.
1. for A = 0 . . . 2r − 1
2. load sub distribution SubDist[·]←Filer(A)

3. FHT(m, SubDist)
4. save sub distribution Filer(A) ←SubDist[·]
5. FHT∗(r, NULL) -- the same FHT as before but with another

butterfly function bfly∗(j+k, j+k+(1<<i)).

The modified butterfly function bfly∗ is

1. bfly∗(A, B)
2. load SubDist1[·]←Filer(A) and SubDist2[·]←Filer(B)

3. for i = 0 . . . 2m − 1
4. bfly(SubDist1[i], SubDist2[i])
5. save Filer(A) ←SubDist1[·] and Filer(B) ←SubDist2[·]

This algorithm requires to load/save each file r = n−m times. The modified
butterfly function bfly∗ can also be implemented memoryless. It can read one
value from Filer(A) and one value from Filer(B), perform the usual butterfly oper-



332 A. Maximov and T. Johansson

ation and save the results back to the files immediately. There are two additional
ideas to accelerate the FHT evaluation:

(a) In steps 3 and 4 of the algorithm above only two files are processed. Instead,
we could have a larger block of 2d files opened and processed at the same time.
The calculation of the batterfly function on two probabilities SubDist1[i] and
SubDist2[i] can be substituted by a ‘local’ FHT on 2d inputs, instead. Since
the size of each file is 2m, we need to repeat this procedure 2m times for each
group of 2d files (inputs are taken in parallel from a group of 2d files opened at
the same time, but the number of such parallel inputs for each group is 2m).
As the result, each file is accessed around (r + 1)/d times;

(b) The computation can also be splittet into 2c independent processes (2c com-
puters), and then the results can be merged together afterwards.

B.5 Convolution over �

A convolution over � on the suggested data structures can be done in a similar
way as for ⊕. In the first step we perform the bit reversing operation on the input
distribution, as described in Appendix B.3. Afterwards, we use the same idea as
in the previous sub section, based on the parallel FFT circuit. The description
of the parallel FFT circuit can be found in the book [17].

Appendix C: Efficient FHT Implementation in C/C++

Fast Hadamard Transform (FHT) implementation in C/C++

// butterfly operation
template<class T> void inline bfly (T &a, T &b)
{ T tmp; tmp=a; a+=b; b=tmp-b; }

// FHTn, size of the input distribution is 2n

template<class T> void FHT(int n, T *Dist)
{ for (int i=0; i<n; ++i)

for (int j=0; j<(1<<n); j+=1<<(i+1) )
for (int k=0 ; k<(1<<i); ++k)

bfly (Dist[j+k], Dist[j+k+(1<<i)]);
}
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Abstract. The XSL “algorithm” is a method for solving systems of
multivariate polynomial equations based on the linearization method. It
was proposed in 2002 as a dedicated method for exploiting the structure
of some types of block ciphers, for example the AES and Serpent. Since
its proposal, the potential for algebraic attacks against the AES has been
the source of much speculation. Although it has attracted a lot of atten-
tion from the cryptographic community, currently very little is known
about the effectiveness of the XSL algorithm. In this paper we present
an analysis of the XSL algorithm, by giving a more concise description
of the method and studying it from a more systematic point of view. We
present strong evidence that, in its current form, the XSL algorithm does
not provide an efficient method for solving the AES system of equations.
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1 Introduction

In 2002 Courtois and Pieprzyk showed that recovering an AES encryption key
was equivalent to solving a large system of multivariate quadratic equations over
a small finite field [10,11]. They exploited the fact that the only non-linear com-
ponent of the cipher (the S-Box) is based on the inverse map over the finite field
F28 , and were able to obtain a set of multivariate quadratic equations that com-
pletely described the S-Box transformation. By combining all equations through-
out the cipher, they were able to express the full encryption transformation as
a large, sparse and overdefined system of multivariate quadratic equations over
F2 (in total 8000 equations with 1600 variables for the AES with 128-bit keys).

The problem of solving systems of multivariate quadratic equations over a
finite field is known to be NP-complete, and it is widely believed that the com-
monly applied techniques (such as Gröbner Basis algorithms) cannot generally be
used for efficiently solving systems with more than a handful of variables. How-
ever the system derived from the AES is very structured, and the hope is that a
� This author was supported by EPSRC Grant GR/S42637.
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dedicated method can exploit this rich structure. With that in mind, a method
called XSL was proposed in [10,11], which it was claimed could provide an effi-
cient way to recover the encryption key for certain types of block ciphers. Accord-
ing to the estimates presented in [10], with the XSL algorithm one could mount
a (at least theoretical) successful attack against the AES with 256-bit keys.

Around the same time, Murphy and Robshaw [13] showed how to express
the AES encryption as a far simpler system of equations over F28 . It was noticed
then that, if XSL worked as predicted, this system should be easier to solve than
the original one over F2, and in theory could provide an efficient attack against
the AES with 128-bit keys [13,14].

Since the introduction of the XSL algorithm, the potential for algebraic at-
tacks against block ciphers (and in particular the AES) has been the source of
much speculation. Although it has attracted a lot of attention from the crypto-
graphic community, currently very little is known about the effectiveness of the
XSL algorithm, and of algebraic attacks in general, against block ciphers.

In this paper we present an analysis of the XSL algorithm. Based on our
results we conclude that, as presented in [11], the XSL algorithm should not
provide an efficient method for solving the AES system of equations.

2 Linearization Methods

The XSL algorithm was introduced in [10,11], and it is derived from an earlier
algorithm called XL [8]. The XL algorithm and its many variants [7,9,11] are all
based on the method of linearization, a well-known technique for solving large
systems of multivariate polynomial equations. In this method we consider all
monomials in the system as independent variables and try to solve it using linear
algebra techniques. Note that the linearization method can only be successful if
the number of linearly independent equations is approximately the same as the
number of monomials in the system. The XL algorithm and its variants attempt
to generate enough equations when this is not the case.

The XL is a simple algorithm: if we consider a system of m quadratic equa-
tions and n variables over a finite field K,

f1(x1, . . . , xn) = 0 , . . . , fm(x1, . . . , xn) = 0, (1)

the algorithm simply multiplies the original equations by all monomials Mi up
to a prescribed degree D − 2, and attempts to solve the system of all resulting
equations

Mi · fj(x1, . . . , xn) = 0 (2)

of degree at most D by linearization.
Although not fully understood when first introduced, currently there seems to

be a much better understanding of the behaviour of the XL algorithm, including
its merits and limitations [1,2,3,4,12]. In particular it has been shown that some
of the heuristics used in deriving the complexity of the XL algorithm [8] were
too optimistic [12].
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The XSL algorithm works slightly different. Whereas in the XL algorithm
the equations are multiplied by all monomials up to a certain degree, in the XSL
algorithm the equations are multiplied only by “carefully selected monomials”.
The goal here is to create fewer new monomials when generating the new equa-
tions. Additionally, there is a last step (called T′ method), in which we try to
obtain new linearly independent equations without creating any new monomials.

Analysis of the XSL algorithm does not seem to be an easy task, and currently
very little is known about its behaviour. There are a number of reasons for this.
Firstly, XSL can be considered an ad-hoc method, and the algorithm relies on
the system presenting a somewhat special form, such as having “S-Boxes” with
overdefined system of equations, repeated layers of linear equations, and so on.
Secondly there are different versions of the algorithm (two attacks are given
in [10], which are substantially different from the attack proposed in [11]), and in
all cases, the description given leaves some room for interpretation. Furthermore,
given the size of the systems involved, it is very difficult to implement and run
experiments even on small examples to verify the heuristics in [10,11].

In the following sections, we give a more concise description of the XSL
algorithm and study it from a more systematic point of view in an attempt to
get an insight into the algorithm and better understand its behaviour.

3 The XSL Algorithm

There are different versions of the XSL algorithm. The first version was proposed
in [10], where two different attacks were described: the first one eliminating the
key schedule equations (but requiring a number of plaintext-ciphertext pairs),
and a second, more specific attack, that used the key schedule equations (and
should work with a single plaintext-ciphertext pair). Later a different version
of the algorithm was introduced in [11] (called “compact XSL”). Only the first
attack was described in [11], although it is straightforward to extend the method
to the second attack.

In this paper we concentrate on the “compact XSL” algorithm. Although the
algorithm can in theory be applied to a number of block ciphers, our analysis is
focused on the AES, and we take into account the special structure of the systems
derived from this cipher. The systems used are over F2 and always include the
key schedule equations (i.e. we perform the second XSL attack).

The XSL algorithm, as described in [11], is supposed to work only on special
types of ciphers; it assumes that the cipher is built with layers of small S-Boxes
interconnected by linear key-dependent layers. The S-Box is such that it can
be described by an overdefined set of quadratic equations. To apply the second
attack (i.e. including the key schedule), the key schedule needs to have a similar
structure to the encryption (which is the case for the AES).

The XSL algorithm consists of four main steps:

1. Process the existing set of equations, by choosing certain sets of monomials
and equations that will be used during the later steps of the algorithm.
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2. Select the value of the parameter P , and multiply the chosen equations by
the product of P − 1 selected monomials. This is the “core” of the XSL
attacks and should generate a large number of equations whose terms are
the product of the monomials chosen earlier.

3. Perform the T′ method, in which some selected equations are multiplied by
single variables. The goal is to generate new equations without creating any
new monomials. Iterate with as many variables as necessary until the system
has enough linearly independent equations to apply linearization1.

4. Apply linearization, by considering each monomial as a new variable and
performing Gaussian elimination. This should yield a solution for the system.

In the following sections we describe the first three steps, in an attempt to
better understand the behaviour of the XSL algorithm. During our analysis, we
illustrate the working of the algorithm on a small variant of the AES defined
in [5]. The cipher used (denoted by SR(3,1,1,4)) has a 4-bit block and 3 rounds,
and its operations are over the field F24 . We note however that this small cipher
is used only to assist the understanding of the algorithm’s various steps; all
results obtained are valid for the full AES, and we always present figures for this
cipher. We use the following notation throughout this paper (similarly to [11]):

B: number of S-Boxes in each encryption round; Nr: number of encryption rounds;
R: set of all equations; R: cardinality of R;
E : subset of R consisting of all L.I. equations; E: cardinality of E ;
T : set of all monomials in the system; T : cardinality of T ;
T ′

i : set of monomials in the system such T ′: cardinality of T ′
i ;

that xi · T ′
i ⊆ T ; s: number of bits on the S-Box;

t: number of monomials in the S-Box equations; r: number of equations in an S-Box;
t′i: number of monomials in the S-Box equations to be used in the T′ method;
L: number of subsets of linear layer equations; S: total number of S-Boxes;
Sm: number of encryption S-Boxes; Sk: number of key schedule S-Boxes;
bi: number of neighbouring S-Boxes for equations in the subset i;
Nb: number of columns in the data array; Na: number of rows in the data array.

4 Step 1 - Processing of the Original Set of Equations

The processing method suggested in [11] is that for every S-Box, a basis of
t− r monomials is chosen and the remaining r monomials are written as linear
combinations of the elements of the basis. Furthermore, the basis should be
chosen such that the variables (i.e. monomials of degree 1) are not in the basis,
and the constant monomial 1 is in the basis.

For the AES, we have r = 24 and t = 81, so each S-Box has a basis consisting
of 57 monomials. If we denote by wij and xij the jth bit of the input and output
of the ith S-Box respectively, we can choose our basis such that it consists of the

1 The T′ method has also been proposed as the final step of the XL algorithm, in the
so-called XL2 method [9].
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monomials xijwik, with j �= k, and 1. In our small example, we have r = 12 and
t = 25, so after this processing the S-Box equations would be given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w10 +w10x11 + w11x10 + w11x12 + w12x10 + w13x11 + 1
w11 +w10x11 + w10x13 + w11x13 + w12x10 + w12x13 + w13x10 + w13x11

w12 +w10x11 + w10x12 + w12x11 + w12x13 + w13x10 + w13x11

w13 +w10x11 + w10x12 + w10x13 + w11x10 + w11x13 + w12x10 + w12x13 + w13x10

x10 +w10x11 + w10x12 + w11x10 + w11x13 + w12x11 + 1
x11 +w10x12 + w10x13 + w11x10 + w11x13 + w13x10 + w13x11 + w13x12

x12 +w10x13 + w11x10 + w11x12 + w11x13 + w12x10 + w13x12

x13 +w10x11 + w10x12 + w10x13 + w11x10 + w12x10 + w13x10 + w13x11 + w13x12

w10x10 +w10x11 + w11x10 + w12x13 + w13x12 + 1
w11x11 +w10x12 + w10x13 + w11x12 + w12x10 + w12x11 + w12x13 + w13x10 + w13x12

w12x12 +w10x11 + w11x10 + w11x13 + w12x13 + w13x11 + w13x12

w13x13 +w10x13 + w11x12 + w12x11 + w13x10,

and the basis would be given by

{ w10x11,w10x12,w10x13,w11x10,w11x12,w11x13,
w12x10,w12x11,w12x13,w13x10,w13x11,w13x12, 1 }.

The set consisting of the monomials in the bases of all the S-Boxes is used to
multiply the remaining equations in the system (the linear layer equations) in
step 2 of the algorithm, while the S-Box relations are used to carry out substitu-
tions in the linear layer equations (Section 5). One of the main ideas of the XSL
algorithm is that during the attack the equations are always expressed as sum
of terms that are the product of monomials in the bases of P different S-Boxes.

When performing the second XSL attack, we need to do the same processing
with the key schedule S-Boxes. In this case we denote by kij and sij the jth bit of
the input and output of the ith key schedule S-Box, respectively. Similarly to the
encryption S-Boxes, we choose our basis such that it consists of the monomials
kijsik, with j �= k, and 1. We note however the key schedule has a slightly
different structure from the encryption, such that not every key variable goes
through an S-Box. The suggestion in [10] is that we should introduce the so-
called “artificial S-Boxes”, with the necessary variables and no equations. We find
this a unnecessary and somewhat cumbersome step, which makes our analysis
a bit more complex. In particular, it is harder to derive accurate figures for the
number of monomials and equations in the resulting system. In our opinion it is
better to rewrite the key schedule system such that these “artificial S-Boxes” are
no longer required (see Appendix A). Either way, the chosen form for the key
schedule equations should not be relevant in the analysis that follows and does
not have any significant influence on the complexity of the attack described.

The linear layer equations (from the encryption and the key schedule) are the
equations that will be used directly in step 2 of the algorithm. Each equation
(called “active equation”) will be multiplied by monomials of the basis from
some (P − 1) different S-Boxes (called “passive S-Boxes”). The S-Box relations
are not explicitly used in the algorithm, but rather in an indirect form. The
linear layer equations are linear in the many variables of the system, and these
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variables are not in the basis of any S-Box. Thus the XSL algorithm requires
us to substitute the variables by their expressions as linear combination of the
monomials from the corresponding S-Box basis prior to multiplication. Again,
the idea of the XSL algorithm is that during the attack the equations are always
expressed as sum of terms that are the product of monomials in the bases of the
S-Boxes. For example, in our small cipher the initial key addition operation is
expressed by the following subsystem:⎧⎪⎨⎪⎩

p0 + w10 + k00

p1 + w11 + k01

p2 + w12 + k02

p3 + w13 + k03,

(3)

where the pi variables correspond to the plaintext values. After performing the
substitution of the monomials w1j and k0j by their respective expressions from
the corresponding S-Boxes bases, the subsystem (3) is written as:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

p0 +w10x11 + w11x10 + w11x12 + w12x10 + w13x11+
+k00s01 + k01s00 + k01s02 + k02s00 + k03s01,

p1 +w10x11 + w10x13 + w11x13 + w12x10 + w12x13 + w13x10 + w13x11+
+k00s01 + k00s03 + k01s03 + k02s00 + k02s03 + k03s00 + k03s01,

p2 +w10x11 + w10x12 + w12x11 + w12x13 + w13x10 + w13x11+
+k00s01 + k00s02 + k02s01 + k02s03 + k03s00 + k03s01,

p3 +w10x11 + w10x12 + w10x13 + w11x10 + w11x13 + w12x10 + w12x13 + w13x10+
+k00s01 + k00s02 + k00s03 + k01s00 + k01s03 + k02s00 + k02s03 + k03s00.

The processing above is performed on all equations arising from the linear
layer system (including the key schedule). This results in (Nr + 1) · B · s + Ke

quadratic equations over F2, with 2s · S variables and S · (t− r − 1) monomials
(excluding the constant monomial), where Ke is the number of key schedule
equations and S is the total number of S-Boxes in the cipher. In our small
example S = 6 and Ke = 8, so we have 4 ·1 ·4+8 = 24 equations on 48 variables
and 72 monomials. For the AES-128, we have S = 10 · (16 + 4) = 200 and
Ke = 192. Thus there are 1600 equations, 3200 variables and 11200 monomials
(Appendix A).

5 Step 2 - Multiplying the Equations

In this step, the attacker selects the value of the parameter P (refer to [11] on
how to compute P ), and then multiplies each of the equations derived from the
cipher linear layer after the substitution described above by the product of (P−1)
monomials from different S-Boxes. Only the monomials in the bases are used.
To ensure that the equations generated contain only terms that are the product
of monomials from P different S-Boxes, a few neighbouring S-Boxes need to be
excluded (i.e. S-Boxes that have monomials in common with the active equation).
This can be visualised in the diagram illustrating the encryption operation in
our small example (Figure 1). For example, when multiplying the equations in
the subset Lin2, we should not include the monomials in S-Boxes S2, S3 and K2.
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k3i =
∑

j αijs2j

k0i k1i k2i

k1ik0i k2is1is0i

k3i

x1iw1i w2i x2i w3i x3i ciphertextplaintext

KLin1 KLin2

Lin2 Lin3Lin0 Lin1

K0

{k0is0i} {k1is1i}

S1

{w1ix1i}

S2

{w2ix2i}

K2

{k2is2i}

S3

{w3ix3i}

K1
s2i

Fig. 1. S-Boxes and Linear Layers on the SR(3,1,1,4) encryption

After multiplication, we expect to have R =
∑L

i=1 s
∑P

k=1(t−r−1)k−1
(
S−bi

k−1

)
equations (though not all linearly independent), where L is the number of subsets
of linear layer equations and bi is the number of neighbouring S-Boxes for the
subset i. In total, we expect to have T =

∑P
k=0(t− r− 1)k

(
S
k

)
monomials in the

system (Appendix A).
As computed in the previous section, we have 1600 quadratic equations on

3200 variables and 11200 monomials for the AES-128 before multiplication2. So
it appears that we start with an underdefined system, which in principle should
not be solvable. Note however that, apart from the initial substitution, we have
not used the S-Boxes relations yet.

It is not completely clear from the description in [11] how to include the
S-Boxes equations. The authors say that “each time, in the attack we want to
use one of the other r terms [not in the S-Box basis], we will write them as
linear combination of the elements of the basis” [11]. Although this description
leaves the method somewhat open for interpretation, we believe that the most
likely way to proceed is to generate all equations via multiplication and then
perform (as much as possible) substitutions of monomials not in the bases by
their expressions with the corresponding linear combination of monomials in the
basis. This should hopefully introduce many new equations. Note that because
the initial system used by the XSL algorithm is underdefined, the system can
only be solved if further substitutions are performed.

As before, let wij and xij be the jth bit of the input and output of the ith

S-Box respectively, such that the basis consists of the monomials xijwik, with
j �= k, and 1 (note that on the key schedule S-Boxes, the variables should be
kij and sij , but for simplicity we rename these variables). We denote by [wij ],
[xij ] and [xijwij ] the expressions of these monomials as linear combination of
the monomials in the S-Box basis. When performing substitutions, we need to
make sure that variables are always substituted in pairs, from the same S-Box
(wij and xik). This is required to ensure that the resulting new equations are
still made up of terms that are the product of monomials from the bases of the
S-Boxes. Furthermore, we should also make sure that the substitutions do not
create monomials of degree higher than 2P .

2 Appendix A of [11] describes how to simplify the equations and reduce the number
of variables. However this new format does not seem to be suitable for the XSL
attack.
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The relations used for substitution and generation of new equations are

(xijwik) · (xijwik) = xijwik for any i, j, k
(xijwik) · (xijwil) = (xijwik) · [wil] = [wik] · (xijwil) for any i, j, k
(xijwik) · (xilwik) = (xijwik) · [xil] = [xij ] · (xilwik) for any i, j, k

xijwik = [xij ] · [wik] for j �= k
xijwik = [xij ] · [wik] = [xijwik] for j = k.

(4)

For each S-Box, the number of relations is s2+s3+s3+s(s−1)+2s = 2s3+2s2+s.
Note that substitutions using any of the relations in (4) will always result in

(or only be possible by) monomials made up of the product of some monomials
from the same S-Box. However, the XSL algorithm described in [11] excludes
monomials from neighbouring S-Boxes when multiplying the original equations,
and so the generated equations have only terms of the form

xi1j1wi1k1 · xi2j2wi2k2 · . . . · xiljlwilkl
, (5)

with l ≤ P and all ir’s pairwise distinct. This means that no substitutions
can be made such that the resulting new equations contain only terms that are
the product of up to P monomials from different S-Boxes. Substitutions always
introduce new monomials, and this is not intended to happen with the XSL
algorithm. Without any substitutions, we never get any new expressions, and
the method essentially ignores the S-Box equations. Therefore, no matter how
large the parameter P is, there is no hope that the XSL algorithm (as described
in [11]) can solve the initial set of equations3.

The problem with the XSL algorithm arises from the attempt to have only
monomials made up of the product of P different S-Boxes, and as such some
S-Boxes needed to be excluded when multiplying. The simplest way to get round
this situation is to allow the product of any P monomials from the bases, not
necessarily from different S-Boxes, and use all S-Boxes when multiplying, includ-
ing the neighbouring ones. The effect is that we should expect a larger number of
monomials in the end (as well as equations), but this will also allow the substitu-
tions, and we will be able to include the S-Boxes relations in the computations.

A more systematic way to proceed is however to add the relations (that
were to be used for substitution) to the initial set of equations, and perform the
algorithm without any further substitutions. Care has to be taken though, as
some of the new equations have degree 4 rather than 2 (e.g. xijwik = [xij ]·[wik]),
and these should be multiplied by the product of up to P−2 monomials only. We
note also that, as the monomial xijwij does not belong to the S-Box basis, we
should not include some of the relations involving this monomial (for example,
xijwij = [xijwij ]) in the initial set of equations.

It can be shown that this new procedure is essentially equivalent to the previous
one, and all new equations created by substitution can also be generated by apply-
ing the method to this enlarged set of equations. We call this modified method sXL
(standing for substitute and XL), and examine it in the following section.
3 Substitutions could still be performed by modifying the last step of XSL (T′ method),

but this is obviously not the way it was originally proposed.
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5.1 The sXL Algorithm

The sXL algorithm seems to be the natural way to get round the flaw in the
original XSL algorithm described in [11]. In the sXL algorithm, equations are
first processed as described in Section 4. We then add the many new relations
(4) resulting from the S-Boxes equations to the original linear layer equations,
and multiply all equations in this set by the product of (P − 1) monomials from
the bases of (not necessarily distinct) S-Boxes, for an appropriate value P .

In the initial set, there were (Nr+1) ·B ·s+Ke quadratic equations on 2s ·S
variables and S · (t− r − 1) monomials. To this set we add

S · (s(s− 1) + s(s− 1)2 + s(s− 1)2 + s(s− 1) + s) = S · (2s3 − 2s2 + s)

quartic equations derived from the relations in (4) (we are excluding some rela-
tions using the monomial xijwij). We call this new set S.

To analyse the running time of the sXL algorithm, we need to compute the
minimal value Pm of the parameter P for which the method yields a solution of
the system. We initially ignore the T′ method (Section 6).

In order to compute Pm, we introduce new variables Yijk and substitute the
monomials (xij ·wik) in the equations in S by Yijk. We denote the resulting new
set of equations by S ⊂ K[Y ]. The new variables Yijk are related by the various
relations of type

Yijk · Yipq = xijwik · xipwiq = xijwiq · xipwik = Yijq · Yipk, (6)

where we might have to use the S-Box relations if j = q or p = k. We call this
set R ⊂ K[Y ], and it contains S · s

2(s−1)2

4 equations.
We now consider the system of equations S ∪R ⊂ K[Y ], and execute the XL

algorithm on this system. The algorithm is required to run to a certain degree
Dm to yield a solution.

We now have the following proposition (proof is given in Appendix B):

Proposition 1. Let S be the set consisting of the original linear layer equations
together with the relations (4) resulting from the S-Boxes equations, all written as
sum of terms made up of the product of monomials in the S-Boxes bases. Denote
by Pm the minimal value of the parameter P for which the algorithm described
above (sXL) yields a solution of the system. Similarly, let S ∪R ⊂ K[Y ] denote
the set of equations derived from S and the relations (6) by substituting the
monomials (xij · wik) by Yijk . If Dm denotes the minimal degree for which the
XL algorithm yields a solution of this system, then Pm = Dm.

Proposition 1 states that the sXL algorithm is essentially equivalent to an initial
substitution (substituting the monomials (xij ·wik) by Yijk), and then applying
the XL algorithm to the resulting system in K[Y ] (thus the name sXL - substitute
and XL). For the AES-128, we start the XSL algorithm with 1600 equations,
3200 variables and 11200 monomials (i.e. an underdefined system). To run the
sXL algorithm, we use the set S, which contains 182400 linearly independent
equations. The setR has 156800 linearly independent equations, and after adding
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all relations and substituting the monomials, the set S∪R has 276800 equations
(each S-Box contains 1376 linearly independent equations) on 11200 variables.
By Proposition 1 above and Theorem 1 from [12], we expect to run the algorithm
up to degree at least D = 51 for the method to yield a solution. If we include
the T′ method as last stage (essentially running the XL2 method [9]), we expect
to run the algorithm to degree at least D = 20. Thus in the best case, the
complexity of the attack is at least

(dim(φ(UD)))ω = (dim(UD)− dim(kerφ))ω

≥
(∑20

i=0

(
11200
i

)
− 156800 ·

∑18
i=0

(
11200
i

))ω

≈ 2492,

where φ, UD, UD are defined in the proof of Proposition 1 (Appendix B), and
ω = 2.376 is the highly optimistic Gaussian reduction exponent given in [11].
Furthermore it should be clear that there seems to be no benefit in running this
method instead of simply applying XL or XL2 to the simplified AES system
of 8000 equations over 1600 variables described in [10]. Using the same results
from [12], we expect in this case to run the algorithm up to degree at least
D = 44 for the XL algorithm and at least D = 29 for the XL2 method. Again,
in the best case the complexity of the attack is at least

T ω =

(
29∑
i=0

(
1600
i

))ω

≈ 2488.

We recall that the inefficiency of the XL algorithm against the AES has already
been shown in [11], and this was in fact the motivation for the proposal of
the XSL algorithm. We have shown however that the XSL algorithm presented
in [11] has a flaw in its description, and the natural modification (i.e. sXL) is
essentially equivalent to the XL algorithm (or XL2) on a much larger system,
resulting therefore in a less efficient method of attack against the AES.

6 Step 3 - The T′ method

The T′ method is the final stage of the XSL algorithm before linearization.
We recall that to apply linearization, we require that the number of linearly
independent equations in the system needs to be approximately the same as the
number of monomials (in the notation introduced earlier, E ≈ T ). Starting with
a system resulting from step 2 (which may still have T much larger than E), the
T′ method works by multiplying some selected equations by single variables xi
(reducing modulo x2

i + xi when necessary) in an attempt to obtain new linearly
independent equations without creating any new monomials. The hope is that
after a few iterations we have E = T − 1. Although the method seems to have
been designed to work on systems of equations over F2, it is possible to modify
it to work on equations over other finite fields.

Let R be a system of multivariate polynomial equations of degree at most D
with n variables {x1, x2, . . . , xn} over the finite field K = F2. We assume that
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R contains E linearly independent equations. Let T be the set of all monomials
in the system, and T ′i be the set of monomials that can be multiplied by the
variable xi and still belong to T , i.e. T ′i = {t ∈ T |xi · t ∈ T }.

Denote by T and T ′i the cardinality of the sets T and T ′i , respectively. Assum-
ing that E ≥ T −T ′i +C and C ≥ 1, we can apply the following “algorithm” [11].

1. Perform a Gaussian elimination on the system R to bring it to a form in
which each monomial is a known linear combination of monomials in T ′i .
Since we have E ≥ T −T ′i +C, we should have around C equations of which
all monomial are in T ′i .

2. Multiply these equations by xi, reducing modulo x2
i + xi when necessary.

Add any new linearly independent equations to the system R.
3. Repeat steps 1 and 2 on the resulting system with other variables xj until
E = T − 1.

It is expected in [11] that the number of new equations generated grows at
exponential rate, and that if the initial system has a unique solution, then after
a few iterations (perhaps using as little as three variables) the algorithm should
generate enough equations to solve the system by linearization.

Consider the polynomials in R as vectors over K in the polynomial algebra
K[x1, . . . , xn] and E the vector space (of dimension E) generated by R. With
an abuse of notation, we denote the space generated by all monomials of degree
at most D by T . By using the field relation x2 + x = 0 to reduce the degree of
monomials when necessary, we have T = dim(T ) =

∑D
i=0

(
n
i

)
.

For any variable xi, let T ′i ⊆ T be the subspace of T defined earlier. We can
write

T = T ′i ⊕ U and T ′i = dim(T ′i ) =
D−1∑
i=0

(
n

i

)
+
(
n− 1
D − 1

)
. (7)

In order to apply the T′ method, we need E ∩ T ′i �= ∅. The vectors in E ∩ T ′i
correspond to the equations that are multiplied by the variable xi when running
the algorithm. A sufficient condition is that

dim(E) > dim(U) = dim(T )− dim(T ′i ), (8)

or equivalently, that E > T − T ′i . We denote the subspace E ∩ T ′i by Ci, and its
dimension by Ci = E − T + T ′i .

We note that the multiplication of the equations in E ∩ T ′i by xi induces
a linear transformation Xi : T ′i → T ′i . By appropriately choosing an ordered

basis for T ′i , Xi can be represented by the T ′ × T ′ matrix
(

0 0
0 Id

)
, where Id

corresponds to the T ′
i

2 ×
T ′

i

2 identity matrix. The image of Xi is generated by
{xi, x1xi, x2xi, . . . , x1 . . . xi . . . xn}. The T′ method simply computes Xi(Ci) and
adds the resulting vectors to the space E . If we denote by ηk the number of new
equations generated by the kth iteration of the algorithm using the variable xik ,
then

ηk ≤ min(γ + ηk−1, dim(Im(Xik))), (9)
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where γ = E − T + T ′ for the initial system if xik is a new variable, otherwise
γ = 0. This shows that the number of new equations generated by the method
does not grow at exponential rate as suggested in [11].

It should be clear that if Xi(Ci) ⊆ Ci, then the T′ method applied to the
variable xi in a particular iteration of the algorithm does not generate any new
linearly independent equations. We should then try other variables, as suggested
in [11], in the hope that new equations are generated. These could be then
added to the system, and the process could be repeated with further variables
(including xi). However, once the condition above is met by all variables, no new
equations can be generated. Thus we have the following lemma.

Lemma 1. Let R be a system of m multivariate equations of degree D ≥ 2 with
n variables {x1, x2, . . . , xn} over the finite field K = F2, and let Ci and Xi be
the K-subspace of K[x1, . . . , xn] and the linear transformation with respect to the
variable xi, as defined above. If Xi(Ci) ⊆ Ci for every 1 ≤ i ≤ n, then the T′

method does not generate any new linearly independent equation.

Therefore if a system satisfies the conditions of Lemma 1 before we have enough
linearly independent equations to apply linearization, the T′ method surely fails.
Although it is not clear how likely a system is to satisfy these conditions, in
Appendix C we present an example of a small system for which the T′ method
does not work.

We can make some further remarks about the T′ method when it is applied
as the final step for XL-type algorithms. Suppose that S is the initial system of
m quadratic equations with n variables over the finite field F2. The XL algorithm
multiplies these equations by all monomials up to a prescribed degree d = D−2,
obtaining a much larger system R with R =

∑D−2
i=0

(
n
i

)
·m equations. We expect

to have

T =
D∑
i=0

(
n

i

)
and T ′i =

D−1∑
i=0

(
n

i

)
+
(
n− 1
D − 1

)
, (10)

and therefore T − T ′i =
(
n−1
D

)
. The T′ method is supposed to work as soon as

the number of linearly independent equations (E) is larger than T − T ′i . By the
results of [12], we see that this condition can only be satisfied if T ′ is greater-
or-equal to the coefficient of the Dth term of the expected Hilbert Series of a
generic algebra of type (n+ 1;m; d1, . . . , dm).

Furthermore, given a variable xi, the set R of equations can be divided into
three subsets: (a) all equations obtained by multiplying monomials of degree
up to d − 1 = D − 3, (b) all equations obtained by multiplying monomials of
degree d = D−2 with the variable xi, and (c) equations obtained by multiplying
monomials of degree d = D − 2 without xi. Thus we can write

R =
D−2∑
i=0

(
n

i

)
·m =

(
D−3∑
i=0

(
n

i

)
+
(
n− 1
D − 3

)
+
(
n− 1
D − 2

))
·m (11)
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To apply the T′ method, we should first perform a Gaussian reduction on the
set R, and then multiply the equations in T ′i by the variable xi in an attempt
to obtain new linearly independent equations.

It is clear that all equations in (a) and (b) are in T ′i . However, the equations
in (b) are fixed by xi and no new equations will be generated by multiplication.
For equations in (a), any new equations would have been already included when
running the XL algorithm, so no new linearly independent equations can be
generated by multiplication either.

The only useful equations of R for the T′ method are therefore the ones in
(c), and the method can work if applied to (at most)

(
n−1
D−2

)
·m equations. This

fact had already been remarked in [6].
In [15] it is shown how the T′ method can be interpreted in terms of Buch-

berger’s Gröbner Basis algorithm. The method is further discussed (in the con-
text of the XL2 [9] algorithm) in [2,4], where some doubts are cast on the
general applicability of the method. It is remarked that the T′ method may
not be able to run because some of the monomials in T \ T ′ cannot be ex-
pressed as linear combination of monomials in T ′ (and therefore cannot be
reduced). In particular, this will happen if C = E − T + T ′ is small, be-
cause as we saw above, after the XL algorithm many equations are already
in T ′.

It is also noted in [2] that the method should operate with all variables instead
of just two or three. In this case the XL2 method is equivalent to running the XL
algorithm one degree higher and eliminating all the highest degree monomials.
However it is not hard to construct examples where two variables prove to be
enough.

The T′ method is perhaps the least understood part of XL-type algorithms.
Experiments have proved to be inconclusive, and more study may be needed to
verify whether it can be used in general as a final step of algorithms for efficiently
solving systems of multivariate equations.

7 Conclusion

Since the proposal of the XSL algorithm, the potential for algebraic attacks
against block ciphers, and in particular the AES, has been the source of much
speculation and has attracted a lot of attention from the cryptographic commu-
nity. Although not much is known about the effectiveness of algebraic attacks
as a cryptanalytic technique, it is widely believed that the most promising ap-
proach is the development of dedicated methods for specific block ciphers. The
XSL algorithm is perhaps the first attempt to exploit the particular structure of
the AES system of equations. We have shown however that, as presented in [11],
the XSL algorithm cannot solve the system arising from the AES. By discussing
some alternatives for the algorithm, we come to the conclusion that, in its cur-
rent form, it is unlikely that the algorithm can provide an efficient method for
solving the AES system of equations.
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A The XSL Attack on the AES-128

In this Appendix we make some computations concerning the XSL attack against
the AES with 128-bit keys.

A.1 Key Schedule

The AES key schedule presents a different structure from the encryption, in that
not all key variables go through an S-Box. The suggestion in [10] is that, when
performing the second XSL attack, one should introduce the so-called “artificial
S-Boxes”, with some key variables and no equations. Instead of that, in our
analysis we rewrite the key schedule system such that these “artificial S-Boxes”
are no longer required.

There are Sk = NaNr S-Boxes in the AES key schedule, and a total of
sNaNb(Nr + 1) subkeys variables, of which sNaNr go through an S-Box during
the key schedule. So we choose to introduce sNaNr new variables, to represent
the bits of the S-Box output sj,3,i. For the AES-128, we have Na = Nb = 4,
Nr = 10, and so Sk = 40. A diagram for the key schedule of the AES-128 is
shown in Figure 2.

The key schedule set of equations used in the XSL attack consists initially
of sNaNbNr linear equations. We can however express all subkeys variables as
linear expression of the 2sNaNr S-Boxes variables (representing the bits of kj,3,i
and sj,3,i), as shown in the equations below:

k0,0,i = k0,3,i + k1,3,i + k2,3,i + k3,3,i + s2,3,i + s1,3,i + s0,3,i

k1,0,i = k0,3,i + k1,3,i + k2,3,i + k3,3,i + s2,3,i + s1,3,i

k2,0,i = k0,3,i + k1,3,i + k2,3,i + k3,3,i + s2,3,i

kj,0,i = kj,3,i + kj−1,3,i + kj−2,3,i + kj−3,3,i for j = 3 . . . (Nr − 1)
k0,1,i = k0,3,i + k2,3,i + s1,3,i

k1,1,i = k1,3,i + k3,3,i + s2,3,i

kj,1,i = kj,3,i + kj−2,3,i for j = 2 . . . (Nr − 1)
k0,2,i = k0,3,i + k3,3,i + s2,3,i

kj,2,i = kj,3,i + kj−1,3,i for j = 1 . . . (Nr − 1)
kNr,0,i = kNr−4,3,i + kNr−3,3,i + kNr−2,3,i + kNr−1,3,i + sNr−1,3,i

kNr ,1,i = kNr−4,3,i + kNr−2,3,i + sNr−1,3,i

kNr ,2,i = kNr−4,3,i + kNr−1,3,i + sNr−1,3,i

kNr ,3,i = kNr−4,3,i + sNr−1,3,i

The equations above can also be used to simplify the key schedule linear layer
equations relating variables from S-Boxes. These equations can be written as

kj,3,i = kj+4,3,i + sj+3,3,i for j = 0 . . . (Nr − 5). (12)

We therefore have Na(Nr−4) sets of s linear equations, and so Ke = Na(Nr−4)s.
For the AES-128, we have Ke = 192. The number of key schedule S-Boxes needed
to express the different subkeys is given in Table 1.
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Fig. 2. Diagram for the AES-128 key schedule

Table 1. Number of S-Boxes used in equations involving kj,r,i

j 0 1 2 3 4 5 6 7 8 9 10
kj,0,i 4 4 4 4 4 4 4 4 4 4 4
kj,1,i 3 3 2 2 2 2 2 2 2 2 3
kj,2,i 3 2 2 2 2 2 2 2 2 2 2
kj,3,i 1 1 1 1 1 1 1 1 1 1 2

A.2 Complexity of the XSL Attack on the AES-128

In this section we show that, in addition to the issues raised in Section 5, the XSL
heuristics presented in [11] overestimate the number of equations generated by the
algorithm4. Firstly, when deriving the complexity of the attacks, the XSL heuris-
tics assume that all equations generated by the method are linearly independent.
It should be clear that they are not. Even for P = 2, there are many relations of
the type fi · [fj ] = fj · [fi]. Secondly, the XSL algorithm states that neighbouring
S-Boxes need to be excluded when multiplying the linear layer equations. This also
needs to be taken into account when estimating the total number of equations.

The subsets of linear layer equations from the encryption have common vari-
ables with four S-Boxes from the current round, one S-Box from the next round
(except in the first and last rounds, where some monomials are replaced by the
plaintext or the ciphertext), and a number of key schedule S-Boxes. The num-
ber of neighbouring S-Boxes for the key schedule equations can be derived from
Table 1, while the number of neighbouring S-Boxes for the encryption equations
is given in Table 2.
Therefore the number of equations obtained by multiplication should be

R =
L∑
i=1

s

P∑
k=1

(t− r − 1)k−1

(
S − bi
k − 1

)
(13)

4 Note that although the key schedule equations were not used in [11], the way the
heuristics were used to obtain the number of equations can be easily applied to the
system including the key schedule.
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Table 2. Number of neighbouring S-Boxes for the encryption equations (defining wj,k,i)

j 0 1 2 3 4 5 6 7 8 9 10
wj,0,i 5 9 9 9 9 9 9 9 9 9 8
wj,1,i 4 8 7 7 7 7 7 7 7 7 7
wj,2,i 4 7 7 7 7 7 7 7 7 7 6
wj,3,i 2 6 6 6 6 6 6 6 6 6 6

instead of Ss(t− r)(P−1)
(

S
P−1

)
given in [11]. Likewise, the number of monomials

is

T =
P∑
k=0

(t− r − 1)k
(
S

k

)
(14)

instead of (t− r)P
(

S
P

)
given in [11]. For the AES-128, we have

S = Sm + Sk = NaNbNr + NaNr = 200,
L = NaNb(Nr + 1) + Na(Nr −Nb) = 200,

while bi can be obtained from Tables 1 and 2.
Using these figures and the formulas given in [11], we obtain P = 9, giving

T ≈ 2100 and T ω ≈ 2238 for the second XSL attack against the AES-128. We
note however that we are not taking into account the linear dependencies between
these equations, and so the complexity is likely to be much higher.

We also note that, with these new figures and assuming that almost all R
equations are linearly independent [11], the T′ method seems to be irrelevant for
the attack. In fact, since T ≈ 100T ′, when P = 9 we already have R > T − 2
(so there is no need for the T′ method), while for P = 8 we are still in the
situation that R < T − T ′ (and are therefore unlikely to be able to use the T′

method).

B Relation Between sXL and XL

We present here the proof of Proposition 1 from Section 5.1.
Let S be the set of equations consisting of the original linear layer equations

(after the processing described in Section 4), and the relations (4) resulting from
the S-Boxes equations. All these equations are written as sum of terms made up
of the product of monomials in the bases of the S-Boxes.

Let D ∈ N and UD be the set of equations generated by running the sXL
algorithm with the parameter P = D on the set S. Denote by K[{xij · wik}]
the subring of K[x,w] generated by the various monomials of type (xij · wik)
contained in the bases of the S-Boxes. Furthermore, let K[{xij · wik}]≤2D and
K[x,w]≤2D be the K-vector spaces generated by the respective polynomials of
total degree at most 2D. It is clear that we have UD ⊂ K[{xij · wik}]≤2D.

Similarly to [12], we define

χ(D) = dimK(K[{xij · wik}]≤2D)− dimK(UD).
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The sXL algorithm will yield a solution for the system if χ(D) = 1 (we are
ignoring by now the T′ method)5. We denote by Pm the minimal value of D for
which this relation is satisfied.

We now introduce new variables Yijk and substitute the monomials (xij ·wik)
in the equations in S by Yijk. As the equations in S are either quadratic or
quartic, this can be done in a straightforward way. We denote this new set of
equations by S ⊂ K[Y ]. To this set we add the equations (6)

Yijk · Yipq = Yijq · Yipk, (15)

contained in the set R ⊂ K[Y ]. Let UD be the set of equations generated by
running the XL algorithm up to degree D on the set S ∪ R ⊂ K[Y ]. It is clear
that we have UD ⊂ K[Y ]≤D. Now we define

χ(D) = dimK(K[Y ]≤D)− dimK(UD).

Again, we can solve the system directly by linearization if χ(D) = 1, but more
generally, we only need χ(D) ≤ D. We denote by Dm the minimal degree D for
which this relation is satisfied.

Let φ be the K-homomorphism defined as

φ : K[Y ]≤D −→ K[{xij · wik}]≤2D

Yijk �−→ xijwik .

It is clear that φ(K[Y ]≤D) = K[{xij ·wik}]≤2D and φ(UD) = UD. Let VD be the
subset of K[Y ]≤D defined as

VD = 〈
D−2∏
l=1

Yiljlkl
· R〉. (16)

Lemma 2. VD is the kernel of the homomorphism φ.

Proof. In one direction, it is clear that VD ⊆ kerφ. Now let B = {Mi} be
the canonical basis of K[Y ]≤D and r the number of distinct monomials of type
φ(Mi). It is clear that each φ(Mi) is a non-null monomial of K[{xij · wik}]≤2D,
and thus r is the rank of φ. We can then choose b = #B−r linearly independent
polynomials of the form Mi + Mj with φ(Mi) = φ(Mj). Since dim(kerφ) = b, it
follows that these polynomials form a basis of kerφ.

Let M1 =
∏
lm1l, where m1l =

∏
r Yiljrkr are monomials involving only

variables (i.e. quadratic monomials in K[{xij ·wik}]) from the same S-Box. It is
clear that M2 =

∏
lm2l, with φ(m1l) = φ(m2l). So without loss of generality,

we assume that M1 = m1 =
∏
r Yijrkr and M2 = m2 =

∏
l Yijlkl

.
If we write ν : jr → kr and M1 =

∏
j Yijν(j), then there exists a permutation

σ ∈ SK such that M2 =
∏
j Yiσ(j)ν(j) . Write σ as a product of transpositions

5 In fact, by renaming monomials if necessary, we should be able to successfully solve
the system if χ(D) ≤ D [8].
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σ =
∏
p τp, where τp = (ap, bp) with ap, bp ∈ {kr}. Denote by tp the product

τp−1τp−2 . . . τ0, where t0 = id and t∞ = σ. If we call

Zjk =

{
Yijk if j �= k

[Yijk ] if j = k
,

then we have∏
i

Ziν(i) +
∏
i

Zτp(i)ν(i) =
(
Zapν(ap)Zbpν(bp) + Zapν(bp)Zbpν(ap)

) ∏
i�=ap,bp

Ziν(i)∏
i

Ztp(i)ν(i) +
∏
i

Ztp+1(i)ν(i) =
(
Zapν(ap)Zbpν(bp) + Zapν(bp)Zbpν(ap)

) ∏
tp(i) �=ap,bp

Ztp(i)ν(i).

Therefore

M1 + M2 =
∏
i

Zt∞(i)ν(i) +
∏
i

Zt0(i)ν(i) ∈ 〈(ZαβZγδ + ZαδZγβ) ·K[Y ]≤D−2〉,

and kerφ = VD. �

Therefore, according to the lemma we have

K[Y ]≤D

VD

∼= K[{xij · wik}]≤2D and
UD

VD

∼= UD.

It follows that χ(D) = χ(D) and Pm = Dm.

C An Example for which the T′ Method Fails

In Appendix B of [11] a concrete working example for the T′ method is presented.
The example consisted of a system of 8 quadratic equations with 5 variables, such
that T = 16 and T ′ = 10. By alternately applying the method with respect to the
variables x1 and x2, a total of 15 linearly independent equations were obtained
and the system could then be solved by linearization.

Below we present an example for which the T′ method does not work. Our
system has 7 linearly independent quadratic equations over F2 with 5 variables
(so we have E = 7, T = 16 and T ′ = 10). Our system has also a unique solution
(x2 = x3 = x5 = 0, x1 = x4 = 1). In our case, however, there is only one
exceeding equation, i.e. C = E − T + T ′ = 1.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1x2 + x1x4 + x2x3 + x2x5 + x4x5 + x1 + x3 + x4 + x5 + 1 = 0
x1x2 + x1x3 + x2x5 + x3x5 + x4x5 + x4 + 1 = 0
x2x3 + x3x5 + x3x4 + x2 + x3 + x4 + x5 + 1 = 0
x1x5 + x1x3 + x3x4 + x4x5 + x5 = 0
x1x5 + x1x3 + x2x4 + x2 + x3 = 0
x1x3 + x2x4 + x3x5 + x1 + x2 + x5 + 1 = 0
x2x5 + x2x3 + x4x5 + x2 + x3 + x5 = 0

(17)
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The system (17) is such that for every variable xi, we have Ci ⊆ ker(Xi) and
therefore Xi(Ci) = {0}. So we are unable to obtain a single new equation. For
example, on working with the variable x1, we can represent the system as:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

x2x3 = x1x3 + x1x4 + x1x5 + 1
x2x4 = x1x3 + x1x5 + x2 + x3

x2x5 = x1x3 + x1 + x3 + x4

x3x4 = x1x3 + x1x4 + x1 + x2 + x4 + 1
x3x5 = x1x5 + x1 + x3 + x5 + 1
x4x5 = x1x4 + x1x5 + x1 + x2 + x4 + x5 + 1
1 = x1x2 + x1x4 + x1 + x2 + x4.

(18)

However, when multiplying the last equation by x1 we have

x1 · (1 + x1x2 + x1x4 + x1 + x2 + x4) = 0.

The same is valid for all the remaining variables. For example, with respect to
x2: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1x3 = x2x5 + x1 + x3 + x4

x1x4 = x2x3 + x2x4 + x2 + x3 + 1
x1x5 = x2x4 + x2x5 + x1 + x2 + x4

x3x4 = x2x3 + x2x4 + x2x5

x3x5 = x2x4 + x2x5 + x2 + x3 + x4 + x5 + 1
x4x5 = x2x3 + x2x5 + x2 + x3 + x5

0 = x1x2 + x2x3 + x2x4 + x1 + x3 + x4.

Again the same occurs:

x2 · (x1x2 + x2x3 + x2x4 + x1 + x3 + x4) = 0.

Therefore no new equations can be generated and the T′ method fails for this
system.
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Abstract. Time/memory tradeoff (TMTO) is a generic method of in-
verting oneway functions. In this paper, we focus on identifying candidate
oneway functions hidden in cryptographic algorithms, inverting which
will result in breaking the algorithm. The results we obtain on stream
and block ciphers are the most important ones. For streamciphers using
IV, we show that if the IV is shorter than the key, then the algorithm is
vulnerable to TMTO. Further, from a TMTO point of view, it makes no
sense to increase the size of the internal state of a streamcipher without
increasing the size of the IV. This has impact on the recent ECRYPT call
for streamcipher primitives and clears an almost decade old confusion on
the size of key versus state of a streamcipher. For blockciphers, we con-
sider various modes of operations and show that to different degrees all
of these are vulnerable to TMTO attacks. In particular, we describe mul-
tiple data chosen plaintext TMTO attacks on the CBC and CFB modes
of operations. This clears a quarter century old confusion on this issue
starting from Hellman’s seminal paper in 1980 to Shamir’s invited talk
at Asiacrypt 2004. We also provide some new applications of TMTO and
a set of general guidelines for applying TMTO attacks.

Keywords: time memory data tradeoff.

1 Introduction

Time memory tradeoff (TMTO) algorithm is a generic method of inverting oth-
erwise well behaved oneway functions. The technique of using TMTO to invert
oneway function was introduced by Hellman in his seminal paper [16] on the
topic in 1980. This topic has two parts.

TMTO Algorithms: This covers development of new TMTO algorithms including
use of multiple data and investigation of theoretical issues about general TMTO
algorithms. Apart from Hellman’s work, other contributions to this line of re-
search include Rivest’s idea of distinguished points, Fiat-Naor [10], Babbage [4],
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Golić [12], Biryukov-Shamir [7], Oechslin [23] and Kim-Matsumoto [20]. In this
work, we will use some of the relevant results from the above papers, but we will
not present any new contribution to this area.

TMTO Applications: Our contribution is to this area of TMTO research. As
mentioned before, TMTO is applied to invert oneway function. Therefore an
important question is to identify a target oneway function on which to apply
TMTO. The initial work by Hellman [16] is a chosen plaintext attack and ap-
plies TMTO to the oneway function which maps the keyspace to the cipherspace
by encrypting an a priori chosen message using a blockcipher. The work of Bab-
bage [4], Golić [12] and Biryukov-Shamir [7] applies TMTO to the oneway func-
tion which maps the internal state space to a keystream segment of a streamci-
pher. See [13] for an adaptation of this application to the state space of a PRNG.

We would like to point out that this clear distinction between TMTO algo-
rithm and the oneway function on which to apply it does not appear explicitly
in the literature. On the other hand, with this distinction made clear one begins
to search for suitable oneway functions hidden in cryptographic algorithms on
which to apply TMTO.

In this paper, we present a systematic investigation of the above line of
research. We consider a wide range of cryptographic algorithms and look for
candidate oneway functions for TMTO applications. Our results on stream and
block ciphers are the most interesting and also turns out to be quite important
as discussed below. We also consider hash functions and asymmetric algorithms
and finally describe a set of guidelines for applying TMTO to cryptographic
algorithm. Due to lack of space, the last description as well as some of the other
details are given in the Appendix. We next describe our contributions to stream
and block ciphers.

1.1 Streamcipher

As mentioned before, the works of Babbage [4], Golić [12], and Biryukov-Shamir
[7] have applied TMTO to the oneway function mapping internal state to a
keystream segment. A suggested countermeasure for resisting TMTO has been
to use a state whose size is double that of the key size. This can be seen from
the following quote from [12].

“. . . doubling the memory size, from 64 to 128 bits, is very likely to push
the attacks beyond the current technological limits. Note that the secret
session key size need not be increased to 128 bits.”

Over the last few years, this has led streamcipher designers to incorporate huge
internal states. Also, most recent streamcipher proposals have quoted their huge
state size as indications of resistance to TMTO attacks.

We revisit TMTO on streamciphers. Most streamciphers use an initialization
vector (IV) in addition to the secret key. We show that the function mapping
(key, IV) to a keystream segment of suitable length is a candidate oneway func-
tion for TMTO application. In the case where the key is longer than the IV, the
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algorithm becomes vulnerable to TMTO irrespective of the size of the internal
state. Thus, huge state size does not guarantee resistance to TMTO attacks. This
clears an almost decade old confusion on this issue. Further, our results shows
that it does not make sense to increase the state size without a corresponding
increase of the IV size. These results have been considered important enough to
bring about a change in the recent ECRYPT call for streamcipher primitives.

Prior to our work, the only oneway function in a streamcipher considered for
TMTO application was the state to keystream map. Our work shows that the
(key, IV) to keystream map is another such function. It is an interesting problem
to identify other possible candidate functions. Such functions may not be generic
to all streamciphers (as the above two are), but may also be algorithm specific.

1.2 Blockcipher

Blockciphers are mostly used in an appropriate mode of operation. Hellman’s
attack applies to the ECB mode of operation. There is widespread belief in the
cryptographic community that the following two points are true.

1. It is not possible to use multiple data with blockcipher tradeoffs.
2. Cipher block chaining with random IVs will foil tradeoff attacks on blockci-

phers.

The following quote from the invited talk by Adi Shamir at Asiacrypt 2004 [25]
suggests that the first of these is a well settled fact (and not even an open
problem).

“Generic time/memory tradeoff attacks on stream ciphers (TM2D2 =
N2) are stronger than the corresponding attacks on block ciphers
(TM2 = N2) since they can exploit the availability of a lot of data.”

(In fact, the above statement was provided as one of the evidences that blockci-
phers are stronger than streamciphers.)

The second point is explicitly stated in Hellman’s paper [16]. We quote the
relevant portions from Hellman’s paper. The first of these appears on Page 404,
second column, third paragraph.

“It should be remembered, however, that the time-memory trade-off does
not work in a known plaintext attack if block chaining or cipher feedback
is used. . . ”

This appears even more explicitly on Page 405, second column, third paragraph
of Section IV.

“Even a block cipher can foil the time-memory trade-off in a known
plaintext attack through cipher block chaining [7], [8] or other tech-
niques which introduce memory into encipherment. . . . Again, proposed
standards include provision for cipher block chaining with a random in-
dicator.”
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The last sentence suggests that using CBC with a random IV will resist TMTO
attacks. There is some confusion between chosen and known plaintext attacks.
While the TMTO attack on the ECB mode developed by Hellman is itself a
chosen plaintext attack, the above comments relate only to known plaintext
TMTO attacks. We discuss this point in more details in Appendix A.

We investigate the possibility of TMTO application on various block cipher
modes of operations. For every mode of operation that we consider, it turns out
that there is a suitable oneway function to which chosen plaintext TMTO can
be applied under appropriate conditions. The most interesting results are for
the CBC and the CFB modes of operations. Contrary to Shamir’s statement
above on the use of multiple data, we show how to apply nontrivial multiple
data TMTO to both the CBC and CFB modes of operations. Further, our re-
sults show that Hellman’s statements above are not correct for chosen plaintext
attacks (but they could still be true for known plaintext attacks). However,
an algorithm which is not secure against chosen plaintext attacks cannot be
considered to be secure. Hence, CBC and CFB modes of operations cannot be
considered to be secure against TMTO attacks. This clears a quarter century
old confusion on this issue.

Related Work: In a recent work, Biryukov [6] studies applications of multiple
data TMTO. We would like to point out that the situation considered in [6] is
different from the one we consider here. More specifically, Biryukov [6] considers
the situation where a single message is encrypted with many keys and the corre-
sponding ciphertexts are available to the attacker. The goal of the attacker is to
obtain one of these keys. This situation applies to the ECB mode of operation of
a block cipher, which is the mode usually considered for cryptanalysis of block
ciphers. Detailed discussion on strengths of a block cipher in ECB mode and
UNIX password hashing is presented in [6]. We would like to mention that one
of the reviewers of this paper pointed out that obtaining one-out-of-many keys
was earlier suggested in [12].

In contrast to [6], this work and its earlier version [17] considers the more gen-
eral problem of identifying suitable oneway functions in cryptographic algorithms
and possible access to multiple data. The more interesting cases considered here
are streamciphers with IV, various modes of operation of block ciphers such as
CBC, CFB, etcetra. We note that none of these cases are considered in [6].

Lastly, we would like to clarify some confusion regarding authorship. The
work [6] and [22] has been merged and is due to appear as [5] in the proceedings
of SAC’05. Thus, there is an overlap of authors between [5] and the current
paper. However, the common author was in no way involved with either the
preparation or the original submission of [6] to SAC’05.

2 Review of TMTO Algorithms

Time memory data tradeoff algorithms are applied to invert one-way functions.
Let f : {0, 1}n → {0, 1}n be a one-way function inverting which will break a
cipher. We briefly describe the existing work on methodology of applying TMTO.
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A TMTO algorithm has two phases. In the offline phase, a set of tables are
prepared. In the online phase, the attacker is given y1, . . . , yD and has to find a
pre-image for one of the yi’s, i.e., for some i, the attacker has to find one xi such
that f(xi) = yi.

We put N = 2n to be the size of the search space. The pre-computation time
is denoted by P and the online search time is denoted by T . The number of data
points y1, . . . , yD is D and the memory required to store (the required fraction
of) the tables is denoted by M .

The original TMTO algorithm by Hellman [16] used D = 1 and satisfied the
so-called TMTO curve: TM2 = N2 with a typical point of T = M = N2/3. The
pre-computation time is P = N .

Babbage [4] and Golić [12] considered TMTO on streamciphers. The tradeoff
is basically a birthday attack, and the tradeoff curve is TM = N , T = D and
P = M = N/D. We will call this the BG attack. A typical point on the curve is
T = M = D = P = N

1
2 .

Biryukov and Shamir described a multiple data variation of the Hellman
method to obtain a new TMTO on streamciphers. The tradeoff curve of TM2D2

= N2, 1 ≤ D2 ≤ T , P = N/D was given. We will call this the BS attack. A
typical point on the curve is T = M = N

1
2 , D = N

1
4 , P = N

3
4 .

Permutation: If the one-way function f to be inverted is a permutation, then
even for D = 1, one can obtain the tradeoff curve TM = N with a better tradeoff
of T = M = N1/2, D = 1.

Multiple Data: Availability of multiple data improves the effectiveness of a
TMTO attack. In many cases with D > 1, the pre-computation time will also be
less than N . On the other hand, we need to carefully examine the scenario under
which multiple data attack is applied. For example, Hellman originally applied
TMTO to find the key of a blockcipher used in the ECB mode of operation. An
easy extension to multiple data attack would be for the attacker to target multi-
ple keys and be satisfied with obtaining at least one of these. A similar situation
applies to streamciphers as we point out later. A more nontrivial application of
multiple data attack is to be able to identify a situation where all the obtained
data corresponds to one single key. In this paper, we will mostly be concerned
with TMTO attacks which uses multiple data corresponding to a single key.

Attack complexity: The complexity of a TMTO attack is usually taken to be
the sum or maximum of T , M , and D. It is customary not to take the pre-
computation time P as adding to the attack complexity. This is explicitly men-
tioned in the following quote from Hellman[16],

“The N operations required to compute the table are not counted be-
cause they constitute a pre-computation which can be performed at the
cryptanalyst’s leisure.”

Similarly, Biryukov-Shamir [7], writes that the pre-computation phase “can take
a very long time”. Following in these steps, it has been customary to ignore
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pre-computation time for TMTO attacks. In the case D = 1, exhaustive search
(or even more) pre-computation time is unavoidable. More generally, the pre-
computation time is P = N/D and N is of the form 2k+v, where k is the key
length and v is the length of associated data (IV, nonce, tweak, etcetra). If we
put D = Na, with 0 ≤ a < 1, then P = N1−a and is less than 2k if k > 1−a

a × v.
Since 2k correspond to exhaustive search time, under the last condition the pre-
computation time is less than exhaustive search.

3 Streamcipher

Let us be given a streamcipher algorithm that takes a k-bit key. Our search
space is the key space of size N = 2k. Consider the following oneway function
f which takes a single k-bit key (and no IV) as input. The cipher algorithm
specifies a key load mechanism and an initialization procedure. Take the first k
bits of keystream as output for the function f .

Inverting f will provide the key. This approach of applying TMTO to the
key space of a streamcipher is not a new idea. Hellman [16] briefly mentions
this situation as one possible application. Also, in the appendix of a more recent
paper [11], this situation is more definitely mentioned in relation to BG-tradeoff.

Let us consider multiple data when applying TMTO to f . Consider the situ-
ation of a dummy terminal session. Assume that each session is encrypted with a
new key, and that the first encrypted text of a session is the (fixed) login screen
so that the keystream prefix of each session is always exposed. Each session
we observe gives one target data point. Inverting any one of the data points,
gives us the corresponding secret key. Using the BS curve, if we can observe
D = N1/4 = 2k/4 sessions, then we have an attack with T = M = N1/2 = 2k/2

and P = 23k/4. Depending on the amount of available data, one could also choose
other suitable points of the BS curve. In any case, under this kind of an attack
scenario, no streamcipher can provide security level equal to its key length.

3.1 Streamciphers with IV

The situation with streamciphers have changed somewhat since the early work
of Hellman, and modern ciphers now use a nonce or an initial vector (IV) in
addition to the secret key. Resynchronization is more common in this situation,
and obtaining large sets of data is more realistic.

Consider an environment where many short messages are encrypted, each
with a different IV. Assume that the master key is seldom changed. This may
happen with wireless communication frames, or maybe a disk encryption scheme
where each sector is encrypted with a different IV. Assume some of these frames
or sectors are known to us in the form of bare keystream. Since IVs are usually
public, if we can obtain the master key to one of these frames, all other frames
using the same master key would be readable.

We first need to define an appropriate oneway function. Consider the function

f : {master keys} × {IVs} → {keystream prefix}. (1)
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Function f sends a random (k-bit key, v-bit IV) pair to a (k + v)-bit keystream
prefix. So our search space is of size N = 2k+v. For a good cipher, this mapping
should behave like a random function. We consider three cases with different
data requirements. The first of these follows from the BG curve (TM = N ;
T = D) , while the other two follow from the BS curve TM2D2 = N2.

1. (P,D,M,T ) = (N1/2,N1/2,N1/2,N1/2): P = 2(k+v)/2 < 2k for k > v.
2. (P,D,M,T ) = (N2/3,N1/3,N1/3,N2/3): P = 22(k+v)/3 < 2k for k > 2v.
3. (P,D,M,T ) = (N3/4,N1/4,N1/2,N1/2): P = 23(k+v)/4 < 2k for k > 3v.

If we ignore pre-computation time, then data requirement is the minimum in
the third case above. In this case, we have an attack whenever T = M = N1/2

is less than 2k. The last condition holds for k > v and hence we can say that if
IV is any shorter than key, the streamcipher is vulnerable to a TMTO attack.

Pre-Computation Time: If we wish to take pre-computation time into account,
then the third case gives an attack for k > 3v. If more data is available, then
using the first two cases, we get attacks under different relations between k
and v. As already mentioned before, if D = Na for some 0 ≤ a < 1, the pre-
computation time is P = N1−a and is less than 2k for k > 1−a

a ×v. On the other
hand, for a fixed value of k and v, if we wish to make the pre-computation time
at least as expensive as exhaustive search, then we must ensure that the access
to multiple data is restricted to the condition a ≤ v/(k + v). If a > v/(k + v),
then we have a TMTO attack where even the pre-computation time is less than
exhaustive search.

Below, we state some remarks on this and give some variations to this
method.

1. Putting a restriction on how many frames are encrypted before the master
key is renewed does not stop this attack completely. The attacker still gets
to know one of the many master keys.

2. Making the state initialization process more complex has completely no effect
on this TMTO attack. Neither does the size of the internal state of the stream
cipher affect this TMTO in any manner.

3. The known part of keystream need not be at the very beginning. As long
as they are fixed positions in the keystream, they do not even need to be
continuous. The oneway function can be defined to match the known part.

4. If IV is XORed into the key before being placed into the internal state,
we could set the domain of the oneway function to be at that position. In
general, the domain of f should be at the point of least entropy occurring
during the initialization process.

5. Using IVs in a predictable manner effectively reduces the IV space, making
TMTO more efficient.

3.2 State Versus Key Size

Previous multiple data attacks on streamciphers have targeted the internal state
of the cipher. It has been suggested that to resist TMTO attacks, the internal
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state size should be at least twice the key size. Our new attack shows that if
IV is any shorter than the key, then the streamcipher is vulnerable to TMTO
irrespective of the size of the internal state. There are two consequences.

First, simply increasing state size of a streamcipher does not make the al-
gorithm TMTO resistant. Second, it does not make sense to increase the state
size without a corresponding increase in the size of the IV. For example, if one
believes that TMTO forces internal state of any streamcipher to be twice as big
as key, as is requested in the ECRYPT Call for Stream Cipher Primitives [3],
then one should also request IV size to be at least as big as key size.

Conversely, suppose one is on the other side of this argument, with the opinion
that birthday attack based BG-tradeoff should not be taken seriously, and that
BS-tradeoffwith pre-computation time consideration only mandates IV size bigger
than half of key size. Then one should demand state size of only 1.5 times key size.

3.3 ECRYPT Streamcipher Project

Consider a streamcipher taking 80-bit keys with 32-bit IVs. At first, this seems
to be a perfectly normal use of key and IV. Actually, this is one of the mandatory
parameter set for streamciphers aiming for Profile 2 of the recent ECRYPT Call
for Stream Cipher Primitives [3].

Here N = 2112 and using the BS curve TM2D2 = N2, one sees that this is
vulnerable under the tradeoffpoint T = M = 256, D = 228, P = 284.The pre-
computation time is slightly more than exhaustive key search. The tradeoff point
T = 274.7, M = D = 237.3, P = 274.7 is also applicable, and brings the offline
complexity tounder 80bits.Oneweak point of this secondapproach is that the data
must spread over multiple keys and the attacker recovers only one of these keys.

After a preliminary version [17] of our work was made public, members of
ECRYPT STVL have posted a note [8], with the following modifications.

– 80-bit key with 32-bit IV can no longer be considered a secure parameter set
for streamciphers.

– It makes no sense to increase internal state size of a streamcipher without
increasing IV size.

Thus, even though our attack appears to be simple, it turns out to be important
enough to bring changes to the ECRYPT call for streamcipher primitives. Ac-
tually, we were also surprised that such a simple and important observation as
ours was actually missed by the entire large and active streamcipher community
for so many years.

3.4 GSM

Our discussion so far on streamciphers has shown that security level reached by
using a key of length longer than IV length, does not correspond to key length,
under the framework of TMTO attacks. In this section, we turn to a more specific
example. It will illustrate that the actual joint entropy of key and IV matters
more than just their length.
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The encryption algorithm for GSM mobile phones [1] is called A5/3. It is a
modified version of OFB mode of operation based on the KASUMI blockcipher.
KASUMI is a 64-bit blockcipher with key length of 128 bits.

In the use of A5/3 for GSM encryption, most part of IV is fixed to some
constant value. Only a 22-bit counter part is incremented each time the IV is
changed. The 128-bit key is actually a concatenation of two copies of a single
64-bit key. Only 228 bits of keystream is used after initialization with a new IV,
but this is not important for us.

We can define our oneway function as

(64-bit key, 22-bit counter value) �→ 86-bit keystream prefix.

There is an initialization process making A5/3 slightly different from the usual
OFB mode of operation and the feedback itself is also a bit different, but as was
already commented, this is immaterial. It suffices to know the exact specification
for keystream production in order to be able to apply TMTO algorithms.

In this case, N = 286. If we choose D = N1/4 and T = M in the curve
TM2D2 = N2, then we get an attack with the parameters D = 221.5 and
T = M = 243. The precomputation time is P = 264.5. Since the counter used
in the IV is only 22 bits long, it seems more reasonable to collect data that
correspond to multiple master keys. In practice, this may have been obtained
from multiple users. When one of these keys is recovered, it can be used to
decrypt messages encrypted with the same key and different IVs.

The authors are not aware of the actual situation, but if only a small portion
of the possible counter values are used in real life (this would happen if the
counter always started from zero), i.e., if the entropy of the counter is smaller,
the attacker’s position is strengthened further.

3.5 Designing TMTO Resistant Streamciphers with IV

The level of threat brought about by a TMTO attack depends largely on the
environment. But a good streamcipher design would be aimed at resisting these
threat under any plausible environment it could be in. If one views TMTO
attacks as threat to streamciphers, one of the following measures should be
taken.

1. Ensure that, in every implementation of the cipher, the collective entropy of
key and IV will always be at least twice that of intended security level. In
particular, the length of key and IV should add up to at least twice security
level and the IV should not be used in a predictable way. During the state
initialization process, the collective entropy of key and IV should not be
allowed to decrease below twice key size.

2. If you are designing a general purpose streamcipher, and do not know in what
manner your cipher is going to be used, claim security level corresponding
to half your key size. Then, arbitrary use of IV may be allowed. Entropy of
internal state after initialization should not be smaller than that provided
by key size.
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Here, in saying that the IV usage should be random, we mean it to be un-
predictable from the viewpoint of a TMTO attacker preparing a table. So, for
example, as long as the starting point is chosen at random, the IV may be sup-
plied through a counter for a limited period of time. This possibility was pointed
out in [8] in response to an earlier version of this paper.

Pre-Computation Time: As mentioned in Section 3.1, the pre-computation time
can be less than exhaustive search if D = Na with a > v/(k + v). Thus, one
approach to securing streamciphers against TMTO with less than exhaustive
pre-computation is to ensure that the access to multiple data is restricted to at
most Nv/(k+v). Any value of k and v satisfying this condition can then be used.

4 Blockcipher Modes of Operation

In this section, we consider several non-trivial applications of multiple data cho-
sen plaintext TMTO attacks to different blockcipher modes of operations. We
were able to do this successfully on every mode we have considered. This seems
to indicate that, in general, all blockcipher modes of operation are vulnerable to
TMTO attacks.

4.1 ECB, CTR, OFB

For the ECB mode of operation, TMTO that utilize multiple data may be used
if the attacker’s objective is to recover any single one of the multiple keys that
encrypted the same chosen plaintext.

Counter mode is in a very similar situation if counter usage is predictable.
The counter value predicted to be used gives us a basis for the chosen plaintext
attack, and when the corresponding ciphertext is given, the key may be recovered
in time shorter than key exhaustive search. After this, all other text encrypted
with the same key may be decrypted.

As we already saw in the GSM example, OFB mode of operation is essentially
a streamcipher with IV, and arguments of the previous section apply.

4.2 CBC Mode of Operation

Consider a blockcipher where message, IV and cipher lengths are b bits. Let the
key length be lb bits. (Note that l need not be an integer and we denote λ = !l",
μ = l−+l,.) The encryption function Ek maps a b-bit string to a b-bit string. For
a plaintext m1,m2, . . ., with each |mi| = b, the CBC encryption with an IV V ,
produces a ciphertext c1, c2, . . . as follows: ci = Ek(mi⊕ ci−1), where we assume
c0 = V .

Let m be a fixed b-bit string. For example, if we are dealing with a 64-bit
blockcipher, we let m be 8 ASCII space characters. This definition of m also
appears in the original work by Hellman [16].
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For any b-bit IV V and lb-bit key k, we define a one-way function f :
{0, 1}(l+1)b→ {0, 1}(l+1)b as f(k||V ) = c1||c2|| · · · ||cλ+1 where

f(k||V ) = Ek(m⊕ V )︸ ︷︷ ︸
c1

||Ek(m⊕ c1)︸ ︷︷ ︸
c2

|| · · · ||Ek(m⊕ cλ−1)︸ ︷︷ ︸
cλ

||prefixμb(Ek(m⊕ cλ)︸ ︷︷ ︸
cλ+1

).

(Here prefixi(x) denotes the i-bit prefix of the binary string x.) Then the output
of f is the (l+1)b-bit prefix of the encryption of the plaintext M which consists
of λ+ 1 repetitions of the b-bit message m using the key k and IV V .

The f defined above is the target one-way function to be inverted. We incor-
porate multiple data in the following manner. Let c1c2 . . . cD+λ be a ciphertext
obtained by encrypting a plaintext consisting of D + λ many repetitions of the
b-bit message m using an unknown key k and IV V . For 1 ≤ i ≤ D, define
Ci = ci . . . cλ+i. Due to the self-similar structure of CBC chaining, we have the
following relationships.

1. C1 is the CBC encryption of M using key k and IV V .
2. C2 is the CBC encryption of M using key k and IV c1.
3. C3 is the CBC encryption of M using key k and IV c2.
4. In general, Ci is the CBC encryption of M using key k and IV ci−1.

Then by the definition of f , we have f(k||ci−1) = Di = prefix(l+1)bCi, for 1 ≤
i ≤ D. Inverting f on any of the Di’s will yield k (and also ci−1). If the IV V is
not public, we could just ignore the first block and think of the second block as
starting a CBC mode with the IV set to the first ciphertext block, decrypting
from the second block onwards. Further, the repetitions of m need not be at the
begining of the message. If there are D+λ repetitions of m occurring somewhere
in the message, then we can use the known ciphertext block preceding the D+λ
repetitions as the IV and obtain the required D data points.

This establishes a multiple data scenario for attacking the CBC mode of
operation. Here the search space is N = 2(l+1)b while the key space is 2lb.
Assuming the curve TM2D2 = N2 holds, an optimal point of T = M = N1/2,
D = N1/4 yields an attack if and only if N1/2 < 2lb, i.e., 2(l+1)b/2 < 2lb which
holds if and only if l > 1. Thus, b = 128 and l = 2 gives an attack. This situation
corresponds to AES with message and cipher length equal to 128 bits and key
length equal to 256 bits. Similarly, the parameters b = 128 and l = 1.5 gives an
attack corresponding to AES with 128-bit message block and 192-bit key.

The discussion on pre-computation time is similar to that presented in Sec-
tion 3.1 and hence is not repeated here.

OMAC OMAC [19] is a NIST standard for encryption and authentication. It is
a one key CBC with the capability of producing an authentication tag. Ignoring
the MAC, the TMTO attack on CBC also works for OMAC.

4.3 CFB and TBC Modes of Operation

CFB is the other mode of operation which Hellman remarked to be secure against
known plaintext TMTO attacks. However, the situation with CFB is exactly the
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same with CBC, i.e., CFB is equally susceptible to chosen plaintext TMTO
attacks.

As before, let Ek be the encryption function of a blockcipher with b-bit
message, IV and cipher blocks and lb-bit key blocks. Given a plaintext of b-
bit blocks m1,m2, . . ., and an IV V , the CFB mode of operation produces a
ciphertext c1, c2, . . ., where ci = mi ⊕ Ek(ci−1). As before, we assume c0 = V .

The one-way function to be inverted is defined from (l + 1)b-bit strings to
itself in the following manner. As before, let m be a fixed b-bit message string.
Then, given a lb-bit key k and a b-bit IV V , we define,

f(k||v) = m⊕ Ek(V )︸ ︷︷ ︸
c1

||m⊕ Ek(c1)︸ ︷︷ ︸
c2

|| · · · ||m⊕ Ek(cλ−1)︸ ︷︷ ︸
cλ

||prefixμb(m⊕ Ek(cλ)︸ ︷︷ ︸
cλ+1

).

Now the entire discussion given for CBC applies. Also, the same argument applies
to tweakable blockciphers [21] running in TBC mode. It suffices to use tweak in
place of IV.

4.4 Other Modes of Operation

We have considered OCB [24], CMC [14], and EME [15] modes of operation.
With the attacker given full power with respect to pre-computation and data
availability, if key (two keys are used for CMC, but we can treat them as one
long key) is any longer than IV, nonce, or tweak, these modes cannot provide
security level equal to key size.

4.5 OCB

The mode OCB [24] produces MAC in addition to the ciphertext. Encryption
part of OCB is similar to ECB, except that one extra key-like element is used
for each block of encryption. These key-like elements are derived from a key and
nonce pair, and is updated for each block of additional encryption.

From the view point of TMTO, the MAC output part is no different from
the ciphertext. As before, we use the chosen plaintext attack scenario and define
the oneway function to send (key, nonce) pair to (ciphertext||MAC).

4.6 CMC, EME

Let us consider theCMC [14] andEME [15]modes of operation.A tweak in addition
to a key (two keys are used for CMC, but we just consider them as one long key) is
used. These are two-pass encryption modes and every bit of the ciphertext depends
on the whole input text. TMTO should provide the attackerwith a key (in addition
to the tweak). This can then be used on ciphertexts using different tweaks.

We fix a plaintext and define the oneway function f as follows. The function
f takes as input a pair (key, tweak) and encrypts the plaintext to obtain the
ciphertext. This is hashed (by a collision resistant hash function) to obtain a
string of length equal to |key| + |tweak|. This string is the output of f . In the
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online phase, we will have a ciphertext and can hash it to obtain a string in
the range of the oneway function. Finding a pre-image of the range element will
provide the secret key (and also the tweak).

These modes of operations extend a small block length pseudorandom per-
mutation to a wide block length pseudorandom permutation. The intended ap-
plication is for in-place disk encryption, where the tweak is the sector address
and the plaintext block consists of the contents of the corresponding sector.
Thus, block length is quite large (around 512 bytes). The reason for using hash
function in the definition of the oneway function is so that we do not record this
long ciphertext in the table.

It is quite possible that the contents of many of the sectors are identical,
which is especially true if the sectors are not in use. In such situation, we can
utilize multiple data by obtaining the ciphertexts corresponding to different sec-
tor addresses (tweaks) among the sectors containing our fixed chosen plaintext.
Inverting any of the points will reveal the master key (and the corresponding
tweak), which can be used to decrypt other blocks.

5 Hash Function

With the demand for small hash functions increasing in relation to its possible
use in RFIDs, the relatively less interesting results we have concerning hash
functions may have implications on hash designed for those environments.

Simple hash We could not find reasonable application of TMTO to collision
finding, but obtaining preimage or second preimage quickly with the added ad-
vantage of pre-computation time seem to be plausible attack scenarios not con-
sidered before. Applying TMTO to the oneway hash function itself, with the
message space appropriately restricted, one can see that no hash function can
achieve preimage resistance security level equal to its digest size.

Keyed hash and MAC Under the chosen plaintext attack model, keyed hash (or
MAC) is very similar to the ECB mode of operation. Sending key to the keyed
hash value of a fixed plaintext is the oneway function to be considered. Attacker’s
objective is to recover the key, given the keyed hash value corresponding to the
chosen plaintext. Once the key is obtained, it could be used to forge other hash
(or MAC) values. TMTO applies as before and security level equal to key size
cannot be reached.

6 Asymmetric Algorithms

In many cases of public key algorithms, the relevant oneway functions satisfy the
so-called random self reducibility property, i.e., solving one particular instance
of the problem is as hard as solving a random instance of the problem. This is
usually shown by converting a specific instance to a random instance. We would
like to point out that this provides a natural way of applying multiple data
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TMTO, even when a single data item is obtained from the application domain.
This is also true for the so-called homomorphic encryption algorithms, whereby
knowing the encryption of a single message, it is possible to create encryptions
of many related messages.

In symmetric key algorithms, usually the security level expected of an algo-
rithm is equal to its key size. This is far from true in the asymmetric world.
Hence TMTO algorithms, the best of which only halves the security level, is less
interesting here. Nevertheless, to show that TMTO is a versatile tool, we shall
apply tradeoff methods to some asymmetric algorithms.

6.1 NTRUEncrypt

Let us consider the 80-bit security version of NTRU public key cryptosystem [2].
Latest parameter set [18] specify a message space of 2251 size. Of the 251 bits,
only about 2

3 is used for the actual message and the rest is filled with a randomiz-
ing value. (This situation resembles the key+IV situation considered in previous
sections and shows that even probabilistic algorithms are not completely out of
reach from TMTO.) What is important is that, for a fixed public key, once the
251-bit input is formed, the rest of the encryption process is deterministic from
that point on. We can take this deterministic encryption process as our oneway
function f and apply the tradeoff point T = M = N2/3 to obtain a message
recovery attack of 2167.3 complexity.

Actually, we can do better. As mentioned in Section 2, if f is a permutation,
then a better tradeoff point T = M = N1/2 applies. Notice that encryption is a
bijective process (the so called wrapping failure no longer occurs for parameters
presented in [18]).Hence, even though there are somecomplications, arguing that f
is apermutation is reasonable. In sucha case,attack complexitygoes down to 2125.5.

We have shown that at the cost of exhaustive pre-computed encryption with
a fixed public key, one can decrypt any ciphertext with online time and memory
complexity 2125.5. This is larger than, but close to, the best known attack on
NTRU of complexity 2106, which happens to be another time memory tradeoff
called the meet-in-the-middle attack. To bring multiple data into the picture,
one might consider the situation where multiple encrypted messages are given
to the attacker and inverting just one is good enough.

Similar arguments as given above apply to all public key encryption schemes.
Also, for other public key schemes there can be alternative oneway functions to
consider. For example, one may consider the function from the decryption key
to the plaintext for a fixed ciphertext. It might not always be valid to consider
this, but in the cases it is valid, applying TMTO to such a function will yield the
decryption key. We do not discuss these issues further, since for such applications,
TMTO does not appear to be a realistic threat.

6.2 Signature Schemes

Many signature schemes send a triple (m, k, r) consisting of message, key, and
randomizing value to a signature (x, s). Here, x is a function of the random value
r and sometimes also of m, and s is a function of all inputs.
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One fixes a message m likely to be signed by the victim in the near future
and apply TMTO to the function (k, r) �→ (x, s). Depending on the relative
size of k and r, this could be efficient than key exhaustive search. However, the
attack complexity will not go anywhere near the claimed security level of the
signature schemes. Alternatively, one could apply TMTO to the (r,m) �→ x part
first (under chosen plaintext scenario), and use the obtained r to recover k, for a
more efficient attack. Thus, there are several possibilities for candidate oneway
functions, possibly different from the oneway function the designer had in mind.

7 General Framework for TMTO Application

Through arguments of this paper, we have seen that TMTO can be applied to
many different situations in a very versatile way. In this section, let us take for
granted that TMTO is a general method for inverting well-behaved oneway func-
tions, and explain a general method for applying it to cryptographic situations.

In all of the cryptographic situations considered in this paper, under an
appropriate attack scenario, we could devise a oneway function of the following
form.

f : K × V → C. (2)

Here, K denotes the secret values the attacker is trying to obtain, and V refers to
the set of auxiliary values which is, in many situations, public but not controllable
by the attacker. The set C contains the output values and specific targets from
this set is given to the attacker at the online stage of TMTO. What these sets
refer to in the various situations considered in this paper is listed in Table 1. In
some cases, V is missing from the cryptographic system, in which case we think
of V as containing a single element.

Table 1. Fitting various cryptographic situations into TMTO framework

situation K V C

block

ECB [16], CTR key - single ciphertext block
OFB, CBC, CFB key IV ciphertext blocks

TBC key nonce ciphertext blocks
OCB key nonce ciphertext blocks + MAC

CMC, EME key(s) tweak ciphertext blocks

stream
previous [4,7,12] state - keystream of state size

simple key - keystream of key size
with IV key IV keystream of (key+IV) size

hash
preimage message - hash value

keyed key - hash value
public key encryption message randomizing value ciphertext

signature key randomizing value signature
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Once a oneway function is fixed, in most cases, we will want to be able to
apply f iteratively. This can be taken care of by applying a random hash

h : C → K × V. (3)

The second thing we should consider is that most of the TMTO algorithm will
apply with better success rate if h ◦ f is close to an injection so that a target
uniquely determines the pre-image. As long as set C is larger than K × V , for
most cryptographic applications, this can be naturally expected of the system to
some degree. If C is smaller than K×V , one should find some way to deform f so
that the image space is larger. We saw through chosen plaintext attack scenarios
that this could easily be done by simply increasing your plaintext length so that
the output is long enough. In other situations, for example, if V contains publicly
known values, using a hash h′ : V → V ′ of appropriate length and setting

f ′ : K × V → C′ = C × V ′ (k, v) �→ f(k, v)||h′(v) (4)

could be another solution. One should keep in mind that the image must be some
value that is either public or can be calculated from publicly available data.

We can now write up a set of guidelines for applying TMTO to a crypto-
graphic system.

1. Identify a (oneway) function f : K × V → C, inverting which will reveal a
secret information of the attacker’s interest, belonging to K. This function
need not be the oneway function the designer of the system based his system
on.

2. K and V should be taken as small as possible, allowing it to be just big
enough to reflect the actual entropy of values used.

3. If needed, adjust the function so that the entropy of function image space is
equal to its input space. This will help in making the function f injective,
hence raising the success probability of attack.

4. Lower attack complexity can be achieved if it is possible to devise an attack
scenario where the attacker is given multiple target points in the image space
of f and finding the inverse image of any one of those points is good enough.

5. Depending on the reasonable amount of target points available, apply a
suitable TMTO method to obtain a secret value in K.

6. When abundant data is at hand, TMTO with D = N1/4; T = M = N1/2 is
applicable, and the attack is meaningful whenever |K| > |V |. At the other
extreme, with one data point and oneway function of bad characteristics, we
could apply the TMTO of Fiat and Naor [10], and the attack is successful
when |K| > |V |3.

We can summarize all this by saying that the most difficult task of applying
the TMTO to a cryptographic system is finding a plausible scenario of attack,
preferably in which a large set of data is available. Once this is done, the rest of
the process comes naturally.
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8 Conclusion

TMTO is basically a generic oneway function inverter. To attack a specific system
with these TMTO methods, it suffices to identify a suitable oneway function,
inverting which will provide one with a secret. In doing this, one should open their
eyes to oneway functions hiding in the system, different from the one designer
of the system had in mind. Success of TMTO depends heavily on the available
amount of data, so devising an appropriate scenario of attack is also crucial.

By applying generic TMTO to blockciphers in ways not tried before, we have
confirmed that TMTO has security implications, not only to ECB, but to most
blockcipher modes of operation. We have also shown that TMTO affects the
security of every streamcipher, not only those with small internal states.

We conclude with the remark that TMTO as a general oneway function
inversion technique is more powerful and versatile a tool than is currently known
to the crypto community.
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A Known Versus Chosen Plaintext TMTO Attacks on
Blockciphers

The issue of known and chosen plaintext attacks was briefly mentioned in Sec-
tion 1.2. We continue the discussion here.

Hellman’s attack on the ECB mode of operation uses a oneway function f
defined as follows. Fix a message blockm and define a map from key to ciphertext
by f(k) = Ek(m). Suppose, we are given a ciphertext c which is the encryption
of m under an unknown key k, i.e., f(k) = c. If we can invert f on c, then we
can hope to find k. Clearly, for this attack to work, we must have an encryption
of m and hence the attack is actually a chosen plaintext attack (CPA).

Hellman explains that this can also be turned into a known plaintext attack
(KPA) or ciphertext only attack (COA) in the following sense. Suppose m is a
block which occurs very frequently, for example a string of blanks. For a KPA,
the cryptanalyst looks for the occurence of m in the plaintext and inverts f on
the corresponding ciphertext block to obtain k. For a COA, the cryptanalyst will
look for repetitions among the encrypted message. For each frequently repeated
ciphertext block, he will try to invert f . If the block encrypts m, then he finds
k, else he fails. The time required for the COA increases, since many trials
might have to be done before actually finding an encryption of m. Note that for
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successful conversion of CPA to KPA and to COA, the block m must occur in
the (unknown) plaintext corresponding to target data. Thus, if the target data
is given randomly, then the above conversions are not meaningful. Furthermore,
in Hellman’s CPA converted to KPA or COA, there is no way to utilise multiple
data to bring down the pre-computation time.

Our attacks on the CBC and CFB modes of operations in Section 4 are CPA.
As in Hellman, we need to fix a plaintext and then define the oneway function
to be inverted. To utilise multiple data, our fixed plaintext consists of D + λ
repetitions of m. Again, as in Hellman, we need to choose m and D such that
D + λ repetitions of m is likely in an actual message. Then we can convert
the CPA to KPA by inspecting the obtained plaintext for D + λ repetitions of
m. We consider the corresponding portion of D + λ ciphertext blocks. Using
the ciphertext block preceding this portion as the IV, we can use the D + λ
ciphertext blocks to obtain D data points required for the attack. Again, as in
Hellman’s case, this conversion is not meaningful if the data corresponding to
random plaintext is given.

It might appear that for a meaningful KPA, we need a larger portion to be
frequently repeated than is required by Hellman. Though this is true, the actual
requirement might not be too high. For example, if λ+1 repetitions of m occur in
the plaintext, we can launch an attack with D = 1. Having more blocks increases
D and the efficiency of the attack.

Conversion of the CPA on CBC and CFB to COA is also possible, though it
becomes less efficient. Suppose that we want to utilise D data points and in the
pre-computation phase have prepared the tables to cover N/D data points. In
the online stage, we do the following. We slide (one block at a time) a window
of D + λ blocks over the ciphertext. Each window gives us D data points and
if we perform the online search of the TMTO, with a constant probability of
success we will get a hit. However, the k obtained may not be the correct key
since there is no guarantee that the D + λ blocks correspond to an encryption
of D + λ repetitions of m. We can easily verify this by decrypting a portion or
whole of the ciphertext using this k. On the other hand, if the window of D + λ
ciphertext blocks actually correspond to an encryption of D+λ repetitions of m,
then we have the correct key. Hence, if the unknown plaintext indeed contained
D + λ repetitions of m, then by trying out all possible windows we are assured
of success. This pushes up the online time by a factor which in the worst case is
equal to the number of blocks in the obtained ciphertext. This makes the attack
less efficient, though it still remains meaningful under our assumption on the
data.

B When Should We Start Building a Table?

We consider the question of whether it makes sense to start the long-term pre-
computation search today.

Moore’s law It has been observed that processor power doubles every 1.5 years.
Let us assume that this will be true for the foreseeable future. Going back to
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high school mathematics, we can write the processing power p(t) at time t as

p(t) = α · 2 2
3 t. (5)

We will take t = 0 to correspond to today, in which case, constant α will be our
current computational power.

Example table creation Let us consider Hellmans’s TMTO on AES as an exam-
ple. The pre-computation stage will be an exhaustive processing of all 128-bit
keys. On a desktop PC, AES encryption runs at 488 Mbps, which translates
to about 247-many 128-bit blocks per year. We should consider the keyschedule
also. Assuming that it runs at about the same speed as the encryption, we can
take

α = 246 “key �→ ciphertext” mappings/year. (6)

So how long would the table creating take? Solving for T in∫ T

0

246+ 2
3 t dt = 2128, (7)

we find that the table creation will end T = 121.3 years from now. This assumes
that the computer is constantly upgraded.

Starting later What happens if we do nothing for 120 years, and only then start
building the table? Our computation power will be α = 246 ·2 2

3120 = 2126. Solving
for T ′ in ∫ T ′

0

2126+ 2
3 t dt = 2128, (8)

we find that the table creation will take T ′ = 2.3 years, hence ending 122.3 years
from now. So we are late by one year than what was achievable. But, is finishing
one year earlier really worth the trouble of upgrading the computer constantly
for 120 years?

In general, given any computation that takes n years from now to complete,
if one starts the computation n years later, it can be finished in less than 1.5
years from then on.
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Abstract. In this paper, we introduce a new cryptanalysis method for
stream ciphers based on T-functions and apply it to the TSC family
which was proposed by Hong et al.. Our attack are based on linear ap-
proximations of the algorithms (in particular of the T-function). Hence,
it is related to correlation attack, a popular technique to break stream
ciphers with a linear update, like those using LFSR’s.

We show a key-recovery attack for the two algorithms proposed at
FSE 2005 : TSC-1 in 225.4 computation steps, and TSC-2 in 248.1 steps.
The first attack has been implemented and takes about 4 minutes to
recover the whole key on an average PC. Another algorithm in the fam-
ily, called TSC-3, was proposed at the ECRYPT call for stream ciphers.
Despite some differences with its predecessors, it can be broken by sim-
ilar techniques. Our attack has complexity of 242 known keystream bits
to distinguish it from random, and about 266 steps of computation to
recover the full secret key.

An extended version of this paper can be found on the ECRYPT
website [23].

1 Introduction

1.1 Background

Together with block ciphers, stream ciphers are the second important family of
symmetric encryption primitive. They work by generating a long pseudo-random
sequence (generally called the keystream) from a short key. Then, a message is
encrypted by a simple XOR with the keystream and the decryption works the
same way. The keystream should not be distinguishable from a random sequence
to make the cipher secure. Even if the cryptographic security is the main issue,
the efficiency of the algorithm has also to be taken in account. Indeed, speed is
the main advantage of stream ciphers over block ciphers.

Nowadays, designing a stream cipher is risky and the existence of good block
ciphers has brought some issues about the future of stream ciphers [2, 24]. How-
ever, some particular domains continue to be active. For example, fast software-
oriented stream ciphers may still be needed, as well as hardware-oriented designs

B. Roy (Ed.): ASIACRYPT 2005, LNCS 3788, pp. 373–394, 2005.
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with a small footprint for resource constrained devices. A call for primitive has
recently been launched by the european ECRYPT project and many new algo-
rithms have been proposed for this occasion [6, 7].

A classical approach for stream cipher design is the use of Linear Feedback
Shift Registers (LFSR). Such primitives have to be combined with nonlinear
Boolean functions to break the linearity. Due to the apparition of new attacks
(like algebraic attacks [1, 4]), new primitives have been introduced to replace
LFSR’s. A nice example are the Triangular-functions (T-functions) by Klimov
and Shamir [13, 14]. They are a new class of mappings, with the property to be
computable from Least Significant Bits (LSB) to Most Significant Bits (MSB).
This is well suited for implementations, because many operations available on
processors (like +,*,XOR,OR,AND) are T-functions. T-functions are not (nec-
essarily) linear and, for appropriate choices, they can be permutations with one
single cycle, which is useful for stream ciphers design. Klimov and Shamir also
extended their theory to multi-word T-functions and provided some results in
other domains such as block ciphers and hash functions [12, 15, 16, 17].

The first T-function Based Stream Ciphers (TFBSC) were proposed in the
original papers by Klimov and Shamir. More recently, Hong et al. proposed
a new class of single cycle T-functions, which have the property to use S-
boxes [10]. They described two new algorithms. The first one, TSC-1, is de-
signed for hardware environment and the second, TSC-2, can be implemented
very efficiently in software. Several attacks have also been published. At Asi-
acrypt 2004, Mitra and Sarkar [22] described a time-memory trade-off attack
which breaks some of the algorithms proposed by Klimov and Shamir. Kün-
zli, Junod and Meier recently found distinguishing attacks applicable to many
TFBSC’s [19]. Taking into account these results, Hong et al. proposed a new
algorithm, called TSC-3 at the ECRYPT competition for stream cipher [7].
This algorithm is an improvement over its two predecessors, in order to thwart
the published attack [11]. However, the basic construction remains roughly the
same.

1.2 Contribution of the Paper

Our contribution in this paper is to present a new cryptanalysis method
for TFBSC’s. Our idea is to mount a statistical attack using linear approx-
imations of the cipher. First, we linearize the behavior of the T-function by
considering several consecutive steps. Next, we linearize other components, like
the output function. Then we describe how to recover the secret key by com-
bining all these linear approximations. This framework is closely related to cor-
relation attacks against LFSR-based stream ciphers [21, 25] and also to linear
cryptanalysis against block ciphers [20].

It applies very efficiently to the TSC family. Indeed, we can break TSC-1 with
time complexity of 225.4 steps and data complexity of 221.4 keystream words.
Similarly, TSC-2 can be broken with 244.1 data and 248.1 time. We implemented
the first attack against TSC-1. It needs about 4 minutes to recover the whole
initial secret key (Pentium-III 700 MHz).
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Table 1. Summary of attacks against the TSC family

Algorithm Type of Attack Time Data
TSC-1 Distinguishing [18, 19] 222 222

TSC-1 Distinguishing 219 215

TSC-1 Key-recovery attack 225.4 221.4

TSC-2 Distinguishing[19] 234 234

TSC-2 Key-recovery attack 248.1 244.1

TSC-3 Distinguishing 242 242

TSC-3 Key-recovery attack 266 234

This cryptanalysis method also applies against the ECRYPT proposal TSC-3,
although some adaptations are needed. In particular, the linear approximations
we use are a little bit more complicated than in the case of TSC-1 and TSC-
2. We describe how to distinguish the output of TSC-3 from random data by
processing about 242 keystream words. This observation can be extended to a
key-recovery attack with time complexity of 266 and data complexity of about
234 keystream bits.

These attacks are the first key recovery attacks against the TSC family (dis-
tinguishing attacks have already been pointed out in [18, 19]). Table 1 summa-
rizes all these results. We also point out some important requirements for the
design of T-function based stream ciphers. In particular, the existence of good
linear approximations of the T-function over several consecutive steps should be
avoided.

To begin, we review the basic properties of T-functions. Secondly, we overview
the existing TFBSC and the existing attacks. In Section 4, we give a general
framework to attack TFBSC. Next, we describe how this framework applies to
break TSC-1, TSC-2 and TSC-3.

2 Introduction to T-functions

We give a short review of T-functions results; readers can see [12] for further
details.

2.1 Single-Word T-functions

Basically, a single-word T-function is a mapping on a n-bit word where the bit
i of the output can depend only on bits 0, 1, · · · , i of the input. For example,
most arithmetic operations, like addition, subtraction and multiplication are T-
functions. It is also the case of most logical operations (OR,AND,XOR). These
operations are called primitive operations. They are useful because they are
available on most processors and can generally be executed in one clock cycle.

Moreover, the composition of two T-functions is a T-function, which allows
to design a large number of such functions. Klimov and Shamir developed tools
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in order to study their invertibility and their cycle structure. In particular, some
families provide a great feature: a single cycle of maximal length. However, single-
word T-functions are not useful by themselves as n is usually limited on modern
processors (to 32 or 64 bits). To increase the state size, it is better to use, for
instance 4 words of 64 bits instead of one word of 256 bits.

2.2 Multi-word T-functions

The definition of T-functions can be extended to multi-word T-functions: the bit
i of any output word depends only on bits 0 to i of each input word.

More formally, let x represent m words of n bits each denoted by xi with
0 ≤ i < m. We get x = (xj)

m−1
j=0 . Also, [xj ]i will refer to the i-th bit of a word

xj , seen as an integer:

[xj ] =
n−1∑
i=0

[xj ]i2i.

Then [x]i denotes the layer of i-th bits of the m words xi composing x. Thus
we also get:

[x]i =
m−1∑
k=0

[xk]i2k.

Here is a clear depiction:

x1

x2

x3

x0

=x =

[x]0[x]i

Definition 1. A (multi-word) T − function is a map

T :

⎧⎨⎩
({0, 1}n)m −→ ({0, 1}n)m

x �−→ T(x) = (Tk(x))m−1
k=0

sending an m-tuple of n-bit words to another m-tuple of n-bit words, where each
resulting n-bit word is denoted as Tk(x), such that for each 0 ≤ i < n, the i-
th bits of the resulting words [T(x)]i are functions of just the lower input bits
[x]0, [x]1, . . . , [x]i.

We can also define a mapping from n-bit words to n-bit words in which the bit
i of the output depends only on bits 0, 1, . . . , i− 1 of the input. Such mappings
are called parameters and are useful to construct interesting T-functions.
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2.3 Properties of T-functions

We focus on multi-word T-functions, since they are the most interesting for
stream cipher design. Basically, two properties can be expected :

– invertibility : This avoids a loss of entropy, if the T-function is used to
update the state of a stream cipher.

– single-cycle : It is important for security that the sequence of internal states
has a large period. A single cycle of maximal length 2nm is even better, but
is possible only if the T-function is invertible.

Klimov and Shamir proposed a method to construct T-functions which exhibits
the single-cycle property. Their analysis is based on odd and even parameters
(see [15] for more details).

Another approach was recently proposed by Hong et al [10] : Let x = (xk)m−1
k=0

and y = (yk)m−1
k=0 be two multi-words and let α be a single word. We note x⊕ y

and α · x defined as :

x⊕ y = (xk ⊕ yk)m−1
k=0 and α · x = (α ∧ xk)m−1

k=0 .

We also note ∼ α the bitwise complement of α.

Theorem 1. Let S be a single cycle S-box and let α be an odd parameter. If So

is an odd power of S and Se is an even power of S, the mapping

T (x) = (α(x) · So(x)) ⊕ (∼ α(x) · Se(x))

defines a single cycle T-function.

3 Existing TFBSC’s

3.1 Klimov and Shamir’s Ciphers

After introducing the concept of T-functions, Klimov and Shamir proposed sev-
eral examples of TFBSC [15, 16]. All are based on a similar construction.

Let C0 be an odd number, C1 = 0x12481248 and C3 = 0x48124812. We
set a0 = x0 and ai+1 = ai ∧ xi+1 for i = 0, 1, 2. We also have α = α(x) =
(a3 +C0)⊕ a3. The following mapping is a single cycle T-function operating on
64-bit words:

T

⎛⎜⎜⎝
x3

x2

x1

x0

⎞⎟⎟⎠ �−→

⎛⎜⎜⎝
x3 ⊕ ( α ∧ a2) ⊕ (2x0(x1 ∨ C1))
x2 ⊕ ( α ∧ a1) ⊕ (2x0(x3 ∨ C3))
x1 ⊕ ( α ∧ a0) ⊕ (2x2(x3 ∨ C3))
x0 ⊕ α ⊕ (2x2(x1 ∨ C1))

⎞⎟⎟⎠ (1)

Mitra and Sarkar described [22] a time-memory trade-off attack on a stream
cipher based on (1) with a very simple output function. They analyzed the
multiplicative part of the update function and managed to recover the initial
secret key in 240 time, 224 space and less than five 128-bit blocks of keystream.
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3.2 The TSC Family

Hong et al. provided two TFBSC’s deduced from their new single-cycle T-
functions family given in Theorem 1. For all algorithms, the number of words is
m = 4. While Klimov-Shamir’s proposal are software-oriented designs (with the
use of integer multiplication), the TSC family is S-box oriented. In particular,
the authors have suggested an implementation method for TSC-1 and TSC-3
which could make them suitable as hardware-oriented designs.

TSC-1
TSC-1 uses 4 words of n = 32 bits each, hence the internal state has size 128

bits. First a single-cycle S-box S1 operating on 4 bits is defined :

S1[16] = {3, 5, 9, 13, 1, 6, 11, 15, 4, 0, 8, 14, 10, 7, 2, 12};

The following function is an odd parameter :

α(x) = (p + C)⊕ p⊕ 2s,

where C = 0x12488421, p = x0 ∧ x1 ∧ x2 ∧ x3 and s = x0 + x1 + x2 + x3.
According to Theorem 1 with So = S1 and Se = S2

1 , the following T-function is
single-cycle :

T (x) = (α(x) · S1(x)) ⊕ (∼ α(x) · S2
1(x)). (2)

Finally, 32 output bits are produced after application of T by:

f(x) = (x0≪9 + x1)≪15 + (x2≪7 + x3), (3)

where the symbol ≪ denotes left rotation. Every addition is done modulo 232.
It is proven that the period of this T-function is 2128.

TSC-2
TSC-2 is quite similar to TSC-1. It uses a different S-box :

S2[16] = {5, 2, 11, 12, 13, 4, 3, 14, 15, 8, 1, 6, 7, 10, 9, 0};

and the following odd parameter:

α2(x) = (p + 1)⊕ p⊕ 2s.

According to Theorem 1 with So = Id and Se = S2 :

x �−→ x⊕ (α2(x) · (x⊕ S2(x))).

is single-cycle. Finally 32 keystream bits are obtained by:

f2(x) = (x0≪11 + x1)≪14 + (x0≪13 + x2)≪22 + (x0≪12 + x3).
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TSC-3
At the ECRYPT competition for stream ciphers [11], Hong et al. proposed

the stream cipher TSC-3. It differs from its two predecessors regarding several
elements :

– First, it uses 4 words of size 40 bit each. This breaks the 32-bit oriented
architecture, but it does not matter since the cipher is primarily designed
for hardware implementations. In addition, this increases the state size to
160 bits. Therefore the expected level of security is 280, which can be reached
by generic attacks, such as time-memory-data trade-offs [3].

– Secondly, each layer is still updated by S-boxes, but the branching function
is more complex than for TSC-1 or TSC-2. Indeed, the parameter is made
of 2 words p0 and p1. For the i-th layer, one first computes the value

tmp = 2 ∗ [p1]i + [p0]i ∈ {0, 3}

According to the value of tmp, [x]i is update using either S, S2, S5 or S6

where S is the same S-box as in TSC-1.
– The output function is also modified in TSC-3. One first starts by initializing

4 variables yi of 32 bits each, by removing the 8 LSB’s from each xi. Then,
the yi’s are permuted depending on the value of the least significant layer of
the sate, [x]0. Therefore there are 24 = 16 possible permutations. Afterward,
the output function looks very much like the ones used in TSC-1 and TSC-2 :

f(y) = (y0≪9 + y1≫2)≪8 + (y2≪7 + y3)≫9

– An initialization mechanism has also been added in order to set up the state
from a key and an IV of variable length. This mechanism is based on the
T-function itself, but is not described here.

For more information about these elements of TSC-3, the reader should refer
directly to the specifications [10] or to the ECRYPT website [6].

4 Linear Cryptanalysis Against TFBSC’s

4.1 Context

Attacks based on linear approximations have many applications in cryptanalysis.
For instance, Matsui’s attack is the best cryptanalysis of DES [20] and more gen-
erally linear cryptanalysis has many applications for block ciphers. In the field
of stream ciphers, popular attacks based on linear approximations have been
developed for LFSR oriented designs and are generally referred to as correla-
tion attacks [21, 25]. Also linear cryptanalysis for stream ciphers has already
been suggested [5, 8] and has already been applied, for instance by Golic against
RC4 [9].

In the case of TFBSC, the idea of using linear approximations was first
introduced by Künzli, Junod and Meier. At the rump session of FSE 2005, they
presented a distinguishing attack against the TSC-1 requiring about 222 known
keystream bits [18]. This idea is further developed in [19].
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4.2 A Framework for Linear Cryptanalysis of TFBSC’s

The attack we propose is composed by three steps :

1. find a linear approximation of the T-function. This provides a proba-
bilistic relation between bits from the internal state of the stream cipher at
different instants.

2. find a linear approximation of the output function. This provides a
probabilistic relation between keystream bits and internal state bits.

3. combine both approximations. One goal may be to find relations in-
volving keystream bits only, in order to obtain a distinguisher. But a more
interesting idea is to guess some key bits in order to eliminate some terms
in the approximations and therefore to increase the bias.

The general idea of this framework is to remove the non-linearity provided
by the T-function. While steps 1 and 2 are almost always possible, it can be
hard to combine the approximations in step 3.

More formally, let [xj ]ti represent the value of the bit i from register j at time
t. In the first step, we look for equations of the form :

Pr

⎛⎝⊕
i,j

[xj ]ti =
⊕
i,j

[xj ]t+δ
i

⎞⎠ =
1
2
(1 + ε)

for some δ and with |ε| as big as possible. For the purpose of the attacks against
TSC-1 and TSC-2, it turns out that we are only interested in the particular
linear relations of the form :

[xj ]ti = [xj ]t+δ
i

This corresponds to the probability for a given bit in the internal state to flip
between time t and time t + δ, also called the bit-flip probability. While the
design criteria of the TSC family [10, 11] and the first known attacks [18, 19]
focused on these bit-flip properties, there is no reason to restrict the analysis
to such particular cases. The cryptanalysis of TSC-3 (see Section 7) is a good
example of attack where other types of linear approximations are needed.

The second step depends on how complex is the output function, but it is
generally possible to find linear approximations for the algorithms of the TSC
family. For instance, suppose we find a probabilistic linear relation between sev-
eral state bits [xj ]ti and several keystream bits [s]tk, at time t. We combine this
relation with the first step, to obtain a linearized relation of the form :⊕

i,j

([xj ]ti ⊕ [xj ]t+δ
i ) =

⊕
k

([s]tk ⊕ [s]t+δ
k ) (4)

which is equal to 0 with probability 0.5 (1 + ε) and hopefully |ε| � 0.
In the third step, we try to propose distinguishing attacks and key recovery

attacks based on relation (4). A useful trick for T-functions, is that when we
guess the i LSB’s of each register in the initial state, we can predict these i
LSB’s at every instant because of the triangular structure.
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5 The TSC-1 Case

In this section, we apply our framework to the TSC-1 case and show an efficient
key-recovery attack. We explain the attack by following the three steps of our
framework.

5.1 First Step

We want to approximate the behavior of the state-update function between time
t and time t+ δ. By looking at the update function (2), we observe that the i-th
layer’s update depends on one parameter bit only, [α(x)]i. Depending on this
bit, the 4 bits of the layer are updated using either S1 or S2

1 :

[T(x)]i =

⎧⎨⎩S2
1([x]i) if [α(x)]i = 0

S1([x]i) if [α(x)]i = 1

We assume that the parameter is uniformly distributed. Then

Pr ([α(x)]i = 0) = Pr ([α(x)]i = 1) =
1
2

for i �= 0. This property has been verified experimentally. We construct a binary
tree describing the update of the i-th layer (see Figure 1). We start from an
unknown 4-bit value a and each branch corresponds to a value of [α(x)]i. After
j advances, there are 2j leaves in the tree, each corresponding to a power of

S3(a)

S4(a)

S4(a)

S5(a)

S4(a)

S5(a)

S5(a)

S6(a)

S2(a)

S3(a)

S3(a)

S4(a)

S2(a)

S(a)

a

level 0 level 1 level 2 level 3

[x]i [T(x)]i [T2(x)]i [T3(x)]i

Fig. 1. Possible Evolutions of the i-th layer for TSC-1
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S1. Let Kj
i be the number of occurrence of Si

1 at the level j of the tree. The
coefficients Kj

i can be computed by the formula:

Kj
i =

(
j

i− j

)
with i ≥ j.

Using these coefficients, we can compute the probabilities of each output value
after j advances, for each value of a. Then, we search for linear approximations
between bits of the i-th layer at time t and at time t + j. In the case of TSC-1,
we restrict our analysis to particular linear approximations where the same bit
is considered twice (known as bit-flip probabilities). The authors of TSC-1 took
them into account for the design, so the S-box has probability 1/2 to flip each
input bit. The same holds for all powers Si

1 of the S-box, except for i = 4, 8, 12
and 16. So nothing will be observed at the level 1 in the tree, but at further
levels, the "weak" powers may appear with high coefficients. We explored the
tree at depth j and computed the bit-flip probabilities for several values of j. The
results are given in Table 2 (due to some symmetry properties, the probability is
the same for the 4 input bits). We observe that the strongest bias are obtained
with j = 3, 5, 8, 11. An example of good linear approximation is :

Pr
(
[xi]t1 ⊕ [xi]t+3

1 = 1
)
� 0.64 =

1
2
(1 + 0.28).

for all i = 0, . . . , 3.
In Table 7 of the Appendix, we give experimental results. They show that the

observed bias match the theoretical analysis. Therefore the initial assumption
that the parameter bits are uniformly distributed is satisfied. The only
exception concerns the LSB of the registers. Indeed, the parameter bit is constant
at position 0, so the previous assumption no longer holds. This analysis explains
what Künzli et al. observed [18] with j = 8 and 11, although the best bias is
obtained with j = 3.

5.2 Second Step

In this step, we want to "linearize" the behavior of the output function of TSC-
1 defined by (3). This function uses addition and left rotation on 32-bit words.

Table 2. TSC-1 : Bit Flip Probabilities for Different Depth j of the Tree

j P |ε| j P |ε|
1 0.5000 0.0000 9 0.5264 0.0528
2 0.5937 0.1874 10 0.4143 0.1714
3 0.6406 0.2812 11 0.3993 0.2014
4 0.5078 0.0156 12 0.4849 0.0302
5 0.4219 0.1562 13 0.5587 0.1174
6 0.4473 0.1054 14 0.5507 0.1014
7 0.5479 0.0958 15 0.4972 0.0056
8 0.5996 0.1992 16 0.4717 0.0566
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Left rotation is already linear, so we only have to linearize the additions. This
can be naturally done by introducing a carry bit. For instance, when adding
two integers a0 and a1, we can express the i-th bit of the result by the linear
expression :

[a0]i ⊕ [a1]i ⊕Ri

where Ri depends on layers < i.
Consider the addition of n integers of 32 bits called a0, . . . , an−1. We note

A =
∑n−1

k=0 ak and R(i) the i-th carry. For n = 2 terms, the carry is simply one
bit, but more generally, it is an integer formally defined by :

R(i) =
∑n−1

k=0 (ak mod 2i)− (
∑n−1

k=0 (ak mod 2i)) mod 2i

2i
.

with R(0) = 0. The linearized expression of the i-th bit of A is given by :

[A]i =

[
n−1∑
k=0

ak

]
i

= [R(i)]0 ⊕
n−1⊕
k=0

[ak]i. (5)

In the case of TSC-1, the output function is composed by an addition with 2
terms (E = x0≪9 + x1) and an addition with 3 terms (S = E≪15 + x2≪7 + x3)
where S represents the output. Hence, using linearized relations (5), for any bit
i we have: ⎧⎪⎨⎪⎩

[E]i = [x0](i+23) ⊕ [x1](i) ⊕ [RE(i)]0

[S]i = E(i+17) ⊕ [x2](i+25) ⊕ [x3](i) ⊕ [RS(i)]0

where RE and RS represent the carry for the 2-term and 3-term addition re-
spectively. All indexes are taken modulo 32. We can note that RE(i) ∈ {0, 1}
and RS(i) ∈ {0, 1, 2}. Finally, we obtain :

[S]i = [x0](i+8) ⊕ [x1](i+17) ⊕ [RE(i + 17)]0 ⊕ [x2](i+25) ⊕ [x3](i) ⊕ [RS(i)]0.

which is a linear approximation of the output function.
We would like to XOR this relation at two instants t and t + δ for instance

with δ = 3, since this is the value identified in the first step. We already now the
bit-flip probabilities of the register bits. Now the problem is to determine the
bit-flip probabilities of the carry bits between t and t + 3.

5.3 Bit Flip Property of Carries

Basically, each input bit in the additions E and S is flipped with a known
probability, different from 0.5. As a consequence, we may expect that the carries
also flip with probabilities different from 0.5. The goal of this Section is to
evaluate this probability.
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We define the "general carry" as [RG(i)] = [RE(i+17)]⊕[RS(i)]. We also call
XRG(i) = [RG(i)]t0 ⊕ [RG(i)]t+3

0 and Xj(i) = [xj ]ti ⊕ [xj ]t+3
i . From the previous

section, we get :

[S]ti ⊕ [S]t+3
i = XRG(i)⊕X0(i + 8)⊕X1(i + 17)⊕X2(i + 25)⊕X3(i)

From the first step, we know that Pr(Xj(i) = 1) = 1
2 (1 + εj

i ). The biases εj
i

are given in Table 7 in the Appendix. So the only remaining term is XRG(i).
Experimentally, we observed that

Pr(XRG(i) = 1) =
1
2
(1 + εGi ) with |εGi | � 0

and that εGi apparently depends on the position i considered. Unfortunately, we
also observed that the two "internal" carries RS(i) and RE(i) are not indepen-
dent, so it is not possible to handle them separately.

To explain this bias, we model the phenomenon as a Markov chain. Indeed,
carries at layer i + 1 are computed only from the carries at layer i and from the
terms in the addition, so we do not need to remember what happened previously.
We implemented a recursive algorithm to evaluate the following probability,
starting from the least significant bit i = 0 :

Pri(a, b, c, d) = Pr ( (RS(i)t = a) ∧ (RS(i)t+3 = b)
∧(RE(i + 17)t = c) ∧ (RE(i + 17)t+3 = d))

for all possible a, b, c, d ∈ {0, 1, 2}2 × {0, 1}2. To compute Pri+1(a, b, c, d), we
examine all cases at layer i : we try all values of the terms in the addition, we
try all values of the carries at layer i, and we compute the new carries. Each
event at layer i is associated with its corresponding probability, and we increment
accordingly the probabilities of layer i + 1. After examining all cases, we know
Pri+1(a, b, c, d). Then, we increment i and jump to the next layer 1.

In the end, we obtain the bit-flip probability of the general carry by :

Pr(XRG(i) = 1) =
∑

a,b,c,d|LSB(a)⊕LSB(b)⊕c⊕d=1

Pri(a, b, c, d).

The experiments on TSC-1 returned the same probabilities as our computation
by a Markov chain. These results are listed in the rightmost column of Table 7
(see the Appendix). We now have biased linear approximations which involve
only TSC-1’s output bits and internal state bits, so we can continue to the third
step.

1 There is a slight technicality, since the layer 0 actually depends from the layer 31
due to the left rotation, so we do not know how to initialize the recursion. Actually,
probabilities are quite independent from the initial value, so we can handle this
difficulty.
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5.4 Third Step

Distinguishing Attacks
It is easy to use a bias on the output of a stream cipher for a distinguishing

attack : one just produces enough keystream bits and checks if the bias is satisfied
or not. For a bias ε, it it well known that about ε−2 samples are needed. As an
example, Künzli et al. pointed out a distinguisher requiring 222 output bits for
TSC-1 [18]. Similarly, our previous analysis provides a distinguishing attack. For
example, consider the layer i = 1 of the output. We have

[S]t1 ⊕ [S]t+3
1 = XRG(1)⊕X0(9)⊕X1(18)⊕X2(26)⊕X3(1)

Assuming the terms are independent, the bias are just multiplied, so

Pr
(
[[S]t1 ⊕ [S]t+3

1 = 1
)

= 0.5 (1 + εD)

with :

εD = ε(X0(9))× ε(X1(18))× ε(X2(26))× ε(X3(1))× ε(XRG(1))
= 0.2834 ∗ 0.2824 ∗ 0.2732 ∗ 0.2812 ∗ (−0.0874)
= −2−10.86

using Table 7 in the Appendix. This gives a data complexity of ε−2
D � 221.7

keystream bits, which is slightly better than [19].

Key Recovery Attacks
As pointed out in Section 4.2, if we guess the i LSB’s of each register in the

initial state, we can predict these bits at any moment. This idea can be used to
eliminate many terms in the linear approximations.

First, let us guess the LSB of each register. There are 24 = 16 possibilities.
For any instant t, we can predict these LSB and thus eliminate all terms of the
form Xi(0) in the linear approximations. For instance, we can predict [S]t0 ⊕
[S]t+3

0 ⊕X3(0) which is biased with

ε = −0.2826 ∗ 0.2818 ∗ 0.2826 ∗ 0.1906 = −2−7.86

according to Table 7 of the Appendix. This bias will be observed only for the
correct guess. So, with a sufficient amount of data, we can find which of the 16
guesses is correct. The process can be repeated to successively guess all layers of
the initial state, starting from the least significant ones.

The complexity of guessing each layer depends on the best bias that can be
found. For the first step of the attack, the bias is ε = −2−7.86 so we need

M = ε−2 = 215.72

keystream bits to find the correct guess. The time complexity is about

T = 215.72 × 24 = 219.72
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Table 3. Possible Attack Schedule for TSC-1

round
bit position

attacked
register
attacked

number of
known terms

bias
obtained

time
complexity

0 0 3 1 2−7.86 219.72

1 1 3 1 2−9.03 222.06

2 9 2 1 2−9.41 222.82

3 10 2 1 2−9.29 222.58

4 11 2 1 2−9.33 222.66

5 12 2 1 2−9.39 222.78

6 13 2 1 2−9.31 222.62

7 7 3 2 2−7.48 218.96

8 0 0 2 2−6.04 216.08

9 1 0 2 2−7.21 218.42

10 10 3 2 2−7.47 218.94

11 11 3 2 2−7.46 218.92

12 19 2 2 2−7.49 218.98

13 20 2 2 2−7.51 219.02

14 21 2 2 2−7.50 219.00

15 15 3 3 2−4.81 213.62

16 8 0 3 2−6.07 216.14

17 9 0 3 2−5.76 215.52

18 10 0 3 2−5.64 215.28

19 11 0 3 2−5.63 215.26

20 12 0 3 2−5.69 215.38

21 13 0 3 2−5.66 215.32

22 14 0 3 2−5.64 215.28

23 15 0 4 2−2.94 29.88

24 24 3 4 2−3.84 211.68

25 0 2 4 2−2.39 28.78

26 1 2 4 2−3.52 211.04

27 10 1 4 2−3.82 211.64

28 11 1 4 2−3.81 211.62

29 12 1 4 2−3.82 211.64

30 13 1 4 2−3.83 211.66

31 14 1 4 2−3.82 211.64

steps. If we stop the attack after this step, we obtain a distinguishing attack
which is slightly better than [19]. At each step, we can choose between several
linear approximations (one for each of the 32 keystream bits). We always pick the
position which gives the best results (see Table 3 for more details). Note that after
guessing the layer 7, we can eliminate two terms in the linear approximations,
so the complexity drops. Similarly, the complexity drops after the layer 15 (3
terms are eliminated) and after the layer 23 (4 terms are eliminated). The full
cost of the attack is dominated by the first layers (layer number 2 in particular).
The total complexity is of 221.4 data and 225.4 time.

6 The TSC-2 Case

The attack against TSC-2 is similar to the attack against TSC-1. The only
difficulty is that the bit-flip probability for the register x0 is almost balanced,
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because the authors have used a particular S-box. Unfortunately, due to some
second order effects, we can still obtain good linear approximations of the T-
function. Details can be found in the extended version of this paper [23].

The resulting complexity is of 248.1 time and 244.1 data to recover the secret
key. This result is worse than for TSC-1, mostly because the output function is
quite complicated (6 terms are used instead of 4), so the observed bias is much
smaller.

7 The TSC-3 Case

Since TSC-3 has some particular features compared to the two previous algo-
rithms, the application of the attack is not exactly the same. However, it roughly
follows the same framework.

7.1 First Step

The updating of any layer [x]i of the state can still be represented in a tree-
oriented fashion, although it is no longer a binary tree (each node has 4
branches). Let us first suppose that the parameter words are uniformly dis-
tributed. Then, after applying the T-function, [T (x)]i has probability 1/4 to be
equal to any of the Sj([x]i), for j = 1, 2, 5, 6. Similarly, after t updates, one
can easily compute the probability for [T t(x)]i to be equal to each power of the
S-box2. This is summarized in Table 4. Then we can apply essentially the same

Table 4. Exploration of the tree for TSC-3: Probability that [T t[x]]i = Sj([x]i)

j 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
t = 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
t = 1 0 1/4 1/4 0 0 1/4 1/4 0 0 0 0 0 0 0 0 0
t = 2 0 0 1/16 1/8 1/16 0 1/8 1/4 1/8 0 1/16 1/8 1/16 0 0 0
t = 3 0.047 0.047 0.016 0.016 0.047 0.047 0.016 0.047 0.141 0.141 0.047 0.047 0.141 0.141 0.047 0.016
t = 4 0.039 0.063 0.094 0.063 0.023 0.031 0.047 0.031 0.023 0.063 0.094 0.063 0.039 0.094 0.141 0.094

analysis than for TSC-1 and TSC-2. However, here we are not interested only in
bit-flip properties. Linear relations involving one input bit and another output
bit may be of interest, because the registers are permuted in the output function,
so we may compare bits belonging to different registers in the next steps of the
attack. So we focus on the linear relations of the form :

[xj ]ti = [xj′ ]t+δ
i (6)

for two different register indexes j, j′ ∈ {0, 3} and for some depth δ. While the
S-box of TSC-3 (the same as the one used in TSC-1) has good bit-flip properties,
such advanced linear approximations have not been taken into account by the
designers.
2 Remember that S16 = I .
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Table 5. Probability that [xj ]ti = [xj′ ]t+δ
i

Case δ = 1

�������Input
Output

[x0]
t
i [x1]

t
i [x2]

t
i [x3]

t
i

[x0]
t+1
i 0.5 0.53125 0.46875 0.5

[x1]
t+1
i 0.46875 0.5 0.5 0.46875

[x2]
t+1
i 0.5 0.53125 0.5 0.53125

[x3]
t+1
i 0.53125 0.5 0.46875 0.5

Case δ = 2

�������Input
Output

[x0]
t
i [x1]

t
i [x2]

t
i [x3]

t
i

[x0]
t+2
i 0.515625 0.515625 0.5 0.5

[x1]
t+2
i 0.5 0.515625 0.46875 0.5

[x2]
t+2
i 0.5 0.5 0.515625 0.515625

[x3]
t+2
i 0.5 0.5 0.5 0.515625

Case δ = 3

�������Input
Output

[x0]
t
i [x1]

t
i [x2]

t
i [x3]

t
i

[x0]
t+3
i 0.51172 0.49610 0.51172 0.50391

[x1]
t+3
i 0.50391 0.51172 0.49610 0.51172

[x2]
t+3
i 0.49610 0.48828 0.51172 0.49610

[x3]
t+3
i 0.48828 0.49610 0.50391 0.51172

From Table 4, it is easy to derive the probability that relation (6) holds,
for any pair of positions (j, j′). These results do not depend on which layer
i we consider although some side effects are observed at the least significant
positions3. The results for certain values of δ are given in Table 5. They have
been verified experimentally, by running the cipher on a random initial state.

7.2 Second Step

In the case of TSC-3, the output function is not directly applied to the state
registers, but to 4 registers y0, y1, y2 and y3 which are truncated and permuted
copies of the state registers x0, x1, x2 and x3. First we linearize the output func-
tion as we did for TSC-1 and TSC-2 :

[S]i = [y0](i+17) ⊕ [y1](i+26) ⊕ [y2](i+2) ⊕ [y3](i+9) ⊕ [RG(i)]0

where RG(i) is the "general carry", defined as before. Then, we replace the
bits from the registers yi by the appropriate bits from the state registers xi.
Because of the truncation and the permutation, we have [yj ]i = [xπ(j)]i+8 where
π is a 4-bit permutation determined by the layer [x]0 of the internal state. The

3 Contrarily to TSC-1 or TSC-2, these side effects are not bothering for TSC-3, since
layers 0 to 7 are discarded by the output function.
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linear approximations depend on this permutation. Suppose that we are in the
particular case where :

[x]t0 = 4

Then the next value of this layer is :

[x]t+1
0 = 1

Looking at the permutations π associated with these particular values, we get

[S]ti = [x0]t(i+25) ⊕ [x1]t(i+34) ⊕ [x3]t(i+10) ⊕ [x2]t(i+17) ⊕ [RG(i)]t0

and

[S]t+1
i = [x1]t+1

(i+25) ⊕ [x0]t+1
(i+34) ⊕ [x2]t+1

(i+10) ⊕ [x3]t+1
(i+17) ⊕ [RG(i)]t+1

0

Using the Table 5, we observe that :

Pr([x0]t(i+25) = [x1]t+1
(i+25)) = 0.46875

Pr([x1]t(i+34) = [x0]t+1
(i+34)) = 0.53125

Pr([x3]t(i+10) = [x2]t+1
(i+10)) = 0.53125

Pr([x2]t(i+17) = [x3]t+1
(i+17)) = 0.46875

These 4 probabilities are of the form 0.5 (1 ± 2−4). We tried to consider other
values of [x]0 than 4, but it seems to be the best choice, since the highest prob-
abilities in Table 5 appear. Combining the two relations at instants t and t + 1,
we get :

[S]ti ⊕ [S]t+1
i = [RG(i)]t0 ⊕ [RG(i)]t+1

0

with probability 0.5 (1 + ε) and |ε| = (2−4)4 = 2−16.
Like for TSC-1 and TSC-2, the carries from the additions involved in the

output function are not independent from each other. So it is not easy to ex-
press simply the probability that [RG] changes between t and t + 1. Like before,
modeling this phenomenon by a Markov chain could provide more precise re-
sults, but we choose to measure the probability experimentally for the sake of
simplicity. Results for several values of i are given in Table 6. For some well-
chosen positions (typically those were one of the carries is guaranteed to be 0),
the probability deviates significantly from 0.5. We observed biases as high as
ε � 2−3 for "good" positions such as i = 8 or i = 23. As a consequence,

[S]t23 ⊕ [S]t+1
23

is equal to 0 with probability of 0.5 (1 + ε) and |ε| � 2−16 × 2−3 = 2−19.
This bias is only valid when [x0]t = 4, which is the case for exactly one

position over 16 in the keystream sequence. It is straightforward to determine
which positions should be analyzed if we guess the 4 LSB’s of the initial state.
In the next section, we show how to exploit this bias for distinguishing and
key-recovery attacks.
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Table 6. TSC-3 : Bias measured experimentally on the Carry

Position Pr([RG]ti ⊕ [RG]t+1
i ) Position Pr([RG]ti ⊕ [RG]t+1

i )
i = 0 0.5001 i = 16 0.4993

i = 1 0.4921 i = 17 0.4998

i = 2 0.4968 i = 18 0.4997

i = 3 0.4989 i = 19 0.4998

i = 4 0.5001 i = 20 0.5003

i = 5 0.5003 i = 21 0.5002

i = 6 0.5004 i = 22 0.4996

i = 7 0.4999 i = 23 0.4452

i = 8 0.4442 i = 24 0.4862

i = 9 0.4871 i = 25 0.4962

i = 10 0.4967 i = 26 0.4995

i = 11 0.4999 i = 27 0.5003

i = 12 0.4996 i = 28 0.5005

i = 13 0.4997 i = 29 0.4997

i = 14 0.5002 i = 30 0.4996

i = 15 0.4997 i = 31 0.5007

7.3 Third Step

If we exploit positions 8 or 23 of the output word, we showed in the previous
section a bias of the order of ε = 2−19. This can be used to distinguish TSC-3’s
output sequence from random data, provided ε−2 = 238 samples are given. Since
only one position out of 16 in the output sequence is useful, it means that :

M = 16× 238 = 242

output words are needed. In addition, we must try all values for the initial state’s
LSB, so the time complexity is about

T = 24 × 238 = 242

computation steps.
To mount a key-recovery attack, we start by guessing the 9 least significant

layers of the initial state (36 bits in total), in order to predict [x]t8 for all t. This
layer is also the least significant layer of the registers yi, and it turns out that it
is also used in one of the "best" linear approximations : [S]t23 ⊕ [S]t+1

23 .
Therefore, we can eliminate one term in this approximation which increases

the bias from 2−19 to 2−15. Once we found the correct guess for these 36 state
bits, it is straightforward to continue the attack, like we did for TSC-1 and TSC-
2. The first step is clearly the most expensive, because we must guess 36 bits at
the same time. So, the time complexity is

T = 236 × (215)2 = 266

computation steps. The data complexity of this attack is only :

M = 16× 230 = 234

output words.
These two attacks show that the stream cipher TSC-3 does not reach the

expected security level.
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8 Criteria for Future Design

First, we can notice that the 3 separate steps in our linear cryptanalysis frame-
work are always possible, to some extent.

– The periodicity of the least significant layers in multi-word T-functions is
always small, by construction. The periodicity of the i-th layer is always 2mi

at most for a state of m words. Therefore the following linear relation always
holds with probability 1 :

[xj ]ti ⊕ [xj ]t+2mi

i = 0

Other approximations can exist depending on the nature of the T-function,
as illustrated in the case of the TSC family.

– For any choice of the output function, there exist linear approximations
between input and output bits. Unless the function is very complex (but it
is generally not the case, because the output function needs to be fast), it is
likely that approximations with good probability can even be found.

– If the approximations of step 1 and step 2 can be combined, it is generally
feasible to exploit these biased relations into a key-recovery attack.

Therefore the difficulty does not lie in finding linear approximations or exploit-
ing them, but on combining all approximations to describe the complete cipher.
This is something we did not manage to do for Klimov and Shamir’s proposal for
instance [16]. It is likely that T-function will receive a lot of attention in the fu-
ture for stream cipher design. To prevent the application of linear cryptanalysis,
we suggest to use several safeguards.

– Never use the least significant half of the registers in the output function,
because of the small periodicity (this countermeasure was already applied
by Klimov and Shamir in several proposals, and TSC-3 has also taken a step
in this direction compared to its two predecessors).

– Use rotations in the output function in order to combine the bits from all
registers. The output function of TSC-1 or TSC-3 is probably too simple,
which makes the analysis easier.

– Try to avoid simple linear approximations for the T-functions over several
consecutive steps. For the S-box based T-functions proposed by Hong et al.,
it is an open problem to say if this is possible. It seems that the current
proposals do not provide enough diffusion, but maybe for an appropriate
instantiation, the existence of good linear approximations may be avoided.
This is an interesting topic for future research.

– Try to take advantage of the "complex" operations which are available on
processors. For instance, we believe it is a good idea to use the integer mul-
tiplication, when possible, even in the output function.

All these countermeasures may have a negative impact on the encryption speed,
but this must be put into the balance with the increased level of security.
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9 Conclusion and Comments

In this paper, we give a general framework of linear cryptanalysis for stream
ciphers using a T-function. The idea consists in linearizing separately the T-
function and the output function, and then connecting both approximations.
We successfully applied it to the TSC family of stream ciphers but we believe it
can have many applications against this emerging family.

We managed to find a key recovery attack requiring 221.4 data with 225.4 time
for TSC-1, and 244.1 data with 248.1 time for TSC-2. The attack against TSC-1
has been implemented and requires about 4 minutes of analysis on an average
PC. Thus, TSC-1 and TSC-2 are not secure enough for stand-alone use.

An advanced version of our attack also allows to break TSC-3, one of the
stream ciphers recently proposed for the ECRYPT project. This attack is very
interesting because the designers took into account distinguishing attacks by
Künzli et al. and added countermeasures. However, our general framework still
allows to break the cipher. TSC-3 can be distinguished from random by process-
ing 242 output words, and its secret key can be recovered with 266 computation
steps and 234 known output words.

For future designs of stream ciphers, we suggest to benefit from complex
operations that allow T-functions. For instance, integer multiplication has good
diffusion properties and prevents good linear approximations. Moreover, we rec-
ommend never to use LSB’s of the state registers in the output function.
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Appendix

Table 7. TSC-1 for t/t + 3: Bit Flip Probabilities of the Registers and of the LSB of
the General Carry

bit
position

register 0 register 1 register 2 register 3 LSB(RG)

0 0.5000 0.5000 0.5000 0.5000 0.5953
1 0.6406 0.6406 0.6406 0.6406 0.4563
2 0.6479 0.6479 0.6479 0.6479 0.4948
3 0.6446 0.6446 0.6446 0.6446 0.5247
4 0.6442 0.6442 0.6442 0.6442 0.5328
5 0.6427 0.6427 0.6427 0.6427 0.5343
6 0.6356 0.6356 0.6356 0.6356 0.5356
7 0.6412 0.6412 0.6412 0.6412 0.5352
8 0.6413 0.6413 0.6413 0.6413 0.5263
9 0.6417 0.6416 0.6416 0.6417 0.5337
10 0.6417 0.6417 0.6417 0.6417 0.5355
11 0.6364 0.6364 0.6364 0.6364 0.5357
12 0.6408 0.6408 0.6409 0.6409 0.5354
13 0.6412 0.6411 0.6412 0.6412 0.5352
14 0.6416 0.6416 0.6415 0.6416 0.5354
15 0.6417 0.6416 0.6416 0.6417 0.4348
16 0.6364 0.6364 0.6364 0.6363 0.4952
17 0.6408 0.6409 0.6409 0.6408 0.5253
18 0.6412 0.6412 0.6412 0.6412 0.5332
19 0.6416 0.6416 0.6417 0.6416 0.5349
20 0.6364 0.6364 0.6364 0.6364 0.5355
21 0.6409 0.6408 0.6408 0.6409 0.5359
22 0.6412 0.6412 0.6412 0.6413 0.5355
23 0.6365 0.6365 0.6365 0.6365 0.5360
24 0.6408 0.6408 0.6408 0.6409 0.5349
25 0.6413 0.6413 0.6413 0.6413 0.5266
26 0.6366 0.6365 0.6366 0.6366 0.5333
27 0.6409 0.6408 0.6408 0.6409 0.5351
28 0.6414 0.6413 0.6413 0.6412 0.5357
29 0.6365 0.6366 0.6365 0.6365 0.5357
30 0.6408 0.6409 0.6408 0.6408 0.5355
31 0.6412 0.6412 0.6412 0.6412 0.5351
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Abstract. In this paper we revisit a known but ignored weakness of
the RC4 keystream generator, where secret state info leaks to the gen-
erated keystream, and show that this leakage, also known as Jenkins’
correlation or the RC4 glimpse, can be used to attack RC4 in several
modes. Our main result is a practical key recovery attack on RC4 when
an IV modifier is concatenated to the beginning of a secret root key to
generate a session key. As opposed to the WEP attack from [FMS01] the
new attack is applicable even in the case where the first 256 bytes of the
keystream are thrown and its complexity grows only linearly with the
length of the key. In an exemplifying parameter setting the attack recov-
ers a 16-byte key in 248 steps using 217 short keystreams generated from
different chosen IVs. A second attacked mode is when the IV succeeds
the secret root key. We mount a key recovery attack that recovers the
secret root key by analyzing a single word from 222 keystreams generated
from different IVs, improving the attack from [FMS01] on this mode. A
third result is an attack on RC4 that is applicable when the attacker can
inject faults to the execution of RC4. The attacker derives the internal
state and the secret key by analyzing 214 faulted keystreams generated
from this key.

Keywords: RC4, Stream ciphers, Cryptanalysis, Fault analysis, Side-
channel attacks, Related IV attacks, Related key attacks.

1 Introduction

RC4 is the most widely used stream cipher in software applications. Among
numerous applications it is used to protect Internet traffic as part of the SSL
and is integrated into Microsoft Windows. It was designed by Ron Rivest in 1987
and kept as a trade secret until it leaked out in 1994. RC4 has a secret internal
state which is a permutation of all the N = 2n possible n bits words, associated
with two indices in it, when in practical applications n = 8, and thus RC4 has
a huge state of log2(28!× (28)2) ≈ 1700 bits.

In this paper we revisit a known but previously ignored property of RC4,
which we denote as the Glimpse property also known as Jenkins’ correlations.
The glimpse is a leakage of information from RC4 secret state to the generated
keystream, where every keystream word hints on a state word through the cor-
relation S[j] = i − z which occurs with doubled probability (1/128 instead of

B. Roy (Ed.): ASIACRYPT 2005, LNCS 3788, pp. 395–411, 2005.
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1/256), when i is a known index of RC4 state, z is the hinting keystream word
and S[j] is the hinted entry of the secret internal state.

The glimpse property was first mentioned in the web page of Jenkins ([Jen96])
and was first brought to formal literature in [MS01] in 2001. In Chapter 7 of
[Man01] Mantin analyzed the glimpse property, defined a generalized version
of the correlation and discovered small biases in the keystream that stem from
it. However, due to the fact that the glimpse discovers a negligible part of the
internal state (one byte out of 1700) and the fact that it does so with biased
but still small probability, that was the last trial for exploiting this property to
attack RC4.

In this paper we revisit the glimpse in RC4 and RC4-like stream ciphers,
analyze its origin and discuss the ways a cryptanalyst can use it. We define a
generalized version of the glimpse and discuss the availability of the generalized
correlations in RC4 and RC4-like ciphers.

Our main result is a practical key recovery attack on RC4 that works even
when the common recommendation of throwing a 256-byte prefix of the
keystream is adopted. The attack works in a mode of operation where an initial
value (IV) is concatenated to the beginning of the root key and works in both
the chosen IV and known IV models. The attack allows some data-time tradeoff
that depends on the length of the root key. For example, some parameter setting
for a 16-byte key allows the attacker to recover the key in 248 steps using 217

data or with 232 steps using 220 data. In the known (random) IV model the data
complexity of the attack requires an additional multiplicative factor of N = 256
in order to have a sufficient number of “good” IVs.

In the second part of the work we present the fork model where many in-
stances of RC4 are available to the attacker with almost equal state and show
that in this model an attacker can use the glimpse property to recover RC4 in-
ternal state. We show two realizations of this model; the first is where the IV
modifier is concatenated to a end of a secret root key in order to generate many
independent RC4 keystreams from a single secret root key. In this mode we
mount a chosen and known (random) IV attacks that recover the secret key by
analyzing 222 keystreams that were generated from this key and different IVs.
Another realization of this model is where the attacker injects faults into the
execution of RC4 and distorts the generated keystream. In that case we mount
a fault attack that uses 214 faulty keystreams to recover the internal state and
the secret key.

The rest of the paper is organized in the following way: In Sect. 2 we describe
RC4 and previous cryptanalysis. In Sect. 3 we re-present the glimpse property
and analyze its origin and availability. In Sect. 4 we describe key recovery attacks
on RC4 in the preceding IV mode when the first 256 bytes are thrown. In Sect.
5 we present the Fork model and use the glimpse property to mount an attack
on RC4 in this model. In Sect. 6 we adjust the fork model attack to mount a key
recovery attack on the succeeding IV mode. In Sect. 7 we adjust the fork model
attack to mount an efficient fault attack on RC4. We summarize our work in
Sect. 8.
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KSA(K[0 . . .  − 1])
Initialization:

For i = 0 . . . N − 1
S[i] = i

j = 0
Scrambling:

For i = 0 . . . N − 1
j = j + S[i] + K[i mod ]
Swap(S[i], S[j])

PRGA(K)
Initialization:

i = 0
j = 0
S = KSA(K)

Generation loop:
i = i + 1
j = j + S[i]
Swap(S[i], S[j])
Output z = S[S[i] + S[j]]

Fig. 1. The Key Scheduling Algorithm and the Pseudo-Random Generation Algorithm

2 RC4 and Its Security

2.1 Description of RC4

RC4 consists of 2 parts (described in Fig. 1): A key scheduling algorithm KSA
which turns a variable-size key (with typical size of 5-32 bytes) into an initial
permutation S of {0, . . . ,N − 1}, and an output generation part PRGA which
uses this permutation to generate a pseudo-random keystream.

The PRGA initializes two indices i and j to 0, and then loops over four
simple operations which increment i as a counter, increment j pseudo randomly,
exchange the two values of S pointed to by i and j, and output the value of S
pointed to by S[i] + S[j]1.

2.2 Previous Analysis of RC4

Cryptanalysis of RC4 is divided into two main parts, analysis of the initialization
of RC4 and analysis of the keystream generation. The first part focuses on the
KSA, the PRGA initialization and the integration of both, whereas the last
focuses on the internal state and the round operation of the PRGA.

Due to the simplicity of the initialization part and the major difference be-
tween the typical key sizes and the effective size of RC4 state, this part was
subject to extensive analysis and indeed numerous significant weaknesses were
discovered of many types, including classes of weak keys ([Roo95]), patterns
that appear twice and three times the expected probability (the second byte
bias [MS01]), propagation of key patterns through the KSA to the initial per-
mutation and through the PRGA initialization to the prefix of the stream (the
invariance weakness [FMS01]), related key attacks ([GW00]), statistical biases
in different prefixes of the generated stream ([FMS01] and [PP04]) and analy-
sis of the biased distribution of RC4 initial permutation ([Mir02] and [Man01]).
However, the most devastating attack on RC4 was described in [FMS01] where
RC4 was proved to have serious related-key vulnerabilities, exposing several im-
plementations of RC4 to practical key recovery attacks, where the effected im-
plementations are those that employ trivial key-IV combination methods such as
1 Here and in the rest of the paper all the additions are carried out modulo N .
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concatenation or exclusive-or. A subsequent work by Stubblefield et-al ([SIR01])
implemented the attack on the security protocols of the international standard
for wireless LAN communication 802.11b (WEP) that used RC4 in the IV con-
catenation mode, and these protocols were declared as broken.

This attack had a great impact on the trust of cryptographers and secu-
rity designers in RC4 and the common practice for using RC4 today includes
hardening of the initialization process by omitting some prefix of the keystream,
usually 256 bytes as recommended by RSA laboratories in [RSA01]. This hard-
ening neutralizes most of the attacks and weaknesses that were discovered in
RC4 initialization. However, this mode still has some weaknesses, including a
biased distribution of the PRGA initial permutation ([Mir02]) and statistical
biases in the first bytes that are emitted after the 256th round ([PP04]).

Statistical analysis of the keystream generation part gave rise to several weak-
nesses and biased patterns in RC4 keystreams. Golić ([Gol97]) and Fluhrer and
McGrew ([FM00]) designed distinguishers of RC4 streams from random streams
that require 244.7 and 230.6 keystream words respectively. Subsequently Mantin
improved these results in [Man05] and designed a 228 distinguisher. In his paper
he also described several families of patterns denoted in [Man05] as recyclable
patterns, which occur in RC4 keystreams with extremely high probability that
is several times the probability in random streams, and described an algorithm
that uses these patterns to predict in some rare cases bits and full bytes of RC4
with success probabilities that are close to 1.

Several other classes of RC4 partial states were defined and analyzed in
[FM00], [MS01] and [PP03] as such that create unique patterns in the output
stream and allow a viewer of the output stream to recover parts of the inter-
nal state with more than trivial probability (chapter 2 of [Man01] contains an
overview of these classes). The cycles structure of RC4 state progression was
also analyzed in [MT98] and [Fin94], where the last describes short cycles that
are unreachable by RC4. [KM+98], [MT98] and [Gol00] describe state recovery
attacks through backtracking with complexity that is less than the square root
of an exhaustive search over all possible states. However, due to the hugeness of
the state (1700 bits for n = 8), these attacks are completely impractical as they
require more than 2700 steps. Mantin in [Man05] describes an approach that
under some circumstances can improve this attack significantly through using
the recyclable patterns.

Two variants of RC4 were recently proposed, both slightly more complex than
the original RC4 and are claimed to be more secure than it. RC4A ([PP04]) was
designed by Paul and Preneel and works with two RC4 tables. The generation
stage of RC4A is slightly more efficient than RC4’s, but the initialization stage
requires at least twice the effort of RC4 initialization. VMPC ([Zol04]) was de-
signed by Zoltak and includes several changes to the KSA, the IV integration
method, the PRGA initialization, the round operation and the output selection
method. Maximov described in [Max05] distinguishers for both variants, requir-
ing 254 data for VMPC and 258 data for RC4A and Tsunoo et-al subsequently
described in [TS+05] a prefix distinguishers for VMPC and RC4A keystream



A Practical Attack on the Fixed RC4 in the WEP Mode 399

generators, requiring 223 keystream prefixes for RC4A and 224 keystream pre-
fixes for VMPC. A regular distinguisher (as opposed to a prefix distinguisher)
of RC4A was shown in [Man05] that needs a keystream of 229 keywords and is
an adjusted variant of the RC4 distinguisher mentioned in this work.

The trend of side-channel attacks had not skipped RC4. Hoch and Shamir
made in [HS04] an exhaustive fault analysis of many stream ciphers including
RC4 and found them all vulnerable to key recovery attack in this model. In par-
ticular their attack on RC4 requires 216 faults. Biham et-al proposed in [BGN05]
two other fault attacks on RC4; in the impossible fault attack is based on using
faults to force the cipher to enter the impossible states known as Finney’s states
([Fin94]). In the differential fault attack, the attacker compares many faulty
keystreams to a non-faulty keystream and identifies the three permutation en-
tries that are used in the first round, the second round, etc. Several variants
and optimizations for this attack are described and the best configuration of the
attack requires 210 faults and key resets.

2.3 Notations

In vast majority of RC4 implementations N = 256 and n = 8. In many cases we
simplify expressions by using numbers instead of parameters. Whenever appro-
priate, we mention this conversion.

For a positive integer X we use the notation [X ] to specify the domain
of indices modulo X , i.e., [X ] = {0, 1, . . . ,X − 1}. We denote the domain of
permutations of [X ] as P [X ].

We use the notations it, jt and St for the indices i and j and the permutation
S after round t, where the rounds are indexed in accordance with i, i.e., it = t.
Thus the KSA has rounds 0, . . . , 255 and the PRGA has rounds 1, 2, . . .. We use
the same indexing for both the KSA permutations and the PRGA permutations
and whenever there might be a confusion, we use the notations S(KSA) and
S(PRGA) respectively.

The output function Z : P [X ]× [X ]× [X ]→ [X ] is defined on RC4 states as

Z(S, i, j)
def
= S[S[i] + S[j]]. We denote output words with z and index them in

the same manner as i and j, i.e., zt = Z(St, it, jt).
We denote the KSA key as K and its length as 
K .

3 The Glimpse

The glimpse property as was first introduced in [Jen96] is defined in Theorem 1.

Theorem 1 (The Glimpse Main Theorem). Let i ∈ [N ]. Then

IPj∈R[N ],S∈RP[N ][S[j] = i− Z(S, i, j)] ≈ 2/N (1)
IPj∈R[N ],S∈RP[N ][S[i] = j − Z(S, i, j)] ≈ 2/N (2)

In other words, when z is the output then

IP[S[j] = i− z] ≈ IP[S[i] = j − z] ≈ 2/N
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The proof of Theorem 1 appears in the discussion of useful states in Sect. 2.3 of
[Man01], and we only bring the intuition behind one of them (the second stems
from symmetry). In the case where i = S[i] + S[j], the correlation occurs with
probability 1 since

Z(S, i, j) = S[S[i] + S[j]] = S[i] = i− S[j] (3)

In the other case (i �= S[i] + S[j]), the correlation occurs with a probability of
1/N and thus the overall probability is

1/N · 1 + (1− 1/N) · 1/N ≈ 2/N (4)

A generalized version of the glimpse was proved in Sect. 7 of [Man01], where
different relations between i and z hint on corresponding relations between S[i]
and S[j]. This generalization is given in Theorem 2.

Theorem 2. Let f be a [N ]→ [N ] function and let hf (x)
def
= f(x)+x. Suppose

that hf is on-to-one in the domain [N ] and onto [N ]. Then for every i ∈ [N ],

IPj∈R[N ],S∈RP[N ][S[j] = f(S[i])|i = hf (Z(S, i, j))] ≈ 2/N (5)

The original glimpse is a special case with the degenerated function f(x)
def
=

i − z and hf (z) = i. The base condition i = hf (Z(S, i, j)) occurs always and
thus the probability of the derived condition [S[j] = f(S[i]) is always 2/N . Thus
many relations between the index i and the output word z imply corresponding
relations between the permutation entries that are used.

In Sect. A of the appendix we discuss the availability of the glimpse and show
that it exists in many other output selection functions. Notice that since the
index j is secret, the output hints on a value in an unknown location. However,
the value in this location was in a known location i immediately before this
round and furthermore, this is the same value that was used to update j in this
round. These facts underline the analysis in the rest of the paper.

4 Attacking the Truncated RC4

One of the most popular IV combination methods for RC4 and other stream
ciphers is a concatenation of the IV to the root key in order to obtain a one-time
session key. This mode of operation was attacked by Fluhrer et-al in [FMS01]
both in the case where the IV is concatenated to the end of the root key (we
denote this mode as the succeeding IV mode) and in the case where the IV
is concatenated to the beginning of the root key (we denote this mode as the
preceding IV mode). Their attack on the preceding IV mode was found applicable
to the RC4 implementation in WEP and it is sometimes referred to as the
WEP attack or the FMS attack. The attack recovers the bytes of the root key
one at a time, where in the iterative step IVs are selected that cause leakage
of information from the target keyword into the first word of the generated
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keystream2. Since the publication of this attack in 2001 the common practice in
implementations of RC4 is to throw a prefix of 256 bytes from the keystream and
thus prevent access of the attacker to the first output word and foil the attack.
We denote this usage mode of RC4 as the truncated RC4.

In this section we present a new attack on the truncated RC4. The attack
resembles the FMS attack in many aspects, where instead of using the leakage
of the keyword to the first output word, we use the glimpse property to redirect
the leakage to the 257th keystream word and thus overcome the omission of the
first keystream words.

The rest of this section is organized as follows. We first describe the WEP
attack and the way in which particular keywords leak to the first keystream
word. Afterwards we present a new leakage scenario where keyword info leaks to
the 257th keystream word. We describe how the attack uses this leakage scenario
to recover the root key and end with complexity analysis and a comparison to
the WEP attack.

4.1 The WEP Attack

We denote the root key as RK and the session key that is combined from RK and
an IV as SK. We denote the length of these keys by |RK| and |SK| respectively
and the length of the IV by 
IV and thus |SK| = |RK|+ 
IV .

The attack recovers the keywords one at a time. The iterative step of the
attack assumes knowledge of some prefix of the RC4 keywords, and uses the
first word of each of several keystreams to derive the next keyword (which we
denote below as the target keyword). The attack starts with the known IV as
a basis, and repeatedly applies the iterative step in order to recover all the
keywords in the root key. The keystreams from which first words are taken to
recover the target keyword, are carefully selected according to the IV that was
used to generate them.

The Iterative Step. The iterative step for the (x+1)th keyword SK[x] (which
is RK[x − 
IV ]) as the target keyword simulates the first x steps of the KSA
using the x known keywords in order to recover the permutation after x rounds
Sx−1. The KSA uses the next keyword, which is the target keyword, to cal-
culate the value of j in the next step jx and thus this keyword can be easily
derived from jx. Since the swap in round x occurs in locations ix = x and jx,
Sx[x] = Sx−1[jx] and knowing Sx−1, Sx[x] leads to jx and further on to the
target keyword.

The first output value is S[S[1] + S[S[1]]] and thus only three permutation
entries are used for this calculation; the ones in locations 1, S[1] and S[1] +
S[S[1]]. When these locations are lower than or equal to x after round x they
are guaranteed not to be visited by i during the subsequent N − x rounds and

2 The attack is therefore a Known Plaintext Attack (KPA). Stubblefield et-al subse-
quently showed that the first plaintext byte in typical WEP applications is a constant
header and thus the KPA model is realistic.
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with high probability of more than e−3 ≈ 5% (using Lemma 1, which is proved in
Appendix B) no to be visited by the pseudo-random index j during these rounds.
In that case, the first keystream word can be deduced with high probability
from the values that are at these locations in the permutation Sx. Furthermore,
when in addition S[1] + S[S[1]] = x (in [FMS01] it was denoted as the resolved
condition) the first keystream word z1 is exactly Sx[x], from which the target
keyword can be derived.

Formally, when 1, S[1] < x and S[1] + S[S[1]] = x, then with probability of
at least 5%

SK[x] = jx − jx−1 − Sx−1[x] =

= S−1
x−1[Sx[x]]− jx−1 − Sx−1[x]

w.p. 1/e3

=

= S−1
x−1[z1]− jx−1 − Sx−1[x] (6)

Thus when IVs are selected that cause Sx−1 to satisfy the resolved condition,
the above calculation points to the correct target keyword with probability of
about 5%. Using this observation Fluhrer et-al recovered the target keyword
through employing a simple voting mechanism where every first keystream word
gives a vote to a keyword candidate.

Analysis of the WEP Attack. In [FMS01] it was estimated that in order
to mount the attack for a particular keyword the attacker needs about 60 votes
from which an average number of three votes go to the correct target keyword.
In order to guarantee the 5% probability, these votes must come from situations
where the resolved condition was satisfied and thus in the chosen IV model the
number of IVs that are needed is 60 per keyword.

In the known IV model the situation is more complicated where the attacker
must wait for IVs that lead to the resolved condition, which under reasonable
randomness assumptions have a fraction of x

N2 and thus the (x + 1)th keyword
requires 60N2/x IVs. Since the data can be reused for different iterative steps
the main complexity parameter for the attack is the maximal number of IVs for
a keyword, which is 60 ·N2/
IV . A somewhat surprising result is that the attack
works better when longer IVs are used.

4.2 The New Attack

We present a similar leakage from the target keyword in two stages, to S(PRGA)
1 [1]

and through it to the 257th keystream word z257.
We first describe the way Sx[x] reaches location 1 of S. Suppose that after

round x− 1 of the KSA we have Sx−1[1] = x. In the next round some arbitrary
value Y , pointed to by j, is swapped into location x. This Y leads to the target
keyword in the same manner as in the WEP attack (known Sx−1, Y leads to jx,
jx leads to SK[x]). Suppose that during the remaining N − x KSA rounds the
values x and Y remain at locations 1 and x. The probability of this event is at
least 1/e2 (using Lemma 1). In the first round of the PRGA round we get
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i1 = 1 (7)

j1 = j0 + S
(PRGA)
0 [1] = S(KSA)

x [1] = x (8)

S
(PRGA)
1 [1] = S

(PRGA)
0 [j1] = S(KSA)

x [x] = Y (9)

Thus with probability 1/e2 target keyword info leaks into S(PRGA)
1 [1]. In the

next 255 rounds of the PRGA i traverses locations 2, . . . , 255, 0 and with prob-
ability 1/e (again we use Lemma 1) the index j also skips location 1 and then
S

(PRGA)
256 [1] = S

(PRGA)
1 [1] = Y . However, the glimpse property causes informa-

tion on this particular byte to leak to the next keystream word and thus we
complete a leakage chain from the target keyword to z257.

Combining these observations with the glimpse probabilities we get (proba-
bilities are presented over the equality sign)

i257 − z257
2/N
= S

(PRGA)
256 [1]

1/e
= S

(PRGA)
1 [1]

1/e2

= Y (10)

Thus we reach a probability of 2e−3/N for the complete scenario to occur and
in this case the correct target keyword is

SK[x] = S−1
x−1[i257 − z257]− jx−1 − Sx−1[x] (11)

Notice that when the chain breaks, there is still a probability of 1/N to have a
lucky guess and thus the overall probability for a successful guess is

IP[ SK[x] = S−1
x−1[i257 − z257]− jx−1 − Sx−1[x]] ≈

≈ 2
e3N

· 1 + (1 − 2
e3N

) · 1
N

=

=
1
N

+
2

e3N
· (1− 1

N
) ≈

≈ 1
N
· (1 +

2
e3

) ≈ 1.1 · 1
N

(12)

Simulations we carried out show that this analysis is somewhat optimistic and
that the actual probability for a correct guess (given that the IV conditions are
satisfied) is 1.075 · 1/N .

4.3 Complexity Analysis

Next we compare the attack parameters and probabilities to those of the WEP
attack. The probability of having a “good” IV increases from x

N2 in the WEP
attack to 1/N (need only Sx−1[1] = x). However, the advantage in the voting
process significantly decreases from 5% to 1.075/256. Thus the voting in this
attack is much harder than in the WEP attack, even though a larger fraction of
the IVs are “good” and this voting requires almost one million “good” IVs (see
Fig. 2) for recovering the target keyword with a probability that is close to 1.

However,a smarter key recoveryalgorithmcan tolerate someerrors in the guess-
ing. The algorithm can guess C possible values for every keyword and check all the



404 I. Mantin

Fig. 2. The number of IVs that are required for different success probabilities (for the
attack on the Truncated RC4). The different graphs are for different selections of the
branching factor C.

possible C�K branches, where a typical value for C is 4-5. Typical RC4 keys are 16
bytes or below, which makes the number of possibilities checked by the algorithm
no more than 516 ≈ 237. This attack can be further optimized by using a smart
branching strategy that instead of using a fixed branching factor, selects the num-
ber of branches according to the result of the voting, e.g., avoiding branching when
a single value sticks out clearly as the correct keyword. However, in this extended
abstract we limit the discussion to the simple case of a fixed branching factor.

In Fig. 2 we show the number of samples of “good” IVs that are required for
different success probabilities and different selections of the branching factor C.
For example, for C = 8 the attack requires a practical amount of 217 “good” IVs
in order to get a success probability of 80% for recovery of every keyword. The
selection of C depends heavily on the key length, where large C’s can be used
only when the key is short. For example, for a 16-byte key, using C = 8 implies a
time complexity of 816 = 248 and using C = 4 the time complexity drops to 232.

In the known (random) IV model the data complexity increases by a factor
of N , which is the expected number of IVs until a “good” one is found. With
the above parameter setting the data complexity for a known IV attack grows
to 225 whereas the time complexity remains the same 248.

5 The Fork Model

In this section we discuss a situation where many identical instances of RC4
diverge at a certain point, i.e., at a certain point they have the same state
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Fig. 3. The number of IVs that are required for different success probabilities (for the
attack on RC4 in the fork model)

(permutation and indices) and afterwards some small change to the state occurs,
causing each of the instances to evolve differently. A small change in this context
may be a change in j and possibly change to a small number of permutation
entries. We show that in this model, given a sufficient number of instances the
permutation at the divergence point can be recovered.

The attack goes iteratively over the permutation entries and recovers one
permutation value at a time. Let S be the permutation in the divergence point
and let t be an index for which the attacker wants to reveal S[t] = x. The
attacker waits until the round where the index i reaches location t and looks at
the keystream word that was emitted at that point. If the attacker is lucky, the
value x remains in location t until that round (we denote this event as A) and due
to the glimpse property the emitted value will be biased towards i−S[j] = i−x
(we denote the event where z = i− x by B). Using Lemma 1 (which is proved
in Appendix B) we estimate the probability of A with pA = 1/e and the glimpse
property guarantees that the event B occurs with probability 2/N . Assuming
independence of the events and uniform distribution of the output when both
event do not occur (when one event does not occur the probability if 0) we get

IP[x = i− z] = IP[A,B] + IP[¬A,¬B] · 1/N =
= 2/N · pA + (1− 2/N) · (1 − pA) · 1/(N − 1) ≈
≈ 2/N · pA + (1− pA) · 1/N =
= 1/N · (1 + pA) ≈
≈ 1/N · (1 + 1/e) (13)
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This probability was verified through simulations and indeed the correct x value
has a significant advantage on other guesses. Through using a voting mechanism
where votes are given to values i−z, the correct value of x is expected to notice-
ably stick out. In Fig. 3 we analyze the number of iterations that are required for
recovery of x under these circumstances. After 20,000 iterations, every permu-
tation entry is recovered with success probability of 80%. The iterative step is
repeated for each of the permutation entries and under reasonable assumptions
of independency the same data can be reused for each of the locations.

Notice that in the case where 80% of the guesses are correct, there are still
50 permutation entries that are guessed incorrectly. However, the attacker can
avoid guesses that have only small advantage and use only those with high
level of confidence. As was shown in [KM+98] having a significant part of the
permutation provides the critical mass for completion of the state recovery task.

6 Attacking the Succeeding IV Mode

While presenting a practical key recovery attack for the preceding IV mode,
Fluhrer et-al only showed is [FMS01] several sets of weak keys for the succeeding
IV mode.

However, this mode of operation “almost” realizes the fork model, where the
first rounds of the KSA use an identical part of the key (the root key) whereas
the following rounds use different part of the key (IVs). The “almost” is due to
the fact that the KSA does not output words and thus the first leakage occurs
only in the beginning of the PRGA, i.e., after N − 
K rounds that ruin N − 
K
entries from the divergence permutation.

However, this hurdle can be overcome through appropriate adjustments. In
order to reveal a single permutation entry, the attacker can direct the leakage of
this value to a fixed location 
K , which leaks through the 
thK keystream word.

In every step of the attack, the attacker fixes IV [0] and uses varying values
for the rest of the IV. After 
K rounds of using words of the root key, The index
j in round 
K depends on the “keyword” IV [0] in an additive manner and thus
every value IV [0] implies a different j�K , a different value in location 
K after
round 
K and eventually a leakage of a different permutation entry to the 
thK
keystream word.

Thus for every value of IV [0] a new value leaks to the keystream. Notice
that the keywords are used in an additive manner and thus any increase of
IV [0] causes a similar increase in j at the corresponding round and eventually
the attacker learns the permutation at the divergence point, but with a fixed
shift that depends on the unknown j�K−1, and needs to try all possible 256
shifts in order to recover the correct permutation. Notice that j�K−1 is unknown
at this stage and thus every step of the attack (with a fixed IV [0]) exposes a
permutation entry from an unknown location. Thus the attacker needs to try all
possible values for j�K−1 in order to complete the recovery of the permutation.

Since every stage of the attack needs IVs with different IV [0], data cannot
be reused for the different stages and a multiplicative factor of N should be
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considered when evaluating the amount of data that is needed for the attack,
i.e., instead of recovering the permutation with 214 keystreams and IVs the
attack needs 222 keystreams and IVs. The number of steps is proportional to the
amount of IVs.

Notice that the attack is somewhat wasty as it always works with one location
out of the 
K locations that leak information to the keystream. This attack can
thus be further optimized for at least partial reuse of the data. The optimized
attack uses only N/
K values for IV [0] that have additive differences of 
K
between them, and each of these values is reused for recovering 
K permutation
entries. This optimization improves the data complexity of the attack by a factor
of 
K and thus for a 16-byte key, the data complexity of the attack drops to 220.
However, this optimization works only in the chosen IV model.
The last step of the attack is a recovery of the root key from the permutation. An
efficient implementation of this stage is described in the appendix of [FMS01].

7 Fault Attack on RC4

In this section we describe a fault attack on RC4 that is based on realization of
the fork model.

7.1 The Attack Model

We assume that the attacker can apply several types of faults to the crypto-
graphic device; In a data fault the attacker causes some bit flipping changes to
RAM or internal registers. In a flow Fault the attacker causes small changes to
the flow of the executed program, e.g., skipping an instruction, changing the
address of accessed memory, etc.

Following [HS04] we assume that the attacker has only limited control over
the fault, that he can select the fault area but not a particular bit and that he
has no knowledge on which fault eventually occurred and when exactly had it
happened. As usually assumed in fault analysis, we assume that the attacker
can reset the system with the same key, i.e., cause the system to get back to
the original configuration, cancelling the previously made faults and reuse the
same key. This model is somewhat conservative, but more realistic than a model
where the attacker is more powerful.

7.2 The Attack

The objective of the attack is to recover the initial permutation of RC4 S0, which
is the output of the KSA and the input of the PRGA. Other permutations can be
recovered through similar approach. The attacker injects to the PRGA process
faults that change the progression of j, where in order to do that, the attacker
needs to inject either a fault to j or a fault to one of the entries of S that are
located closely after the index i.
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The identical part of the instances is the execution until the fault and the
divergence is in the fault. By reusing the analysis from Sect. 5 we conclude that
the number of faults that are required for recovery of the state that precede the
fault is 214.

8 Summary

In this paper we presented several new attacks of RC4, all relying on a combi-
nation of a leakage of state information to the keystream with a slow evolution
of the state, both of which are inherent properties of RC4 fundamental mech-
anisms. Since the leakage is from a “moving target” part of the state we could
not exploit it to attack the keystream generation of RC4 and the applicability
of the attack is limited to particular modes of operation.

We proved the common belief that throwing 256 words removes all the vul-
nerabilities of RC4 initialization to be faulty by showing that the preceding IV
mode remains weak even in this case. Despite of the fact that the attack is ap-
plicable only for a particular key-IV combination method, we believe that similar
attacks on equivalent key-IV combination methods such as exclusive-or and suc-
ceeding IV, are not out of reach. RC4 KSA is intolerably sensitive to related key
analysis and minimal control is sufficient for an attacker to direct this leakage
to desired places.

RSA Security recommends in [RSA01] on employing at least one of omitting
256 bytes and employing stronger key-IV combination method. From our findings
this recommendation turns to be insufficient as it “allows” modes of operation
that are completely insecure. Our recommendation is to avoid using RC4 without
employing both strengthening methods or at least to throw a longer prefix of
the keystream as proposed by Mironov in [Mir02] .

In addition, we presented attacks on the succeeding IV mode than are stronger
than previously known ones and a new fault attack that is comparable to known
ones in its complexity.
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A Availability of the Glimpse

The existence of the glimpse stems from the usage of permutation access of depth
two when selecting the output value. In Conjecture 1 we generalize the glimpse
in a different direction than Theorem 2 and claim that the glimpse will exist for
almost any output selection function of depth two.

We begin with defining a general output selection function. Let f, g : [N ] →
[N ] be invertible functions and denote the corresponding inverse functions by F
and G respectively. Let h : [N ] × [N ] → [N ] be a 2-parameter function that is
invertible in each of its parameters, and let H1 and H2 be the inverse functions
of h where

∀X,Y ∈ [N ], H1(X, h(X,Y )) = Y, H2(h(X,Y ),Y ) = X
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Conjecture 1 (The Generalized Glimpse Conjecture).

Let Z(S, i, j)
def
= f(S[h(S[g(i)], S[j])]) be an output selection function of an

RC4-like keystream generator. Then,

IPj∈R[N ],S∈RP[N ][S[j] = H1(F (Z(S, i, j)), g(i))] ≈ 2/N (14)

We will give the intuition behind Conjecture 1. In order to simplify the expres-
sions we define Z ′

def
= F ◦ Z and i′

def
= g(i) and thus given that Z ′(S, i, j)

def
=

S[h(S[i′], S[j])] we need to show that

IPj∈R[N ],S∈RP[N ][S[j] = H1(Z ′(S, i, j), i′)] ≈ 2/N (15)

We define two functions over the domain of RC4 states and two corresponding
events. The internal dependency function IDF (S, i′, j) is defined as h(S[i′], S[j])
and the event where i′ = IDF (S, i′, j) is denoted as AIDF . The external depen-
dency function EDF (S, i′, j) is defined as H1(Z ′(S, i′, j), i′) and the event where
S[j] = EDF (S, i′, j) is denoted as AEDF . Our arguments follow the original
proof of the glimpse.

We observe two cases. In the first case AIDF occurs. In that case AEDF

occurs with probability 1 in the same manner as the original glimpse

z′
def
= Z ′(S, i, j) = S[h(S[i′], S[j])] = S[i′] (16)

i′ = h(S[i′], S[j]) = h(z′, S[j]) (17)
S[j] = H1(z′, i′) = H1(F (Z(S, i, j)), g(i)) (18)

In the other case, IDF (S, i, j) is almost random and with the uncertainty in
S and j causes a distribution that is very close to uniform for z′. Thus the
probability of AEDF is 1/N · 1 + (1− 1/N) · 1/N ≈ 2/N .

B RC4 State Evolution

RC4 permutation evolves fairly rapidly with the generation, where on every
round two values change locations. The index i progresses in a predictive manner
traversing the permutation sequentially and thus guarantees that no location
or value is left untouched during a sequence of N rounds (it is possible that
a value is swapped with itself). The index j adds pseudo-randomness to the
state progression by jumping between the permutation entries in a seemingly
unpredicted manner. However, when concentrating on a sequence that is shorter
than N rounds, there are permutation entries which are guaranteed not to be
visited by the index i, and these entries have relatively high probability not to
be touched also by j during this sequence of rounds.

We formalize this situation in Lemma 1 and quote its proof from [Man05].

Lemma 1 (The Evolution Lemma). Let I be a set of r permutation loca-
tions. Suppose that RC4 is in a state where the predictable course of the index i
in the next k rounds avoids visiting I. Then the probability of the permutation
S k rounds later to have the values in I unchanged is approximately e−kr/N .
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Proof. The index i does not reach any of the indices in I. The index j progresses
in a pseudo-random manner and reaches each of the r positions in each of the k
rounds with probability 1/N . Failing in these kr trials results with having the set
I untouched and the probability of this event to occur is (1− 1/N)kr ≈ e−kr/N .

�

In the special case where r = 1 and k ≤ N we have a bound of 1/e for the
probability of a single value, located more than k entries ahead of i to remain
in place during the following k rounds.
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Abstract. Stream cipher Hiji-Bij-Bij (HBB) was proposed by Sarkar at
Indocrypt’03. This cipher uses cellular automata (CA). The algorithm
has two modes: a basic mode (B) and a self-synchronizing mode (SS).
This article presents the first attack on B mode of HBB using 128 bit
secret key. This is a known-pliantext guess-then-determine attack. The
main step in the attack guesses 512 bits of unknown out of the 640 bits
of the initial internal state. The guesses are done sequentially and the
attack uses a breadth-first-search-type algorithm so that the time com-
plexity is 250.

Keywords: cryptanalysis, known-plaintext attack, HBB, stream cipher.

1 Introduction

A typical stream cipher generates a long sequence of pseudo-random numbers,
known as key-streams, from a given seed (a secret key). The plaintext message
M is then XORed with the key stream to generate the ciphertext C. Thus, a
steam cipher handles each bit of plaintext separately.

In this article, we will concentrate on the stream cipher HBB, proposed by
Sarkar in Indocrypt’03 [1]. This is the first stream cipher replacing LFSR by
CA. This is a classical masking-type stream cipher, i.e. it evolves a linear and
a non-linear generator and XORs selected portions of these to produce the key
stream. Thus, the design methodology is classical and there are other ciphers like
SNOW which use the same principle. The non-linear part has some nice provable
properties. These are aimed at resisting correlation and low diffusion attacks.
The linear portion ensures a sequence of vectors with long period. Again, there
are ciphers like SNOW [4] and TURING [5] which use such sequence generators.
So, weakness in HBB is possibly in the way CA is used. The design has certain
flaws that are to be considered while suggesting new ciphers involving CA. Ours
is a guess-then-determine known-plaintext attack. The FSE’05 attack [2] was an
algebraic attack. The present attack exploits structural weaknesses in greater
depth than previously done. Some salient features of our attack are as follows:

(1) Exploits weakness in the use of CA. (2) Exploits the linearity in the mixing
of the linear part to the non-linear part. (3) Proves an interesting property of the

B. Roy (Ed.): ASIACRYPT 2005, LNCS 3788, pp. 412–424, 2005.
c© International Association for Cryptologic Research 2005



A Near-Practical Attack Against B Mode of HBB 413

nonlinear update function: Fixing the first 32 bits of the output of the nonlinear
update function ensures that there are 224 choices for each of the four 32-bit
blocks of the input. While by itself this is not a weakness, this is combined with
the first two properties to get an efficient attack.

The HBB cipher has two modes: basic mode (B) and self-synchronizing mode
(SS). So far two articles have been found in the literature dealing with crypt-
analysis of HBB. (Other articles on this topic are not known to the author.) Joux
and Muller [2] have shown that the SS mode of HBB is not secured. They have
also attacked the B mode. Their attack requires more than 250 bits of known
plaintext and more than 2142 time. Vlastimil Klima [3] has presented another
attack, marginally faster than the one in [2], on B mode. His attack requires
34 blocks of known plaintext, i.e. 34 × 27 bits of known plaintext and its time
complexity is 2140. Thus, so far the B mode of HBB, using 128-bit secret key,
seemed secured. The present work attacks only the B mode of HBB. This attack
requires 225 blocks of consecutive plaintext to be known. It guesses 512 bits
of internal state in a sequential manner, so that the time complexity does not
exceed 250. Thus, the present attack is a near-practical one and shows that the
B mode of HBB using even 128 bit secret key is also not secured.

The rest of the article is organized as follows: Section 2 describes one round
of B mode of HBB. (Understanding of cellular automata (CA) is not required
to follow this attack. Hence CA is not discussed.) Section 3 describes our first
attack having time complexity 261 for finding the initial internal state of 640
bits. Next, in Section 4, we improve this attack to get the unknown 640 bits of
initial internal state in 250 time. Finally we present our conclusion in Section 5,
followed by references.

One reviewer has pointed out that some of the ideas used in the attack has
earlier occurred in [7,8,9].

2 One Round of HBB

We start by describing one round of B mode of HBB encryption. We use two
256-bit constants given by:

R0 = ( 80ffaf46977969e971553bb599be6b2b 4b3372952308c787b84c7cce36d501e6 )16
R1 = ( dd18c62b153df31ac98e86c1910fee24 2942d51b4201eb3dc1d1a85f57b8919b )16

And, a 128-bit string x will also be written as a 4× 32 matrix

x =

⎡⎢⎢⎣
x0

x1

x2

x3

⎤⎥⎥⎦
where, x = x0‖x1‖x2‖x3 and each xi is a 32-bit string.
One Round of HBB Encryption One round of HBB encryption, i.e. encryp-
tion of i-th message block Mi, i ≥ 0, is described as follows:



414 J. Mitra

Algorithm 1. HBB Encrypt
Input: Plaintext Mi

Output: Ciphertext Ci
Internal State at the beginning of encryption:

a) Non-linear core : Ni−1 = Ni−1,0‖ . . . ‖Ni−1,3

b) Linear core : Li−1 = Li−1,0‖ . . . ‖Li−1,15

/* each substring is 32-bit long */
Update internal state and compute key stream Ki and ciphertext Ci

1. Update Linear Core /* Li = NextState(Li−1) */
1.1 LXi−1 = Li−1,0‖ . . . ‖Li−1,7 ; LYi−1 = Li−1,8‖ . . . ‖Li−1,15 ;
1.2 LXi = (LXi−1 � 1)⊕ (LXi−1 � 1)⊕ (LXi−1 ∧R0) ;
1.3 LYi = (LYi−1 � 1)⊕ (LYi−1 � 1)⊕ (LYi−1 ∧R1) ;
1.4 Li = LXi‖LYi ;

2. Half-update Non-Linear Core /* NZi = updateNLC(Ni−1) */
2.1 NVi = NLSub(Ni−1) ;/* replace each byte by its image */
2.2 NWi = Delta(NVi) ;

/* replace each word by XOR of other three words */
2.3 NXi = RotateLeft(NWi) ; /* rotate j-th word by 8 ∗ j + 4 bits */
2.4 NYi = FastTranspose(NXi) ;

/* replace each 4× 4 sub-matrix by its transpose */
2.5 NZi = NLSub(NYi) ;

3. Compute Key-Stream Ki

Ki,0 = NZi,0 ⊕ Li,0; Ki,1 = NZi,1 ⊕ Li,7;
Ki,2 = NZi,2 ⊕ Li,8; Ki,3 = NZi,3 ⊕ Li,15;

4. Compute Ni /* updated non-linear core */
Ni,0 = NZi,0 ⊕ Li,3; Ni,1 = NZi,1 ⊕ Li,4;
Ni,2 = NZi,2 ⊕ Li,11; Ni,3 = NZi,3 ⊕ Li,12;

5. Compute Ciphertext Ci
Ci = Mi ⊕Ki;

Internal State at the end of encryption: Ni and Li

3 A Simple Attack on HBB

Ours is a known-plaintext attack and we will assume that the key streams Ki

for 0 ≤ i ≤ 224 are known. (This is equivalent to knowing (Mi,Ci) pair for
0 ≤ i ≤ 224.) From the knowledge of these key streams, using a guess-then-
determine attack, we will determine the entire internal state (L0, N0) (related
to encryption of first message block M0). Sketch of our attack is given below.

Algorithm 2: Sketch of Attack against HBB
Assumption: Key streams Ki, for 0 ≤ i ≤ 224, are known.

1. Determine LX0 /* unknown 256 bits */
2. Determine LY0 /* unknown 256 bits */
3. Compute N0 = K0 ⊕ (L0,0‖L0,7‖L0,8‖L0,15)⊕ (L0,3‖L0,4‖L0,11‖L0,12)
4. Proceed forward and break the rest of the cipher.
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So, the complexity of attack is really the complexity of finding the unknown
512 bits of the linear core L0. The method for determining LX0 and LY0 will
be similar and will have same time complexities. So, we will only discuss attack
against LX0. Time complexity of our attack will be twice the time complexity of
the attack against LX0. Idea behind the attack against LX0 is presented below.

Let us write LX0 = 
‖b0b1 . . . b223 where 
 is a 32-bit string and each bi is a
bit. We first note that, knowing 
‖b0 . . . bt−1 we can compute Li,0 for 0 ≤ i ≤ t
uniquely. (See Algorithm A1, Appendix A for pseudocode.) Since Ki,0 are known
for 0 ≤ i ≤ t, we also know NZi,0 = Li,0 ⊕Ki,0 for 0 ≤ i ≤ t. But if NZi,0 is
fixed, then Ni−1,0 can have only 224 possible choices. (This result is proved in
Section 3.1.) For every fixed i, the set of all such possible choices of Ni,0 will be
denoted by Ni,0. For every i = 0, . . . t − 1, from NZi,0 (unique) and Ni,0 (one
of 224 choices) we get Li,3 = NZi,0 ⊕ Ni,0 (224 choices). The set of all possible
(224) choices of Li,3 will be denoted by Li,3. Thus, we have,

Li,3 = {NZi,0 ⊕Ni,0 : Ni,0 ∈ Ni,0}

Next we consider the update function of the linear core. Given a choice x of
Li,3, we know the middle 30 bits of corresponding choice y of Li+1,3. We will
write x⇒ y to denote this. So, given L0,3, an x1 is a valid choice of L1,3 only if
for some x0 ∈ L0,3 we get x0 ⇒ x1. But L1,3 is already obtained and we know
that x1 �∈ L1,3 is not a valid choice of L1,3. Hence, given L0,3 and L1,3, the valid
choices of L1,3 are given by the set

LV1,3|L0,3 = {x1 ∈ L1,3 : x0 ⇒ x1 for some x0 ∈ L0,3}

The super-script “V ” stands for “valid”. Similarly, given L0,3, L1,3 and L2,3, the
valid choices of L2,3 will be given by the set

LV2,3|L0,3 = {x2 ∈ L2,3 : x0 ⇒ x1 ⇒ x2 for some x0 ∈ L0,3, x1 ∈ L1,3}
=
{
x2 ∈ L2,3 : x1 ⇒ x2 for some x1 ∈ LV1,3|L0,3

}
We now define the following sets

N V
i,0 =

{
x⊕NZi,0 : x ∈ LVi,3|L0,3

}
As a convention, we take N V

0,0 = N0,0. Proceeding this way we can find N V
i,0 for

0 ≤ i ≤ t−1 and for a wrong choice of 
‖b0 . . . b223, the set N V
223,0 will be empty.

This constitutes an attack against LX0. The idea is summarized below.

Algorithm 3: Idea behind first attack against LX0

Guess 
‖b0 . . . bt−1

Compute L0,0 L1,0 . . . Lt−1,0 Lt,0 (unique choice)
Compute NZ0,0 NZ1,0 . . . NZt−1,0 NZt,0 (unique choice)
Compute N0,0 N1,0 . . . Nt−1,0 Nt,0 (224 choices)
Compute N V

0,0 N V
1,0 . . . N V

t−1,0 (shrinking sets)
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Certain finer points are to be noted. First, if at any stage N V
i,0 = φ then

N V
223,0 = φ. So, we need not compute N V

223,0 to declare a choice 
‖b0 . . . b223 of
LX0 to be wrong, and we can guess these bits in LX0 sequentially. Second, we
can compute N V

i,0 without computing LVi,3|L0,3 and without explicitly computing
even Ni,0. (This computation and reason for doing this are explained in section
3.2.) Third point is a more important one. Suppose 
 in LX0 is fixed and suppose
for all possible choices of b0 . . . bt−1, we have computed the sets N V

t,0. These sets
can be kept in a binary tree T . Root of T will be 
. For every other non-leaf node
y ∈ T , its left (right) child will be the string y‖0 (y‖1). The node represented
by x in T , with |x| = 32 + t bits, will contain the set N V

t−1,0 for x = 
‖b0 . . . bt−1

only if N V
t−1,0 �= φ. Thus T may have 2t nodes at level t. The actual number

may be less if some of the sets N V
t−1,0 are empty. (Level of root is zero.) Now

from each of the sets N V
t−1,0 at level t of T , and for each choice of bt = 0, 1, we

will compute N V
t,0. But the resulting set will be added to the tree only if it is

non-empty. It will be argued that this breadth-first type processing of sets can
be done in 248 time giving LX0.

Below the two sections (3.1 and 3.2) contain our results and algorithms to
be used in the subsequently explained attack and its complexity (Section 3.3).

3.1 Determine Ni−1,0 from NZi,0

Suppose we know NZi,0 for some i ≥ 1. Since,

NYi,0 = NLSub−1(NZi,0)

we can find out NYi,0 = (y31 . . . y0). Since FastTranspose transposes every
4 × 4 sub-matrix of its input, it is an idempotent function. Thus using NYi =
FastTranspose(NXi) we get NXi = FastTranspose(NYi) and hence,

NXi =

⎡⎢⎢⎣
y31
y30
y29
y28

∗

y27
y26
y25
y24

∗

y23
y22
y21
y20

∗

y19
y18
y17
y16

∗

y15
y14
y13
y12

∗

y11
y10
y9
y8

∗

y7
y6
y5
y4

∗

y3
y2
y1
y0

∗

⎤⎥⎥⎦
where every “ ∗ ” represents an unknown 4 × 3 matrix of bits. But NXi was
calculated as RotateLeft(NWi) and so, NWi can be computed as

NWi = RotateRight(NXi)

where j-th word of NXi is given a circular rotation by 8 ∗ j + 4 bits. Hence,

NWi =

⎡⎢⎢⎣
y3
y10
y17
y24

∗

y31
y6
y13
y20

∗

y27
y2
y9
y16

∗

y23
y30
y5
y12

∗

y19
y26
y1
y8

∗

y15
y22
y29
y4

∗

y11
y18
y25
y0

∗

y7
y14
y21
y28

∗

⎤⎥⎥⎦
where every “∗” represents an unknown 4×3 matrix of bits. Next, we note that
“Delta” is also an idempotent operation, and hence, NVi = Delta(NWi). So, if
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we write NVi,0 = v31 . . . v0 then,

v31 = y10 ⊕ y17 ⊕ y24
v27 = y6 ⊕ y13 ⊕ y20
v23 = y2 ⊕ y9 ⊕ y16
v19 = y30 ⊕ y5 ⊕ y12
v15 = y26 ⊕ y1 ⊕ y8
v11 = y22 ⊕ y29 ⊕ y4
v7 = y18 ⊕ y25 ⊕ y0
v3 = y14 ⊕ y21 ⊕ y28

Thus, given NZi,0, we know 8 specified bits of NVi,0. In particular, we know 2
bits of every byte of NVi,0. Finally note that, Ni−1,0 = NLSub−1(NVi,0) and
hence, given NZi,0 we know 8 bits of image (NLSub) of Ni−1,0. To make this
formal, let us define two functions g1(x), g2(x) : {0, 1}32 → {0, 1}8 as follows:

Function g1(x)
1. Compute y = NLSub(x) = y31 . . . y0
2. Compute a = y31y27y23y19y15y11y7y3
3. Return a

Function g2(x)
1. Compute y = NLSub−1(x) = y31 . . . y0
2. for j = 0, . . . , 7 do
3. aj = y14+4j ⊕ y21+4j ⊕ y28+4j (subscripts are computed mod 32)
4. end-do
5. Compute a = a7a6a5a4a3a2a1a0

6. Return a

Also, for a ∈ {0, 1}8, define the following sets:

N ∗(a) =
{
x ∈ {0, 1}32 : g1(x) = a

}
(1)

Then, using functions g1, g2 and sets N ∗(a), we have the following proposition:

Proposition 1. Given NZi,0, there are exactly 224 choices of Ni−1,0 given by:

Ni−1,0 = N ∗(g2(NZi,0))

In particular, every byte of Ni−1,0 can have 26 choices.

3.2 Compute N V
t+1,0 from N V

t,0

For k-bit strings x = xk−1 . . . x0 and r = rk−1 . . . r0, with k > 2, define the
following:

1. m(x) will denote the string obtained from x by deleting its MSB and LSB.
2. f(x, r) = (xk−2 . . . x0‖0)⊕ (0‖xk−1 . . . x1)⊕ (x ∧ r).
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Using this notation, y′ ∈ LVt+1,3|L0,3 if and only if y′ ∈ Lt+1,3 and, for some
choice x′ ∈ LVt,3|L0,3, we get

m(f(x′, r)) = m(y′) (2)

with r chosen suitably from definition of EvolveCA function given in HBB [1].

Lemma 1. Fix y = y31 . . . y0. Then y ∈ N V
t+1,0 if and only if y ∈ Nt+1,0 and

for some x ∈ N V
t,0 and some ε31, ε0 ∈ {0, 1},

ε31‖m(f(x⊕NZt,0, r)) ⊕m(NZt+1,0)‖ε0 = y (3)

Proof. The proof follows using equation 2.

To check if y ∈ Nt+1,0, we use the fact that,

Nt+1,0 = N ∗(g2(NZt+2,0)) = {y : g1(y) = g2(NZt+2,0)}

So, we can compute N V
t+1,0 as follows: Initialize sets D1[j], 0 ≤ j < 256 as

empty sets. For each x ∈ N V
t,0 and for every ε31, ε0 ∈ {0, 1}, we compute y as in

equation 3. Then insert y to the set D1[g1(y)]. Once we have exhausted N V
t,0,

we set N V
t+1,0 as D1[g2(NZt+2,0)]. The pseudocode is given below.

Algorithm 4. Computation of N V
t+1,0 from N V

t,0

0. for v1 = 0 to 255 do
1. D1(v1)← φ /* set initialized by φ */
2. end-do
3. for every x ∈ N V

t,0 do
4. z ← m(f(x⊕NZt,0, r))⊕m(NZt+1,0)
5. for (ε31, ε0) ∈ {0, 1}2 do
6. Set y ← ε31‖z‖ε0
7. Add y to the set D1[g1(y)]
8. end-do
9. end-do
10.N V

t+1,0 ← D1[g2(NZt+2,0)]

This computation of N V
t+1,0 has two major advantages: First, we do not need

to maintain the set Nt+1,0 (having 224 elements) explicitly and hence no time is
required to handle such sets. Second advantage is that we can compute the sets
D1[v] for 0 ≤ v < 256 without the knowledge of NZt+2,0. This is going to be
useful while finding the value of LX0.

3.3 Algorithm to Determine LX0

All valid choices of LX0 will be found and will constitute a list FX . Writing
LX0 = L0,0‖b0b1 . . . b223, we can find FX as union of sets FX(
) that represents
all valid choices of LX0 with L0,0 = 
. For a given value 
 of L0,0, we will now
construct the set FX(
). Suppose, we have a list F0(t) of tuples (y, n0, n1,D[y])
having the following interpretation:
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1. n0 represents NZt,0 when 
‖b0 . . . , bt = y,
2. n1 represents NZt+1,0 when 
‖b0 . . . , bt = y, and
3. D[y] represents N V

t,0 when 
‖b0 . . . bt = y.

Then, y is an invalid choice of 
‖b0 . . . , bt if D[y] is empty. So, we also put the
restriction on F0(t) that it will contain only those tuples (y, n0, n1,D[y]) for
which D[y] is non-empty. With this interpretation, clearly FX(
) = F0(223).
If for some t < 223 the set F0(t) is empty, then the set F0(223) is also empty.
Hence, the following steps will compute FX(
) for L0,0 = 
.

Step 1 Build list F0(0)
Using K = K0,0, compute n0 = NZ0,0 = L0,0 ⊕ K and, initialize the list
F0 by φ. Next take, K = K1,0 and for each b = b0 ∈ {0, 1}, set y ← 
‖b,
compute L1,0 from 
‖b, and then compute

n1 = NZ1,0 = L1,0 ⊕K

Define D[y] = N ∗(g2(n1)) and add the following tuple to the list F0(0):

(y, n0, n1, D[y])

provided the set D[y] is non-empty. Thus, F0(0) now looks like the following:

F0(0) = {(
‖0, n0, n1,D[
‖0]) , (
‖1, n0, n1,D[
‖1])}

The set D[
‖0] represents N V
0,0 for L0,0 = 
 and b0 = 0. The other sets

in the list F0(0) has similar interpretations. This completes our compu-
tation of F0(0). In the remaining steps, we will build list F0(t + 1) from
F0(t).

Step 2 Set t← 0.
Step 3 Compute F0(t+ 1) from F0(t)

For each tuple in F0(t), we first generate sets D1(v1) for 0 ≤ v1 < 256 using
Algorithm 3. Then for every value of b ∈ {0, 1}, we compute the correspond-
ing N V

t+1,0 as follows:
1. Compute Lt+2,0 from y‖b as in Algorithm A2, Appendix A.
2. Compute NZt+2,0 = Lt+2,0 ⊕Kt+2,0,
3. Set D[y‖b] = D1(g2(NZt+2,0)),
4. Add a tuple (y‖b, n1,NZt+2,0,D[y‖b]) to F0(t+1) only if D[y‖b] is non-

empty.
Note that, y‖b represents a valid choice of 
‖b0 . . . btbt+1 if and only if the
set D[y‖b] is non-empty. For such valid choices of 
‖b0 . . . btbt+1, the corre-
sponding tuples are put in a list F0(t+ 1). Once, we have exhausted all the
elements in the list F0(t), we have generated F0(t+ 1). Again, elements in
F0(t + 1) will have interpretations (similar to that) given in the beginning
of this step. Finally, this computation of F0(t+ 1) from F0(t) is presented
in the following algorithm.
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Algorithm 5. Compute F0(t+ 1) from F0(t)
0. for each (y, n0, n1,D[y]) ∈ F0(t) do
1. Compute D1(0), . . . ,D1(255) from D[y] using Algorithm 3.
2. for b ∈ {0, 1} do
3. Compute n2 = NZt+2,0 from y, b and Kt+2,0.
4. Set D[y‖b] = D1[g2(n2)].
5. if D[y‖b] is non-empty
6. then Add tuple (y‖b, n1, n2,D[y‖b]) to F0(t+ 1).
7. end-if
8. end-do
9. end-do

Step 4 t← t+ 1
Step 5 Check for loop

If now t < 223 and the list F0(t) is non-empty, go to Step 3.
Step 6 Compute FX(
)

Set FX(
)← F0(t).

We now argue that this process does not lead to handling of infinite sets. We
have seen empirically that for every choice of NZ0,0, NZ1,0 and NZ2,0, the set
D[
‖b0b1] has less than 221 elements for each possible choice of 
‖b0b1. In other
words, the size of D[
‖b0b1] is at most 1/8-th of the size of D[
‖b0]. But for every
b0, there are two choices of b1. Hence, if ηt denotes the total number of 32-bit
strings contained in the D[ ] sets of list F0(t), then

η1 ≤
1
4
η0 = 2−2η0

Proceeding this way, we will have ηt ≤ 2−tη0. Note that, F0(0) contains two
tuples, each of which contains a set D[ ] of 224 elements. Thus, η0 = 224 + 224 =
225. So, the total number of 32-bit strings contained in all F0(t) for 0 ≤ t ≤ 223
is

223∑
t=0

ηt <
∑
t≥0

ηt = η0
∑
t≥0

2−2t < 226

Now, from Algorithms 4 and 5, it is clear that, during the computation of
F0(t+ 1) from F0(t), each string from each set D[ ] in F0(t) will be processed
only once. And for each such processing, we will consider four possible choices
of ε31 and ε0. Hence the total number of computation of strings in the entire
process of finding FX(
) is given by

4×
223∑
t=0

ηt < 4× 226 = 228 (4)

Now note that there are 232 choices of 
 and so, we have proved the following:

Proposition 2. For every fixed value of 
, the set FX(
) can be computed in less
than 228 time. And so, time complexity of finding the set FX is 232× 228 = 260.
In other words, time complexity of finding LX0 is 260.
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Since each element in F0(t) gives rise to at most two tuples in F0(t + 1),
and since F0(0) has two tuples, number of tuples in F0(t) will be at most 2t+1.
The D[ ] sets in all these tuples will together contain ηt = 225−2t strings. Hence
for t > 8, some sets D[ ] are bound to be empty. For example, for k = 10, the
list F0 is supposed to contain at most 211 tuples, and the D[ ] sets will have
at most 25 strings. So, F0(10) can not contain more than 25 valid tuples (with
corresponding non-empty set D[ ]). Thus, the list F0( ) will go on shrinking for
t > 8. Hence, we are going to get a singleton set FX .

Complexity of First Attack Against HBB: By Proposition 2, LX0 can be
found in 260 time. Time complexity for finding LY0 will be the same and so, time
complexity of our first attack against B–mode of HBB has time complexity:

260 + 260 = 261.

4 A Faster Attack

This attack is almost same as the first attack, except for computation of the set
N V
t,0. We first note the following: Fix t ≥ 0. Let Nt,0 = H‖L where H (L) is a

16-bit string and “‖” represents concatenation of strings. Then, by Proposition
1, H (L) will have 212 choices. We will denote the collection of all such choices
of H (L) by HN t,0 (LN t,0) and write Nt,0 = HN t,0‖LN t,0. We will now mimic
the computation of N V

t,0 from the sets Ni,0 0 ≤ i ≤ t + 1. In the same way, we
can compute the set HN V

t,0 from the sets HN i,0 0 ≤ i ≤ t+ 1. The pseudocode
is given in Algorithm A3, Appendix A. Similarly, we can compute LN V

t,0. (For
pseudocode, see Algorithm A4, Appendix A.) Clearly, N V

t,0 will be a subset of
HN V

t,0‖LN V
t,0. If for any t, one of the sets HN V

t,0 or LN V
t,0 is empty, so will be

N V
t,0. So, we will only compute HN V

t,0 for t ≥ 0. The computation follows similar
steps as in Section 3.3. Thus, our faster attack can be described by the following
algorithm:

Algorithm 6. Sketch of faster attack

Guess 
‖b0 . . . bt−1

Compute L0,0 L1,0 . . . Lt−1,0 Lt,0 (unique choice)
Compute NZ0,0 NZ1,0 . . . NZt−1,0 NZt,0 (unique choice)
Compute HN 0,0 HN 1,0 . . . HN t−1,0 HN t,0 (212 choices)
Compute HN V

0,0 HN V
1,0 . . . HN V

t−1,0 (shrinking sets)

For computations of HN V
t,0, we introduce the following functions:

Function g3(x) : {0, 1}16 → {0, 1}4
1. Compute y = NLSub(x) = y15 . . . y0
2. Compute a = y15y11y7y3
3. Return a
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Function g4(x) : {0, 1}32 → {0, 1}4
1. Compute y = NLSub−1(x) = y31 . . . y0
2. for j = 0, . . . , 7 do
3. aj = y14+4j ⊕ y21+4j ⊕ y28+4j (subscripts are computed mod 32)
4. end-do
5. Compute a = a7a6a5a4

6. Return a

Function g5(x) : {0, 1}32 → {0, 1}4
1. Compute y = NLSub−1(x) = y31 . . . y0
2. for j = 0, . . . , 7 do
3. aj = y14+4j ⊕ y21+4j ⊕ y28+4j (subscripts are computed mod 32)
4. end-do
5. Compute a = a3a2a1a0

6. Return a

Now for a ∈ {0, 1}4, defining the sets J ∗(a) =
{
x ∈ {0, 1}16 : g3(x) = a

}
, we

get the following from Proposition 1:

HN i−1,0 = J ∗(g4(NZi,0)) and, LN i−1,0 = J ∗(g5(NZi,0))

where each set J ∗( ) contains 212 elements. The pseudocodes are given in Algo-
rithm A3 and A4 of Appendix A. We have seen empirically that, for t ≥ 0,

size of HN V
t+1,0

size of HN V
t,0

<
1

2
√

2
and,

size of LN V
t+1,0

size of LN V
t,0

<
1

2
√

2

So, in this revised faster attack, each initial tuple contains one set, of cardinality
212 (as opposed to 224 elements in the first attack). Define πt to be the sum of
cardinalities of all surviving HN V

t,0 sets, for all values of 
‖b0 . . . bt with fixed 
.
Then, πt ≤ 1√

2
πt−1. So, the complexity of finding FX(
) for a given 
 is

4×
223∑
t=0

πt < 4× 213 ×
223∑
t=0

(
1√
2

)t
≤ 217

as opposed to 228 (equation 4) for the first attack. So, this revised attack is faster
than the first attack by a margin of 211(= 228/217). In other words, the time
required to find L0 is given by: 261/211 = 250.

5 Conclusion

We have presented an attack against the B mode of HBB. The time complexity of
the attack is 250 requiring 225 blocks of plaintext to be known. Thus, HBB using
even 128-bit secret key is also not secured. We think there are certain design
weaknesses in HBB shown by our attack: (1) Improper use of CA generator.



A Near-Practical Attack Against B Mode of HBB 423

knowing any p bits of the CA at any point of time ensures that one knows p− 2
bits of the CA in the next time point. This is crucial and previously unobserved
property of the CA. Compared to an LFSR, it is this property that makes CA
much more susceptible to guess-then-determine attacks. This is a lesson on the
secure CA usage. (2) The key stream is produced by XORing a portion of the
linear and the nonlinear part. Further the nonlinear part is updated by mixing
a separate portion of the linear part into it. While this mixing is necessary, the
manner in which it is done is not correct. The linear part is simple XORed
into the nonlinear part creating a weakness that can again be exploited in a
guess-then-determine attack. (This property allows the recent algebraic attack
on HBB.) On the other hand, SNOW also updates the nonlinear part by mixing
with the linear part. But this mixing is effected by an addition modulo 232. In
fact, as has been recently observed that if this addition is replaced by a XOR,
SNOW also becomes weak and susceptible to algebraic attacks [6]. (3) Too much
of the state is revealed by HBB. In order to achieve efficiency, the entire nonlinear
part is mixed with a portion of the linear part to produce the 128-bit keystream
block. Again this is an undesirable thing to do and makes the verification stage
of the guess-then-determine attack easier. Thus, to develop a cipher using CA,
a designer should avoid the above pitfalls.

If an LFSR is used instead of a CA, then the described attack will not hold.
Whether the attack can be modified to also hold for LFSR is still an open
problem. Implementation of the attack can be obtained from the author.
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Appendix A

Algorithm A1. Compute Li,0 0 ≤ i ≤ t from ‖b0 . . . bt−1

1. R0,t ← most significant 32 + t bits of R0

2. x ← ‖b0 . . . bt−1; L0,0 =  ;
3. for i = 0 to t − 1 do
4. x ← (x � 1) ⊕ (x � 1) ⊕ (x ∧R0,t) ;
5. Li+1,0 = most significant 32 bits of x ;
6. end-do

Algorithm A2. Compute Lt+2,0 from ‖b0 . . . bt+1

1. x ← ‖b0 . . . btbt+1;
2. for i = 0 to t + 1 do
3. x ← (x � 1) ⊕ (x � 1) ⊕ (x ∧R0,t+1) ;
4. end-do
5. Lt+2,0 = most significant 32 bits of x ;

Algorithm A3. Computation of HN V
t+1,0 from HN V

t,0

1. for v1 = 0 to 15 do
2. HD1(v1) ← φ /* set initialized by φ */
3. end-do
4. NZt+1,0 = nzt+1,1‖nzt+1,0 /* each sub-string has 16 bits */
5. NZt,0 = nzt,1‖nzt,0 /* each sub-string has 16 bits */
6. for every x ∈ HN V

t,0 do
7. z ← m(f(x ⊕ nzt,1, r1)) ⊕ m(nzt+1,1)
8. for (δ31, δ16) ∈ {0, 1}2 do
9. Set z∗ ← δ31‖z‖δ16

10. Add z∗ to the set HD1(g3(z∗))
11. end-do
12. end-do

13. HN V
t+1,0 ← HD1(g4(NZt+2,0))

Algorithm A4. Computation of LN V
t+1,0 from LN V

t,0

1. for v1 = 0 to 15 do
2. LD1(v1) ← φ /* set initialized by φ */
3. end-do
4. NZt+1,0 = nzt+1,1‖nzt+1,0 /* each sub-string has 16 bits */
5. NZt,0 = nzt,1‖nzt,0 /* each sub-string has 16 bits */
6. for every x ∈ LN V

t,0 do
7. z ← m(f(x ⊕ nzt,0, r0)) ⊕ m(nzt+1,0)
8. for (δ15, δ0) ∈ {0, 1}2 do
9. Set z∗ ← δ15‖z‖δ0

10. Add z∗ to the set LD1(g3(z∗))
11. end-do
12. end-do
13. LN V

t+1,0 ← LD1(g5(NZt+2,0))

Here, r1 and r0 are chosen suitably from R0 (Section 2).
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Abstract. In this paper, we revisit the famous Davies-Murphy crypt-
analysis of DES. First we improve its complexity down to the analysis
of 245 chosen plaintexts, by considering 6 distributions instead of 7. The
previous improvement of the attack by Biham and Biryukov costed 250

known plaintexts. This new result is better than differential cryptanaly-
sis but slightly worse than linear cryptanalysis. Secondly, we explore the
link between this attack and other cryptanalysis techniques, in particular
linear cryptanalysis.

1 Introduction

DES (Data Encryption Standard) is a popular encryption algorithm published
in the late 70’s by the American National Bureau of Standards (NBS) for gov-
ernmental use [12]. DES is a block cipher encrypting blocks of data of length 64
bits under a secret key of length 56 bits. DES quickly became a popular cipher
and is still widely used today. Although it has been replaced by the more recent
AES [13], DES is still an attracting topic for cryptographers. Indeed 64-bit block
algorithms remain in use in many cryptographic devices and the migration to
AES is quite slow.

Given the large amount of research on the topic, DES has surprisingly well
resisted to cryptanalysis. In practice, the best way of attacking DES is by brute
force on the 56 bits of the key. This is feasible with large resources and can be
achieved using a dedicated hardware or a large cluster of standard machines [7].
Another topic of analysis has been the research of shortcut attacks (faster than
exhaustive search). Several results have been published since the early 90’s :

– Differential Cryptanalysis [4] has been the first published theoretical
cryptanalysis of DES. This technique, proposed by Biham and Shamir, re-
quires to encrypt (under the same key) 247 chosen plaintexts.

– Linear Cryptanalysis [11] was published shortly after by Matsui. It is
slightly more efficient than Differential Cryptanalysis, since it requires about
243 known plaintexts. This attack was implemented by Matsui and the ex-
perience was repeated afterwards and even slightly improved [8, 9, 15].

B. Roy (Ed.): ASIACRYPT 2005, LNCS 3788, pp. 425–442, 2005.
c© International Association for Cryptologic Research 2005
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Table 1. Summary of Cryptanalysis of DES

Cryptanalysis Technique Time Complexity Data Complexity
Exhaustive Search 256 1 known plaintext
Linear Cryptanalysis [11] 243 243 known plaintexts
Bi-Linear Cryptanalysis [5] � 243 � 243 known plaintexts
Differential Cryptanalysis [4] 247 247 chosen plaintexts
Davies-Murphy Cryptanalysis [3, 6] 250 250 known plaintexts
This paper 245 245 chosen plaintexts

– Bi-Linear Cryptanalysis [5] was published recently at Crypto 2004. It is
an extension of Linear Cryptanalysis using some particular quadratic ap-
proximations instead of linear ones. Its complexity is roughly the same as
Linear Cryptanalysis and the two techniques appear to be closely related.

– Davies-Murphy Cryptanalysis [6] is a dedicated attack against DES.
The starting point was the observation by Davies that adjacent pairs (and
triplets) of S-boxes in DES produced unbalanced output. At first, it was
believed the attack was slower than exhaustive search. However, in 1995,
Biham and Biryukov [3] demonstrated how to improve these results. Their
resulting attack costs 250 known plaintexts, which is worse than Linear or
Differential cryptanalysis, but still represents a theoretical break of DES.

– There exists other attacks like differential-linear attack or partitioning at-
tacks.

In this paper, we propose a further improvement of the Davies-Murphy crypt-
analysis. Our new attack requires to encrypt and process 245 chosen plaintexts,
in order to recover the secret key. Therefore our results place the attack between
linear cryptanalysis and differential cryptanalysis in terms of complexity (see
Table 1).

Also, our improved attack is very closely related to linear cryptanalysis (we
use a biased linear combination of intermediate bits). It is already well known
(with Biham’s work [2] in particular) that Matsui’s attack and Davies-Murphy
attack are closely related. In Section 4, we further explore this relation in the
general case. We prove that linear distinguishers become almost optimal after
several convolutions, which explains the convergence observed between the com-
plexities of both attacks. It also shows that Davies-Murphy cryptanalysis cannot
significantly outperform linear cryptanalysis.

2 DES and Davies-Murphy Cryptanalysis

2.1 DES

DES [12] was published in 1977. It is a Feistel cipher (see Figure 1) with 16
rounds. DES operates on a 64-bit block of data, which is split in two halves of
equal length.

The round function F of DES (also see Figure 2) first expands the state
from 32 to 48 bits using a linear expansion E. Then a 48-bit subkey K is added
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Fig. 1. General Structure of a Feistel cipher

bitwise to the state before a layer S of S-boxes is applied. This layer is built with
8 different S-boxes applied in parallel, each taking 6 input bits and producing
4 output bits. Therefore the layer S reduces the state size from 48 to 32 bits.
Finally the state is permuted with a function P . Therefore

F (x) = P ◦ S(K ⊕ E(x))

Even though this round function is not bijective, the Feistel network remains
invertible by construction. However a consequence of the non-invertibility is that
for a given key, some outputs are produced more often than others by the round
function F . This causes a natural imbalance in the cipher. The general idea of
Davies-Murphy cryptanalysis is to take advantage of this property.

2.2 Pairs of Adjacent S-Boxes

Any pair of adjacent S-box of DES "shares" two input bits (see Figure 2). To
detail this phenomenon, we focus on the pair of S-boxes (S1, S2) and call (V1, V2)
the corresponding outputs. We want to observe the distribution of (V1, V2) for a
fixed key and a random round input.

S8

PERMUTATIONPERMUTATION

SUBKEY ADDITION

S1 S2 S3 S4 S5 S6 S7

Fig. 2. The round function F of DES
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The Output of Adjacent S-Boxes is Not Balanced
Let {xi}i=1...32 be the round input bits and {ki}i=1...48 the bits of the subkey K.
It directly follows from the specifications of DES that the input of S1 - denoted
A = (a1, ..., a6) - is

A = (x32, x1, x2, x3, x4, x5)⊕ (k1, k2, k3, k4, k5, k6)

Similarly, the input of S2 - denoted B = (b1, ..., b6) - is

B = (x4, x5, x6, x7, x8, x9)⊕ (k7, k8, k9, k10, k11, k12)

An important observation is that x4 and x5 are used twice : once in A and once
in B. Suppose that the xi’s are random, then A and B are also random, except
they have to verify the constraints :

a5 ⊕ b1 = k5 ⊕ k7 (1)
a6 ⊕ b2 = k6 ⊕ k8 (2)

Hence for a pair of adjacent S-boxes, like (S1, S2), the output distribution de-
pends on two key bits s = k5 ⊕ k7 and t = k6 ⊕ k8.

The Imbalance Depends on 1 Key Bit Only
DES S-boxes have a very particular form. Indeed, when the leftmost and right-
most input bits are fixed, each Si performs a permutation of the remaining 4
input bits. A subtle consequence of this property is that the distribution of
(V1, V2) does not depend on (s, t) but only on s ⊕ t. In this section, we explain
why this property is true.

Fix a target output called (z1, z2). Each zi has exactly 4 preimages due to
the row structure of the DES S-boxes. Hence there are 4 inputs of S1 (one in
each row of the S-box) such that V1 = z1. Similarly 4 inputs of S2 yield V2 = z2.
The total number of preimages of (z1, z2) is thus 4× 4 = 16 where each solution
is formed with an input of S1 combined with an input of S2. Let N(s,t) be the
number among these 16 solutions that also satisfy the constraints (1) and (2) on
s and t. Clearly,

N(0,0) +N(0,1) +N(1,0) +N(1,1) = 16 (3)

For a fixed key, the probability p(z1, z2) to obtain the output (z1, z2) is related
to the quantity N(s,t) by the formula

p(s,t)(z1, z2) = N(s,t) × 2−10

Besides we can use symmetry arguments : since the bit a6 is used to index the
rows of the S-box S1, it is well balanced among all preimages. So exactly half
of the 4 S1-preimages of z1 satisfy a6 = 1. Since all preimages of (z1, z2) are
obtained by choosing independently a S1-preimage of z1 and a S2-preimage of
z2, then t = a6 ⊕ b2 is balanced among these 16 preimages and :

N(0,0) +N(1,0) = N(0,1) +N(1,1) = 8 (4)
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Using the same symmetry argument on the bit b1 we see that

N(0,0) +N(0,1) = N(1,0) +N(1,1) = 8 (5)

Putting together (4) and (5) we deduce :

N(0,0) = N(1,1)

N(0,1) = N(1,0)

Hence the output distribution of adjacent S-boxes depends only on the key-
dependent bit k defined as

k = s⊕ t = k5 ⊕ k6 ⊕ k7 ⊕ k8

An Example
Two output distributions are therefore possible for (S1, S2) depending on the
key-dependent bit k. Call D0 (resp. D1) the distribution corresponding to the
case k = 0 (resp. k = 1). For instance D1(z1, z2) is the probability that the
output of (S1, S2) is (z1, z2) when k = 1.

The full distribution is represented in Table 2. It is interesting to notice that
D0 and D1 are symmetric : they sum up to the uniform distributions. Denote
by a single variable x the eight bits of (z1, z2). Then :

D0(x) +D1(x)
2

=
1

256

Hence, although the output is not balanced for a fixed key, it is globally balanced
over all keys.

2.3 The Resulting Imbalance on 16 Rounds

Since DES is a Feistel cipher, the XOR of plaintext and ciphertext is the XOR of
8 round outputs (see Figure 1). We focus on the output of adjacent S-boxes, like

Table 2. Output distributions for (S1, S2). Values in the table should be divided by
1024.

���z2
z1 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

00 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
01 5 5 4 3 4 4 3 4 3 4 6 4 4 5 3 3 3 3 4 5 4 4 5 4 5 4 2 4 4 3 5 5
02 2 2 4 6 4 4 6 4 6 4 0 4 4 2 6 6 6 6 4 2 4 4 2 4 2 4 8 4 4 6 2 2
03 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
04 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
05 3 3 4 5 4 4 5 4 5 4 2 4 4 3 5 5 5 5 4 3 4 4 3 4 3 4 6 4 4 5 3 3
06 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
07 5 5 4 3 4 4 3 4 3 4 6 4 4 5 3 3 3 3 4 5 4 4 5 4 5 4 2 4 4 3 5 5
08 5 5 4 3 4 4 3 4 3 4 6 4 4 5 3 3 3 3 4 5 4 4 5 4 5 4 2 4 4 3 5 5
09 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
10 6 6 4 2 4 4 2 4 2 4 8 4 4 6 2 2 2 2 4 6 4 4 6 4 6 4 0 4 4 2 6 6
11 3 3 4 5 4 4 5 4 5 4 2 4 4 3 5 5 5 5 4 3 4 4 3 4 3 4 6 4 4 5 3 3
12 5 5 4 3 4 4 3 4 3 4 6 4 4 5 3 3 3 3 4 5 4 4 5 4 5 4 2 4 4 3 5 5
13 3 3 4 5 4 4 5 4 5 4 2 4 4 3 5 5 5 5 4 3 4 4 3 4 3 4 6 4 4 5 3 3
14 3 3 4 5 4 4 5 4 5 4 2 4 4 3 5 5 5 5 4 3 4 4 3 4 3 4 6 4 4 5 3 3
15 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

Case k = 0 Case k = 1
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S1 and S2.1 For these 8 bits, unbalanced distributions (like the one described in
Table 2) are produced at each round. After XORing these outputs, the result is
a convolution of several distributions of the form Dk.

At first, one could expect the convolution of t output distributions to depend
on t key-dependent bits, i.e. one bit per distribution. However it can easily be
shown that only the parity of these t bits matters. For instance, consider the
distribution D1 ×D1 obtained by the convolution of D1 with itself.

D1 ×D1(x) =
∑

a

D1(a) D1(a⊕ x)

=
∑

a

(
2

256
−D0(a)

)(
2

256
−D0(a⊕ x)

)
=

4
256

− 2
256

− 2
256

+
∑

a

D0(a) D0(a⊕ x)

=
∑

a

D0(a) D0(a⊕ x)

= D0 ×D0(x)

So it is equivalent to compose D0 with itself or D1 with itself. More generally
only matters the parity of the t key-dependent bits involved. By extension, we
simply denote Dt

0 (resp. Dt
1) the distribution after t convolutions when the parity

bit is 0 (resp. 1). If an attacker can efficiently distinguish these two distributions,
he learns one bit of information about the key. However, this analysis requires
a large amount of pairs (plaintext, ciphertext) because distributions are almost
uniform after a few convolutions.

2.4 Application to Cryptanalysis

The problem of distinguishing two distributions is a classical topic in the litera-
ture, since it is related to many cryptanalysis problems (see [1] for example). In
the particular case of DES, the problem is to distinguishing D8

0 from D8
1 . One

of these two distributions should be observed when XORing 8 appropriate bits
from the plaintext and the ciphertext.

Davies and Murphy estimated in [6] the number of samples necessary to
distinguish reliably theses 2 distributions. For several pairs of adjacent S-boxes,
these results are summarized in Table 3. The results depend highly on which pair
is considered. In particular, (S7, S8) is the most favorable pair for the attack,
although it falls short above the 256 limit. Therefore it was first believed that
Davies-Murphy cryptanalysis could not break DES.

Later, further improvements of Davies-Murphy cryptanalysis have been pro-
posed. Biham and Biryukov suggested to use 7 convolutioned distributions in-
stead of 8. So their approximation no longer takes into account the full DES but
only 15 rounds and accordingly an additional analysis is needed to handle the
1 After the permutation P , the corresponding bits are 2, 9, 13, 17, 18, 23, 28 and 31.
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Table 3. Number of known plaintext needed for a 97% success rate

Pair of S-boxes (1, 2) (2, 3) (3, 4) (4, 5) (5, 6) (6, 7) (7, 8) (8, 1)

Complexity 266.0 269.3 285.6 270.6 271.6 266.0 256.6 277.3

first (or last) round. The resulting attacks works by processing only 250 known
plaintexts, which is better than exhaustive search.

More recently, other extensions of Davies-Murphy Cryptanalysis were pub-
lished. Pornin analyzed how to improve the resistance against the attack [14],
and Kunz-Jacques et al. suggested to use the attack for side channel analysis [10].

3 Improving Davies-Murphy Cryptanalysis

In this section, we propose a new improvement of Davies-Murphy cryptanalysis.
Our general idea is to use the convolution of only 6 distributions of round out-
puts (Davies and Murphy used 8 distributions [6], Biham and Biryukov only 7
distributions [3]). Therefore we approximate the behavior of only 13 rounds of
DES. We take into account the 3 remaining rounds, but chosen plaintext is then
needed, and several additional algorithmic tricks must be used.

3.1 General Framework

Like many statistical cryptanalysis, our attack is decomposed in three main
phases.

– First we identify an internal object in the cipher that does not behave ran-
domly. This statistical imbalance can be used to distinguish its behavior
from a random one. Generally, such an object needs to be predictable from
the plaintext, the ciphertext and eventually several key bits.

– Then we encrypt a large number of (chosen) messages and remember only a
small part of information about each result. Typically, we store the number
of occurrences of a small pattern of plaintext/ciphertext bits.

– Finally, we reconstruct the internal object from the collected data. This
phase generally contains some partial exhaustive search and the statistical
properties of the object are used as a stopping condition. Eventually we want
to retrieve the secret key faster than exhaustive search.

3.2 The Internal Object

Davies-Murphy cryptanalysis targets the distribution of 8 bits from the round
output, which are obtained from 2 adjacent S-boxes. After t convolutions, the
resulting distribution is denoted Dt

0 or Dt
1 depending on the value of a key-

dependent parity bit. Previous papers [3, 6] require to distinguish between these
two distributions. Our attack has two important differences.
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Table 4. Comparison of several distinguishers for Davies-Murphy cryptanalysis

Pair of S-boxes (1, 2) (2, 3) (3, 4) (4, 5) (5, 6) (6, 7) (7, 8) (8, 1)

Opt. Dist. t = 1 24.4 24.1 26.8 24.7 25.4 25.1 24.2 25.7

Best. Lin. Dist. t = 1 28 28.83 210.83 28.83 28.83 28 26.83 29.66

Opt. Dist. t = 6 247.9 249.6 262 250.9 251.9 247.9 240.8 255.9

Best. Lin. Dist. t = 6 248 253 265 253 253 248 241 258

Opt. Dist. t = 8 264 267.3 283.6 268.6 269.6 264 254.6 275.3

Best. Lin. Dist. t = 8 264 270.6 286.6 270.6 270.6 264 254.6 277.3

First we need to distinguish one of these two distributions (it does not mat-
ter whether the parity bit is 0 or 1 due to symmetry properties) from a uniform
distribution. Secondly, to reduce the cost of the data collection, we propose to
focus on the linear combination of these 8 bits with the strongest bias. Natu-
rally, such a linear distinguisher cannot be more efficient than the optimal
distinguisher, but it requires the storage of only 1 bit of information (instead
of 8 bits) which turns out to be crucial for the data collection and data analysis
phase.

Table 4 compares the samples needed by the optimal distinguisher and the
best linear distinguisher for a fixed probability of success.

The complexities obtained are very similar for both distinguishers. This com-
parison is further developed in Section 4. Here we are interested by t = 6 and
target the most favorable pair of S-box, i.e. (S7, S8). We computed that the best
linear combination λ is

λ(X) = x5 ⊕ x7 ⊕ x12 ⊕ x21 ⊕ x22 ⊕ x27 ⊕ x32

where X = (x1, . . . , x32) is the output of the round function F . We have

Pr[λ(X) = 1] = 0.5 (1± 2−3.4) = 0.5± 0.046875

depending on the key. After 6 convolutions, we have

Pr[λ(X) = 1] = 0.5 (1± (2−3.4)6) = 0.5 (1± 2−20.5)

The amount of data needed for the corresponding distinguisher is about 241

samples.

3.3 The Data Collection

In the following we do not take into account the initial and the final permutation
of DES. Let (pi)i∈1,...,64 denote the plaintext bits. The left branch of the plaintext
is called pL = (p1, . . . , p32) and the right branch pR = (p33, . . . , p64). Similar
notations are used for the ciphertext bits ci. In this data collection phase, we
encrypt n messages that verify
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Fig. 3. Summary of the data collection phase

– The left branch of the plaintext pL is chosen at random
– 14 bits of the right branch are also random : (p50, . . . , p63). These bits are

involved only in S-boxes S5, S6, S7 and S8.
– The 18 remaining plaintext bits are set to an arbitrary but constant value.

Given the degrees of freedom, n cannot exceed 246. For each encryption, we
store the following piece of information

– The bit λ(pR)⊕ λ(cR)
– The 14 bits (p50, . . . , p63) from the plaintext, which are involved in the S-

boxes S5, S6, S7 and S8 of the first round.
– The 10 bits (p1, p24, . . . , p32) from the plaintext, which are involved in the

S-boxes S7 and S8 of the second round.
– The 10 bits (c1, c24, . . . , c32) from the ciphertext, which are involved in the

S-boxes S7 and S8 of the last round.

Hence we have a pattern of 1 + 14 + 10 + 10 = 35 bits to store. For sake of
efficiency, we only store the number of occurrences of each pattern in a table.
This requires a table of size 235, where each entry in the table is a counter2.

This data collection phase is detailed in Figure 3. X and Y denote two
intermediate states in the right branch of the Feistel. U is the output of the
2 Two bytes should be sufficient to store the counter, since each pattern occurs in

average 245 × 2−35 = 1024 times.
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1-st round, V the output of the 2-nd round and W the output of the 16-th
round. X ⊕ Y is the XOR of 6 round outputs so λ(X ⊕ Y ) is not uniformly
distributed according to the results of Section 3.2. However this object is not
directly accessible. The purpose of storing these pieces of information about each
message is to later predict λ(X ⊕ Y ) in the data analysis phase.

3.4 The Data Analysis

We want to predict λ(X ⊕ Y ) from the data collected previously. For that pur-
pose, we use the following relation :

λ(X ⊕ Y ) = λ(pR)⊕ λ(cR)⊕ λ(V )⊕ λ(W ) (6)

Notation Ui, Vi and Wi is used to denote the bits from U , V and W .
The general idea of the attack is to perform an exhaustive search on a portion

of the key bits. The pattern bits previously stored allow to determine the value of
λ(V ) and λ(W ) in each case. Hence we determine all the terms involved in (6) and
eventually predict how many times λ(X⊕Y ) is equal to 1 among the samples. For
the correct guess, this number should be significantly far from half of the samples.

Unfortunately, such a direct approach is way too expensive. Hence we need
to decompose the attack in several steps. At each step, we only guess a few key
bits, derive some intermediate information, and immediately get rid of what is
no longer needed in the initial pattern.

Let us detail the first step. The starting point is the table built in the
data collection phase. We refer to it as T0. Guess the following 6 bits from
the secret key : (K7,K21,K22,K39,K53,K63). They are XORed to the bits
(c28, c29, c30, c31, c32, c1) before S-box S8 at round 16. Hence we can determine
S8’s output and in particular the combination W5 ⊕W21 ⊕W27, which is a por-
tion of the term λ(W ). After this step, 4 bits from the ciphertext are no longer
needed. Thus we replace T0 by a new table T1 of size only 231 where the number
of occurrences of the following 31-bit pattern is stored :

– The bit λ(pR)⊕ λ(cR)⊕W5 ⊕W21 ⊕W27

– The 14 bits (p50, . . . , p63) from the plaintext
– The 10 bits (p1, p24, . . . , p32) from the plaintext
– The 6 bits (c24, . . . , c29) from the ciphertext, which are involved in the S-box

S7 of the last round.

In the second step, we guess 6 additional key bits which are involved in S7

at round 16 : K4,K6,K23,K28,K29,K46. Up to this point, 12 key bits have
been guessed. Then we use the remaining 6 ciphertext bits in T1 to predict
W7⊕W12⊕W22⊕W32. Now we know all of λ(W ) and can get rid of all ciphertext
bits. Hence we replace T1 by a new table T2 where the number of occurrences of
the following 25-bit pattern is stored :

– The bit λ(pR)⊕ λ(cR)⊕ λ(W )
– The 14 bits (p50, . . . , p63) from the plaintext
– The 10 bits (p1, p24, . . . , p32) from the plaintext
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Table 5. Successive steps of the data analysis phase

Step Key bits guessed Total bits guessed Old table New table Time complexity

0 - 0 - 235 235

1 7, 21, 22, 39, 53, 63 6 235 231 241

2 4, 6, 23, 28, 29, 46 12 231 225 243

3 37, 54 14 225 223 239

4 5, 30, 47 17 223 219 240

5 15, 20, 38, 61 21 219 215 240

6 13, 14, 31, 45, 55, 62 27 215 211 242

7 3 internal bits 30 211 27 241

8 4 internal bits 34 27 21 241

Similarly, the next steps of the analysis allow us to predict the term λ(V )
in relation (6). To that purpose, we first need to predict some bits of U . These
steps are detailed in Appendix A.

Table 5 summarizes the successive steps of this data analysis phase. At each
step, the complexity corresponds to the number of bits guessed multiplied by
the size of the table to manipulate. The maximal complexity reached during the
analysis is of 243.

After step 8, we have guessed a total of 34 bits, among which 27 are directly
key bits. So we know how many times λ(X ⊕ Y ) is equal to 1 using the relation
(6) and the content of table T8. Then we can apply our statistical distinguisher
to determine the correct guess among the 234 − 1 wrong guesses.

3.5 Finishing the Attack

How to finish the attack depends on the exact probability of success of the linear
distinguisher, and thus on the number of samples n. Generally one assumes that
both distributions occur with the same probability. Then, the probability Pfa

of false alarm (i.e. the probability that a wrong guess is identified as correct)
is the same as the probability Pnd of non-detection of the correct key (i.e. the
probability that a correct guess is identified as wrong). But here we need to
identify one correct guess among 234−1 wrong guesses, so the crucial point is to
have a low probability of false alarms. Therefore we propose several trade-offs.
First, we set Pnd to 50%. Then we have Pfa = φ(

√
d) where d is a parameter

computed from the number of samples n (see Section 4 for more details) and φ
is defined as

φ(t) =
1√
2π

∫ −t

−∞
e−

1
2 u2

du

Secondly, we set Pnd = 15.86%. This gives Pfa = φ(
√
d − 1). Table 6 presents

various numeric applications. The number of samples n cannot exceed 246 be-
cause we do not have enough degrees of freedom. It is not possible to completely
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Table 6. Probability of false alarm depending on n and the scenario

n d Case Pa = Pnd Pnd = 50% Pnd = 15.86%
241 1 30.85% 15.86% 50%
242 2 23.98% 7.86% 22.94%
243 4 15.86% 2.28% 15.86%
244 8 7.86% 2−8.74 3.37%
245 16 2.28% 2−14.95 2−9.53

246 32 2−8.74 2−26.95 2−19.25

eliminate false alarms as Pfa is always greater than 2−34. But false alarms can
be discarded by guessing the remaining key bits and testing each candidate with
a couple (plaintext, ciphertext). Since 34 key bits are guessed in the core of the
attack3, there are only 56− 34 = 22 bits left to guess.

Suppose we pick n = 245 samples and fix the probability of non-detection to
50%, then the number of false alarms is

Pfa × 234 = 219.05

Guessing the remaining 22 bits brings the complexity up to 241.05 candidates.
One couple (plaintext, ciphertext) is then enough to identify the full secret key.

3.6 Summary

– The memory complexity of the attack is always the size of T0, i.e a table
containing 235 entries of 2 bytes each.

– The time complexity of the attack is at least the complexity of the data
analysis, i.e. 243 steps of computation.

– The data complexity of the attack can range between n = 241 and n = 246

chosen plaintexts. In all cases, the key recovery is faster than exhaustive
search, but the exact complexity depends on n.

– For example, when n = 245, the full secret key can be recovered with proba-
bility of 50% after 241 trial DES encryptions. This is the trade-off we suggest
to use.

4 Link Between Davies-Murphy Cryptanalysis and
Linear Cryptanalysis

It is known since Biham’s work [2] that there exists an underlying linear attack
with similar complexity as Davies-Murphy’s attack. In this paper, we also use a
biased linear combination of bits, in order to improve the Davies-Murphy attack.
Therefore a natural question is to explain the link between both techniques, in
the general case.
3 7 are only intermediate bits, but they give a condition on a few key bits. Hence their

entropy is equivalent to 7 key bits in practice.
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An important parameter is the data complexity ratio between the optimal
distinguisher (used in the Davies-Murphy original cryptanalysis) and the best
linear distinguisher for outputs of pairs of adjacent S-boxes. As seen in Table 4,
the more rounds are applied, the closer the complexities are. In this section, we
explain this phenomenon and account for the exact values of the ratios observed
in Table 4. We show that, due to the effects of the convolutions, the same phe-
nomenon will always be observed, independently of the original distribution. To
some extent, this shows that linear cryptanalysis is always optimal.

4.1 Optimal vs Best Linear Distinguishers

Suppose we have a random variable X that follows a distribution D or the
uniform distribution U . (in the Davies-Murphy case, D = Dt

0 or Dt
1 for some t).

Let S = {0, . . . , 2n} be the image set of X . Our goal is to distinguish between
theses two distributions. Basically, there are two approaches : we can use the best
(optimal) distinguisher, or we can restrict the analysis to linear distinguishers
only.

Optimal Distinguisher. It is well known (see [1] for instance) that the optimal
distinguisher between D and U has probability of error

Pe =
1√
2π

∫ −
√

d
2

−∞
e−

1
2 u2

du

when the number of samples n is related to the parameter d by

n =
d

Δ(D)

and Δ(D) is the Squared Euclidean Imbalance (SEI) of D from U . If for any
x ∈ S, D(x) denotes the probability that X = x, the SEI is computed as

Δ(D) = |S|
∑

x

(
D(x) − 1

2n

)2

Linear Distinguisher. Consider a linear combination λ(X) of the bits of X .
Suppose that, when X follows D, it satisfies :

PrD[λ(X) = 1] =
1
2
(1 + ε)

then it is well known that about n = ε2 samples are needed to detect this bias.
We introduce the usual notation

LP (λ) = (PrD[λ(X) = 1]− PrD[λ(X) = 0])2 = ε2

The question is to determine the LPmax = maxλ{LP (λ)} of the best linear
distinguisher for a given distribution D. By definition, it requires more data
than the optimal distinguisher, but we are interested into the ratio between the
two complexities.
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Relation Between Δ(D) and LPmax. Using the Fourier transform (see
Section 2.4 of [1]), one shows that

Δ(D) =
∑
λ�=0

LP (λ) (7)

Therefore we can derive the following bound for the ratio between the two data
complexities :

LPmax ≤ Δ(D) ≤ (2n − 1)LPmax

It can be shown that both bounds are actually tight, so the best linear dis-
tinguisher can be significantly worse (up to a factor of 2n) than the optimal
distinguisher. However, in Davies-Murphy cryptanalysis, we are dealing with
particular distributions.

4.2 The Case of Davies-Murphy Cryptanalysis

The target distribution Dt
i in this case is obtained after t convolutions. In prac-

tice, when t grows, the ratio apparently gets small (see Table 4). In this Section,
we explain the ratios observed. Since linear biases are just multiplied after each
convolution, (7) can be re-expressed as :

Δ(Dt
i) =

∑
λ�=0

LP (λ)t (8)

where LP (·) are computed with respect to the base distribution Di (by symmetry
it does matter whether the parity bit i is 0 or 1).

Suppose now that there are m ≤ 2n − 1 linear forms whose LP is equal to
LPmax, and that all other λ are such that

LP (λ) ≤ αLPmax

for some 0 ≤ α < 1. Then (8) yields

m (LPmax)t ≤ Δ(Dt
i) ≤ (m + αt(2n − 1−m)) (LPmax)t

When t is big enough, then αt � 1 and

Δ(Dt
i) � m (LPmax)t (9)

We can compute LPmax and m in the case of DES. These results are summarized
in Table 7.

In practice, the approximation of equation (9) accurately predicts the max-
imum linear bias and the loss between optimal and linear distinguishers. The
weakest couples of DES S-boxes w.r.t. linear distinguishers are the ones that
have a small number of linear forms reaching the maximum bias LPmax. For
the best pair of S-boxes (S7, S8), LPmax is only reached once, so the ratio be-
tween both distinguishers is almost 1 after 6 convolutions. Hence, replacing the
optimal distinguisher with the best linear one does not result in a significant
deterioration.
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Table 7. Difference Between Optimal and Linear Distinguisher Explained

Pair of S-boxes (1, 2) (2, 3) (3, 4) (4, 5) (5, 6) (6, 7) (7, 8) (8, 1)

m 1 10 8 4 2 1 1 4

log2(m) 0 3.3 3 2 1 0 0 2

LPmax 28 28.83 210.83 28.83 28.83 28 26.83 29.66

Opt. Dist. Δ(D6) t = 6 247.9 249.6 262 250.9 251.9 247.9 240.8 255.9

Best. Lin. Dist. LP 6
max t = 6 248 253 265 253 253 248 241 258

Expected value from (9) t = 6 247.9 252.9 265 252.9 252.9 247.9 240.8 257.9

Opt. Dist. Δ(D8) t = 8 264 267.3 283.6 268.6 269.6 264 254.6 275.3

Best. Lin. Dist. LP 8
max t = 8 264 270.6 286.6 270.6 270.6 264 254.6 277.3

Expected value from (9) t = 8 264 270.6 286.6 270.6 270.6 264 254.6 277.3

4.3 Summary

A consequence of the convolutions involved in Davies-Murphy cryptanalysis is
that distributions become very quickly "smooth". Therefore the complexity of
the optimal distinguisher can increase very quickly after several rounds, while
the complexity of a linear distinguisher increases more regularly.

Hence, using a linear distinguisher becomes almost optimal after several con-
volutions. This explains the phenomenon that Biham observed in [2] and it
also explains why we obtained good results in this paper, while restricting our
analysis to linear distinguishers. This observation is independent of the initial
distribution, so it would make no difference if used other S-boxes for instance.
However, the linear characteristic used in our attack has some nice properties :

– it is iterative
– it uses only output bits of the round function
– the same linear form is used at every round

These properties allow us to concentrate on one half of the Feistel network, re-
ducing the effective number of rounds to consider down from 16 to 8 (algorithmic
tricks further reduce this number to 6). Therefore, although this linear charac-
teristic is not the best one known for DES, its a particular form may be helpful
to optimize the data analysis phase.

5 Conclusion

In this paper, we improve the famous Davies-Murphy cryptanalysis of DES, by
using 6 round output distributions (instead of 7 or 8 like in previous papers on
the topic [3, 6]). Several trade-offs are possible, but we describe a key-recovery
attack with complexity of 245 chosen plaintexts. This positions the attack at the
second rank of cryptanalysis of DES : slightly better than Biham and Shamir’s
differential cryptanalysis but slightly worse than Matsui’s linear cryptanalysis.
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In addition, we have shown that using linear distinguishers for the Davies-
Murphy cryptanalysis was almost an optimal choice, because of the particular
structure of the attack. Therefore Davies-Murphy cryptanalysis is closely re-
lated to a particular family of linear attacks, where the linear mask involves
only the round output. This allows for efficient optimizations of the data col-
lection and data analysis. At the same time, it shows that it is unlikely to
(significantly) outperform Matsui’s attack with further algorithmic
improvements.
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A Detailed Steps of the Data Analysis Phase

A.1 Step 3

In the step number 3, we guess the key bits involved in S5 at the first round.
Luckily, 4 of these bits (K4,K22,K28,K39) are already known. Thanks to the key
scheduling properties, only K37 and K54 need to be guessed. We know the plain-
text bits involved in S5 (part of it are arbitrary constants, the rest is contained
in the pattern of table T2). So we can predict S5’s output and in particular the
bit U24. 2 plaintext bits are no longer needed and the new table T3 contains the
number of occurrences of the 23-bit pattern formed by :

– The bit λ(pR)⊕ λ(cR)⊕ λ(W )
– The 12 bits (p52, . . . , p63) from the plaintext
– The 9 bits (p1, p25, . . . , p32) from the plaintext
– The intermediate bit p24 ⊕ U24

A.2 Step 4

In the step number 4, we guess the key bits involved in S6 at the first round.
Luckily, 3 of these bits (K23,K29,K53) are already known. Thanks to the key
scheduling properties, only K5,K30 and K47 need to be guessed. We predict
S6’s output and in particular the bits U27 and U32. 4 plaintext bits are no longer
needed and the new table T4 contains the number of occurrences of the 19-bit
pattern formed by :

– The bit λ(pR)⊕ λ(cR)⊕ λ(W )
– The 8 bits (p56, . . . , p63) from the plaintext
– The 7 bits (p1, p25, p26, p28, p29, p30, p31)
– The 3 intermediate bits (p24 ⊕ U24, p27 ⊕ U27, p32 ⊕ U32)

A.3 Step 5

In the step number 5, we guess the key bits involved in S7 at the first round.
Luckily, 2 of these bits (K21,K63) are already known. Thanks to the key schedul-
ing properties, only K15,K20,K38 and K61 need to be guessed. We predict S7’s
output and in particular the bit U30. 4 plaintext bits are no longer needed and the
new table T5 contains the number of occurrences of the 15-bit pattern formed by :
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– The bit λ(pR)⊕ λ(cR)⊕ λ(W )
– The 4 bits (p60, . . . , p63) from the plaintext
– The 6 bits (p1, p25, p26, p28, p29, p31)
– The 4 intermediate bits (p24 ⊕ U24, p27 ⊕ U27, p30 ⊕ U30, p32 ⊕ U32)

A.4 Step 6

In the step number 6, we guess the key bits involved in S8 at the first round.
Hence we need to guess K13,K14,K31,K45,K55 and K62. Then we predict S8’s
output and in particular the bit U25. 4 plaintext bits are no longer needed and
the new table T6 contains the number of occurrences of the 11-bit pattern formed
by :

– The bit λ(pR)⊕ λ(cR)⊕ λ(W )
– The 5 bits (p1, p26, p28, p29, p31)
– The 5 intermediate bits (p24⊕U24, p25⊕U25, p27⊕U27, p30⊕U30, p32⊕U32)

A.5 Step 7

In the step number 7, we guess the missing input bits of S-box S7 at the second
round. The actual input is

(p24 ⊕ U24, . . . , p29 ⊕ U29)⊕ (K53,K13,K30,K55,K6,K11)

Thanks to the key scheduling properties, we already know 4 of these key bits.
Besides we already know 3 intermediate bits of the form pi ⊕ Ui. The missing
Ui’s are not known but they depend only on the key and the fixed plaintext bits,
so their value is the same for all samples. So we can guess the 3 bits (U26, U28⊕
K6, U29⊕K11) and predict S7’s output. Then, we determine V7⊕V12⊕V22⊕V32.
The new table T7 contains the number of occurrences of the 7-bit pattern formed
by :

– The bit λ(pR)⊕ λ(cR)⊕ λ(W ) ⊕ V7 ⊕ V12 ⊕ V22 ⊕ V32

– The 4 bits (p1, p28, p29, p31)
– The 2 intermediate bits (p30 ⊕ U30, p32 ⊕ U32)

A.6 Step 8

In the step number 8, we guess the missing input bits of S-box S8 at the
second round. Thanks to the key scheduling properties, all key bits involved
(K5,K6,K23,K37,K47 and K54) are already known. Hence we just need to guess
the 4 missing input bits : U1, U28, U29, U31. in order to predict S8’s output and
in particular V5 ⊕ V21 ⊕ V27. Hence we know the value of λ(V ). The new table
T8 contains the number of occurrences of the bit :

– The bit λ(pR)⊕ λ(cR)⊕ λ(W ) ⊕ λ(V )
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Abstract. KASUMI is an 8-round Feistel block cipher used in the con-
fidentiality and the integrity algorithms of the 3GPP mobile communi-
cations. As more and more 3GPP networks are being deployed, more
and more users use KASUMI to protect their privacy. Previously known
attacks on KASUMI can break up to 6 out of the 8 rounds faster than
exhaustive key search, and no attacks on the full KASUMI have been
published.

In this paper we apply the recently introduced related-key boomerang
and rectangle attacks to KASUMI, resulting in an attack that is faster
than exhaustive search against the full cipher. We also present a related-
key boomerang distinguisher for 6-round KASUMI using only 768 adap-
tively chosen plaintexts and ciphertexts encrypted or decrypted under
four related keys.

Recently, it was shown that the security of the entire encryption sys-
tem of the 3GPP networks cannot be proven using only the “ordinary”
assumption that the underlying cipher (KASUMI) is a Pseudo-Random
Permutation. It was also shown that if we assume that KASUMI is also
secure with respect to differential-based related-key attacks then the se-
curity of the entire system can be proven. Our results show that theoret-
ically, KASUMI is not secure with respect to differential-based related-
key attacks, and thus, the security of the entire encryption system of the
3GPP cannot be proven at this time.

1 Introduction

KASUMI [31] is a 64-bit block cipher used in the confidentiality and the in-
tegrity algorithms of the 3GPP mobile communications. KASUMI was devel-
oped through the collaborative efforts of the 3GPP organizational partners. It
is a slight modification of the known block cipher MISTY1 [27], optimized for
implementation in hardware.
� The research presented in this paper was supported by the Clore scholarship pro-

gramme.
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The security of the entire 3GPP mobile network relies on the security of the
underlying block cipher KASUMI. Initial examination of the modes of operation
used in the 3GPP networks showed that if KASUMI is a Pseudo-Random Per-
mutation (PRP), then the entire network is provably secure [20,16]. However,
it appeared that the proof was incorrect [17]. Moreover, it was shown that as-
suming only that the underlying cipher is a PRP, the security of the modes of
operation cannot be proven [17]. In [18], Iwata and Kohno showed that if KA-
SUMI is a PRP and is also secure with respect to differential-based related-key
attacks, then the modes in which KASUMI is used can be proven secure. This
result shows that the strength of KASUMI with respect to related-key attacks
is crucial to the security of the entire mobile network.

KASUMI accepts 128-bit keys and consists of eight Feistel rounds. Previous
results on KASUMI include an impossible differential attack on a 6-round version
of the cipher presented by Kühn [25] and a related-key differential attack on a
6-round version of the cipher presented by Blunden and Escott [12]. There are
no known attacks applicable to the full 8-round KASUMI.

In this paper we apply the recently introduced related-key boomerang and
rectangle attacks to the full 8-round KASUMI and to reduced-round versions of
the cipher.

The boomerang attack [33] is an adaptive chosen plaintext and ciphertext
attack built over differential cryptanalysis [9]. The cipher is treated as a cascade
of two sub-ciphers, and a short differential is used in each of these two sub-
ciphers. These two differentials are combined in an elegant way to suggest some
property of the entire cipher with high probability that can be detected using
adaptive chosen plaintext and ciphertext queries.

The boomerang attack was further developed in [21] into a chosen plaintext
attack called the amplified boomerang attack. The transformation uses birthday
paradox techniques to eliminate the adaptive nature of the attack by encrypt-
ing large sets of plaintexts. After the encryption of the plaintexts, the attacker
searches for quartets of plaintexts that behave as if they were constructed in
the boomerang process. The transformation to a chosen plaintext attack (in-
stead of an adaptive chosen plaintexts and ciphertexts attack) has price both
in a much larger data complexity, and in a much more complicated algorithm
for the identification of the right quartets. After its introduction, the amplified
boomerang attack was further developed into the rectangle attack [6]. The rect-
angle attack utilizes a more careful analysis that shows that the probability of a
right quartet is significantly higher than suggested by the amplified boomerang
attack. Also an optimized algorithm for finding and identifying the right quartets
was given in [7]. The boomerang and the rectangle attacks were used to attack
several reduced-round versions of block ciphers, including the AES, Serpent,
SHACAL-1, COCONUT98 (the full cipher), SC2000, Khufu and FEAL.

Related-key attacks were introduced by Biham [2] in 1993. This technique
assumes that the attacker is able to request the encryptions of plaintexts un-
der two related keys: an unknown key and a key (also unknown) that is re-
lated to it in some known way. Under this assumption, the attacker uses the
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relations between the keys and various weaknesses of the cipher to derive infor-
mation about the two keys. In [2] a related-key attack was applied to a mod-
ified variant of DES [28], to LOKI [13] and to Lucifer [29]. In [22] Kelsey et
al. combined the related-key technique with differential cryptanalysis [9]. In the
related-key differential attack, the attacker requests the encryption of pairs of
plaintexts with some chosen difference under the unknown key and under a re-
lated key such that the difference between the keys is chosen by the attacker.
Related-key differential attacks were used to attack several full/reduced versions
of block ciphers, including AES [14], KASUMI [31], and others (see the attacks
of [19,12,22]).

The related-key boomerang and rectangle attacks were presented by Kim
et al. [23,24] and independently by Biham et al. [8]. These attacks are a com-
bination of the boomerang/rectangle technique with the related-key differen-
tial technique. In the attack, the attacker examines quartets of plaintexts en-
crypted under four differentially related keys. The key differences are used to
improve the two differentials used for the boomerang (or the rectangle) dis-
tinguisher. Related-key boomerang and rectangle attacks were used to attack
reduced versions of AES [14], IDEA [26] and SHACAL-1 [15] and the full CO-
CONUT98 [32].

In this paper we present a key recovery related-key rectangle attack on the
entire 8-round version of KASUMI. The attack requires 254.6 chosen plaintexts
encrypted under four related keys and has time complexity of 276.1 encryptions.
We also present a related-key boomerang distinguisher of 6-round KASUMI. The
distinguisher requires 768 adaptive chosen plaintexts and ciphertexts encrypted
under four related keys and has a negligible time complexity. We summarize our
results along with previously known results on KASUMI in Table 1.1

Our results do not practically compromise the security of the 3GPP mobile
networks. However, our results show that KASUMI cannot be considered secure
against differential-based related-key attacks. Therefore, the security of the entire
mobile network cannot be proven at this stage.

This paper is organized as follows: In Section 2 we give a brief description of
the structure of KASUMI. In Section 3 we describe the related-key boomerang
and rectangle attacks. In Section 4 we present a related-key rectangle attack on
the full KASUMI. Section 5 contains a related-key boomerang distinguisher of
6-round KASUMI. Finally, Section 6 summarizes the paper.

1 We note that several generic attacks that apply to any block cipher with 64-bit block
and 128-bit keys, such as exhaustive key search, key-collision, and time-memory-data
tradeoffs, may be used to attack the cipher. For example, a key-collision attack on
this cipher has time complexity of 264 encryptions using 264 known plaintexts, each
encrypted under a different key [3]. For time-memory-data tradeoff attacks using four
different keys as in our attack, the overall time complexity (including preprocessing)
is very close to the time complexity of an exhaustive key search. A time-memory-data
tradeoff attack using a fixed known plaintext encrypted under a large number of 243

keys can be performed with on-line computation of 284 encryptions and preprocessing
of 285 encryptions [11].
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Table 1. Summary of the Attacks on KASUMI

Attack Number of Complexity Source
Rounds Keys Data Time

Higher-Order Differential 4† 1 210.5 CP 222.11 [30]
Related-Key Differential 6 1 218.6 RK-CP 2113.6 [12]
Impossible Differential 6 1 255 CP 2100 [25]
Related-Key Boomerang Distinguisher 6 4 768 RK-ACPC 1 Section 5.2
Related-Key Boomerang Key Recovery 6 34 213 RK-ACPC 213 Section 5.3
Basic Related-Key Rectangle 8 4 253 RK-CP 2102 Section 4.2
Improved Related-Key Rectangle 8 4 254.6 RK-CP 276.1 Section 4.4
Related-Key Boomerang 8 4 245.2 RK-ACPC 278.7 Section 4.4
RK – Related-key, CP – Chosen plaintext, ACPC – Adaptive chosen plaintext and ciphertext
Time complexity is measured in encryption units.
† – this attack is on a version of the cipher without the FL functions.

2 The KASUMI Cipher

KASUMI [31] is a 64-bit block cipher that has a key size of 128 bits. KASUMI
was designed as a modification of MISTY1 [27], optimized for implementation
in hardware. Therefore, most of the components of KASUMI are similar to the
respective components of MISTY1.

KASUMI has a recursive structure. Each of its eight Feistel rounds is com-
posed of an FO function which is a 3-round 32-bit Feistel construction, and of
an FL function that mixes a 32-bit subkey with the data. The order of the two
functions changes each round (in odd rounds the FL function is first, and in the
even rounds the FO function is first).

The FO function also has a recursive structure. Each of the three rounds of
the FO functions consists of a key mixing stage and of an application of the F I
function, yet another three-round Feistel construction. The F I functions use two
non-linear S-boxes S7 and S9 (where S7 is a 7-bit to 7-bit permutation and S9
is a 9-bit to 9-bit permutation) and accept an additional 16-bit subkey, which is
mixed with the data. In total, a 96-bit subkey enters FO in each round — 48
subkey bits used in the F I functions and 48 subkey bits in the key mixing stages.

Table 2. KASUMI’s Key Schedule Algorithm

Round KLi,1 KLi,2 KOi,1 KOi,2 KOi,3 KIi,1 KIi,2 KIi,3

1 K1 ≪ 1 K′
3 K2 ≪ 5 K6 ≪ 8 K7 ≪ 13 K′

5 K′
4 K′

8

2 K2 ≪ 1 K′
4 K3 ≪ 5 K7 ≪ 8 K8 ≪ 13 K′

6 K′
5 K′

1

3 K3 ≪ 1 K′
5 K4 ≪ 5 K8 ≪ 8 K1 ≪ 13 K′

7 K′
6 K′

2

4 K4 ≪ 1 K′
6 K5 ≪ 5 K1 ≪ 8 K2 ≪ 13 K′

8 K′
7 K′

3

5 K5 ≪ 1 K′
7 K6 ≪ 5 K2 ≪ 8 K3 ≪ 13 K′

1 K′
8 K′

4

6 K6 ≪ 1 K′
8 K7 ≪ 5 K3 ≪ 8 K4 ≪ 13 K′

2 K′
1 K′

5

7 K7 ≪ 1 K′
1 K8 ≪ 5 K4 ≪ 8 K5 ≪ 13 K′

3 K′
2 K′

6

8 K8 ≪ 1 K′
2 K1 ≪ 5 K5 ≪ 8 K6 ≪ 13 K′

4 K′
3 K′

7

X ≪ i — X rotated to the left by i bits
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Fig. 1. Outline of KASUMI

The FL function accepts 32-bit input and two 16-bit subkey words. One
subkey word affects the data using the OR operation, while the second one
affects the data using the AND operation. We outline the structure of KASUMI
and its parts in Figure 1.

One of the major differences between KASUMI and MISTY1 is in the key
schedule. In KASUMI, the subkeys are derived from the key in a linear way: The
128-bit key K is divided into eight 16-bit words: K1,K2, . . . ,K8. Each Ki is used
to compute K ′

i = Ki ⊕ Ci, where the Ci’s are known and fixed constants. The
constants Ci are interleaved with the key bits in order to avoid weak-key classes
based on fixing key bits to be zero. Such weak keys were found in IDEA [26] (see
for example [10]) and in other ciphers as well.
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Table 3. KASUMI’s Key Schedule Constants

Round 1 2 3 4 5 6 7 8
Constant C1 C2 C3 C4 C5 C6 C7 C8

Value 0123x 4567x 89ABx CDEFx FEDCx BA98x 7654x 3210x

In each round, eight words are used as the round subkey (up to some in-word
rotations). Therefore, the 128-bit subkey of each round is a linearly dependent of
the secret key in a very simple way. We give the exact key schedule of KASUMI
in Table 2 and list the values of the constants in Table 3.

3 Related-Key Boomerang and Related-Key Rectangle
Attacks

In this section we describe the related-key boomerang and related-key rectangle
attacks. First, we outline the boomerang/rectangle attacks and the related-key
differential attacks separately. Then, we describe the combination that forms the
related-key boomerang and related-key rectangle attacks.

3.1 The Boomerang and the Rectangle Attacks

The main idea behind the boomerang attack [33] is to use two short differentials
with high probabilities instead of one long differential with a low probability.
We assume that a block cipher E : {0, 1}n×{0, 1}k→{0, 1}n can be described
as a cascade E = E1 ◦ E0, such that for E0 there exists a differential α → β
with probability p, and for E1 there exists a differential γ → δ with probabil-
ity q. We note that the second differential γ → δ for E1 is actually used in
the backward direction, i.e., decryption, but as we are dealing with differentials
(and not truncated differentials), then this does not change the probability of
the differential.

The distinguisher is based on the following boomerang process:

– Ask for the encryption of a pair of plaintexts (P1, P2) such that P1⊕P2 = α
and denote the corresponding ciphertexts by (C1,C2).

– Calculate C3 = C1 ⊕ δ and C4 = C2 ⊕ δ, and ask for the decryption of the
pair (C3,C4). Denote the corresponding plaintexts by (P3, P4).

– Check whether P3 ⊕ P4 = α.

The boomerang attack uses the first characteristic (α→ β) for E0 with respect
to the pairs (P1, P2) and (P3, P4), and uses the second characteristic (γ → δ) for
E1 with respect to the pairs (C1,C3) and (C2,C4).

For a random permutation the probability that the last condition is satisfied
is 2−n. For E, the probability that the pair (P1, P2) is a right pair with respect to
the first differential (α → β) is p. The probability that both pairs (C1,C3) and
(C2,C4) are right pairs with respect to the second differential is q2. If all these
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are right pairs, then E−1
1 (C3) ⊕ E−1

1 (C4) = β = E0(P3) ⊕ E0(P4). Thus, with
probability p, P3 ⊕ P4 = α. The total probability of this quartet of plaintexts
and ciphertexts to satisfy the boomerang conditions is (pq)2.

The attack can be mounted for all possible β’s and γ’s simultaneously (as
long as β �= γ). Therefore, a right quartet for E is encountered with probability
no less than (p̂q̂)2, where:

p̂ =
√∑

β

Pr 2[α→ β], and q̂ =
√∑

γ

Pr 2[γ → δ].

The complete analysis is given in [33,6,7].
As the boomerang attack requires adaptive chosen plaintexts and cipher-

texts, many of the techniques that were developed for using distinguishers in
key recovery attacks cannot be applied. This led to the introduction of cho-
sen plaintext variants of the boomerang attack called the amplified boomerang
attack [21] and the rectangle attack [6]. The transformation of the boomerang
attack into a chosen plaintext attack is quite standard, as it can be achieved
by birthday-paradox arguments. The key idea behind the transformation is to
encrypt many plaintext pairs with input difference α, and to look for quartets
that conform to the requirements of the boomerang process.

Given the same decomposition of E as before, and the same basic differentials,
the analysis in [6] shows that out of N plaintext pairs, the number of right
quartets is expected to be N22−np̂2q̂2. We note, that the main reduction in
the probability follows from the fact that unlike the boomerang attack, in the
rectangle attack the event E0(P1)⊕ E0(P3) = γ occurs with probability 2−n.

3.2 Related-Key Differentials

Related-key differentials [22] were used for cryptanalysis several times in the
past. Recall, that a regular differential deals with some plaintext difference ΔP
and a ciphertext difference ΔC such that

Pr P,K [EK(P )⊕ EK(P ⊕ΔP ) = ΔC]

is high enough (or zero [5]).
A related-key differential is a triplet of a plaintext difference ΔP , a ciphertext

difference ΔC, and a key difference ΔK, such that

Pr P,K [EK(P )⊕ EK⊕ΔK(P ⊕ΔP ) = ΔC]

is useful (high enough or zero).

3.3 Related-Key Boomerang Attacks

Let us assume that we have a related-key differential α → β of E0 under a key
difference ΔKab with probability p. Assume also that we have another related-
key differential γ → δ for E1 under a key difference ΔKac with probability q.
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Fig. 2. A Related-Key Boomerang Quartet

The related-key boomerang process involves four different unknown (but re-
lated) keys — Ka, Kb = Ka⊕ΔKab, Kc = Ka⊕ΔKac, and Kd = Ka⊕ΔKab⊕
ΔKac. The attack is performed by the following algorithm:

– Choose a plaintext Pa at random, and compute Pb = Pa ⊕ α.
– Ask for the ciphertexts Ca = EKa(Pa) and Cb = EKb

(Pb).
– Compute Cc = Ca ⊕ δ and Cd = Cb ⊕ δ.
– Ask for the plaintexts Pc = E−1

Kc
(Cc) and Pd = E−1

Kd
(Cd).

– Check whether Pc ⊕ Pd = α.

See Figure 2 for an outline of such a quartet.
It is easy to see that for a random permutation, the probability that the last

condition is satisfied is 2−n. For E the probability that this condition is satisfied
is p2q2. Hence, the related-key boomerang attack can be used for distinguishing
and key recovery attacks for this cipher.

The attack can use many differentials for E0 and E1 simultaneously (just like
in a regular boomerang attack), as long as all related-key differentials used in E0

have the same key difference ΔKab and the same input difference α, and that all
related-keydifferentials used inE1 have the samekeydifferenceΔKac and the same
output difference δ. Thus, the probability of a quartet to be a right one is p̂2q̂2.

In the case of KASUMI, the key schedule algorithm is linear. Therefore, given
a key difference, all subkey differences are known, and can be easily used in the
related-key model.

3.4 Related-Key Rectangle Attack

The transformation of the related-key boomerang attack into a related-key rect-
angle attack is similar to the transformation of the boomerang attack to the
rectangle attack. The related-key rectangle distinguisher is as follows:
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– Choose N plaintext pairs (Pa, Pb = Pa ⊕ α) at random and ask for the
encryption of Pa under Ka and of Pb under Kb. Denote the set of these pairs
by S.

– Choose N plaintext pairs (Pc, Pd = Pc ⊕ α) at random and ask for the
encryption of Pc under Kc and Pd under Kd. Denote the set of these pairs
by T .

– Search a pair of plaintexts (Pa, Pb) ∈ S and a pair of plaintexts (Pc, Pd) ∈
T , and their corresponding ciphertexts (Ca,Cb) and (Cc,Cd), respectively,
satisfying:
• Pa ⊕ Pb = Pc ⊕ Pd = α
• Ca ⊕ Cc = Cb ⊕ Cd = δ

The analysis of the related-key rectangle attack is similar to the one of the
rectangle attack (with the same modifications that were presented at the related-
key boomerang attack). Starting with N plaintext pairs in S and N plaintext
pairs in T , we expect to find N22−n(p̂q̂)2 right quartets. For a random permuta-
tion the number of “right quartets” is about N22−2n, so as long as p̂q̂ > 2−n/2

we can use the rectangle attack to distinguish between a random permutation
and the attacked cipher. This distinguisher can be later used for a key recovery
attack.

4 Related-Key Rectangle Attack on KASUMI

In this section we devise a related-key rectangle attack on the entire KASUMI.
We start with a short description of the related-key differentials used in this
attack, then describe a basic attack without full optimization, and its analysis.
Finally, we describe the optimizations that reduce the complexities to our final
results.

4.1 Related-Key Differentials of KASUMI

As mentioned earlier, KASUMI’s round function is composed of two main func-
tions: the FO function and the FL function. A non-zero input difference to the
FO function can become almost any output difference, with approximately the
same probability. However, non-zero differences to the FL-function propagate
with much higher probabilities.

For the rectangle attack we use two related-key differentials. The first related-
key differential is for rounds 1–4, while the second is used in rounds 5–7.

4.1.1 A 4-Round Related-Key Differential for Rounds 1–4 This 4-
round related-key differential is an extension by one round of the related-key
differential presented in [12]. The key difference is ΔKab = (0, 0, 1, 0, 0, 0, 0, 0),
i.e., only the third key word has a non-zero difference K ′

3 = 0001x. The plain-
text difference of the differential is α = (0x, 0020 0000x). It was shown in [12]
that with probability 1/4, the difference after three rounds is equal to α as
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well. The input difference of the FO function in the fourth round is non-zero
(0020 0000x). The key difference of the fourth round is introduced only at the
end of the FO function (precisely, in F I4,3). Hence, the non-zero difference
propagates through all the parts of FO, and the output difference of the round
function is distributed almost uniformly. Therefore, we shall use the differentials
α = (0x, 0020 0000x) → (y, 0020 0000x) for all the possible values of y. In the
worst case, all the y values are equiprobable. Thus, when using all the 232 possi-
ble values, each of them is expected to occur with probability 2−32. Hence, each
differential of the form α = (0x, 0020 0000x) → (y, 0020 0000x) has probability
2−34. The effective probability of the differentials when using all these differen-
tials simultaneously is p̂ =

√
232 · (2−34)2 =

√
2−36 = 2−18. If the y values are

not equiprobable, then the value of p̂ is higher.
As observed in [12], the attacker can select two bits of the plaintext in order

to double the probability of the differential: The attacker assigns one bit of the
plaintext to be one (thus fixing one bit of the output of the OR operation in
FL1) and one bit of the plaintext to be zero (thus fixing one bit of the output
of the AND operation in FL1). More precisely, let P = (PLL, PLR, PRL, PRR),
where PLL is the 16 plaintext bits that enter the AND operation of the FL
function in the first round, and PLR are the remaining bits of the left half of the
plaintext. The attacker sets the least significant bit of PLL and the second least
significant bit of PLR to P 0

LL = 0 and P 1
LR = 1, where the superscript x ∈ {0, 1}

denotes the x’th bit of that quarter of the plaintext. This selection ensures
that the characteristic holds with probability 1 in the first round (instead of
1/2), despite of the key difference. Therefore, the probability of the differential
α = (0x, 0020 0000x) → (y, 0020 0000x) is increased from 2−34 to 2−33, and
the effective probability of the first part of the rectangle is increased to p̂ =√

232 · (2−33)2 =
√

2−34 = 2−17.
It is possible to rotate all the words of the key difference ΔKab and the

characteristic by the same number of bits, without changing the probability of
the characteristic. Hence, the above characteristic can be replaced by 15 other
characteristics.

4.1.2 A 3-Round Related-Key Differential for Rounds 5–7
The 3-round related-key differential used in rounds 5–7 is the 3-round differential
of [12] shifted by four rounds. The key difference is ΔKac = (0, 0, 0, 0, 0, 0, 1, 0).
Again, it is possible to rotate the difference in K ′

7 and the corresponding values
in the characteristic, to obtain a new characteristic with the same probability.

The differential is γ = (0x, 0020 0000x) → (0x, 0020 0000x) = δ with proba-
bility q = q̂ = 1/4.

4.2 The Basic Related-Key Rectangle Attack on KASUMI

The attack on KASUMI treats the cipher as a cascade of three parts: E0 consists
of the first four rounds, E1 consists of rounds 5–7, and Ef the round after the
distinguisher (round 8), which is used for analysis. Let Ka, Kb = Ka ⊕ ΔKab,
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Kc = Ka ⊕ΔKac, and Kd = Kc ⊕ΔKab be the unknown related keys that we
want to retrieve.

For E0 we use the 4-round differential with p̂ = 2−17 presented earlier, whose
key difference is ΔKab = (0, 0, 1, 0, 0, 0, 0, 0) and whose input difference is α =
(0x, 0020 0000x). For E1 we use the 3-round differential with q̂ = 2−2 presented
earlier, whose key difference is ΔKac = (0, 0, 0, 0, 0, 1, 0, 0) and whose output
difference is δ = (0x, 0020 0000x).

If we encrypt N = 251 pairs of plaintexts under Ka and Kb, and the same
number of pairs under Kc and Kd, we expect to find N2 = 2102 quartets, of
which about N2 · 2−64 · 2−34 · 2−4 = 2102 · 2−102 = 1 are right rectangle quartets.

In the attack we identify the right quartets out of all possible quartets, and
then analyze them to retrieve the subkey of round 8. This analysis is performed
in the following way:

1. Data Collection Phase:
(a) Ask for the encryption of 251 pairs of plaintexts (Pa, Pb), where Pb =

Pa ⊕ α, P 0
aLL

= 0, and P 1
aLR

= 1, and where Pa is encrypted under Ka

and Pb is encrypted under Kb. Insert each pair into a hash table indexed
by the 64-bit value of (CaRL ,CaRR ,CbRL ,CbRR).

(b) Ask for the encryption of 251 pairs of plaintexts (Pc, Pd), where Pd = Pc⊕
α, P 0

cLL
= 0, and P 1

cLR
= 1, and where Pc is encrypted under Kc and Pd

is encrypted under Kd. For each pair, access the hash table in the entry
corresponding to the value (CcRL ⊕ 0020x,CcRR ,CdRL ⊕ 0020x,CdRR).
For each pair (Pa, Pb) found in this entry, apply Step 2 on the quartet
(Pa, Pb, Pc, Pd).

The (251)2 possible quartets are filtered according to a condition on 64 bits
on the difference of the ciphertexts, leading to about 238 quartets that enter
Step 2. In the following step, we treat all remaining quartets as right quartets.
The analysis of a quartet is done by guessing 32 bits of the key (KO8,1,KI8,1),
and trying to deduce KL8,2. In most cases there is a contradiction, e.g., one of
the pairs suggests something which is impossible, or the two pairs disagree on
some key bit.

2. Analyzing Quartets:
(a) For each quartet (Ca,Cb,Cc,Cd), guess the 32-bit value of KO8,1 and

KI8,1. Assume that this is a right quartet. For the two pairs (Ca,Cc)
and (Cb,Cd) use the value of the guessed key to compute the input
and output differences of the OR operation in the last round of both
pairs. For each bit of this 16-bit OR operation of FL8, the possible
values of the corresponding bit of KL8,2 are given in Table 4. On average
(8/16)16 = 2−16 values of KL8,2 are suggested by each quartet and guess
of KO8,1 and KI8,1.

(b) For each quartet and values of KO8,1,KI8,1 and KL8,2 suggested in
Step 2(a), guess the 32-bit value of KO8,3 and KI8,3, and use this infor-
mation to compute the input and output differences of the AND opera-
tion in both pairs. For each bit of the 16-bit AND operation of FL8, the
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Table 4. Possible Values of KL8,2 and KL8,1

OR — KL8,2 AND — KL8,1

(X ′
2, Y

′
2) (X ′

2, Y
′
2)

(X ′
1, Y

′
1) (0,0) (0,1) (1,0) (1,1) (X ′

1, Y
′
1) (0,0) (0,1) (1,0) (1,1)

(0,0) {0,1} — 1 0 (0,0) {0,1} — 0 1
(0,1) — — — — (0,1) — — — —
(1,0) 1 — 1 — (1,0) 0 — 0 —
(1,1) 0 — — 0 (1,1) 1 — — 1

∗ The two bits of the differences are denotes by (input difference, output difference):
(X ′

1, Y
′
1) for one pair and (X ′

2, Y
′
2) for the other.

possible values of the corresponding bit of KL8,1 are given in Table 4. On
average (8/16)16 = 2−16 values of KL8,1 are suggested by each quartet
and guess of KO8,1,KI8,1,KO8,3, and KI8,3 and the computed value of
KL8,2.

3. Finding the Right Key: For each quartet and value of KO8,1,KI8,1,
KO8,3,KI8,3 and the value of KL8,1 and KL8,2 suggested in Step 2, guess
the remaining 32 bits of the key, and perform a trial encryption.

4.3 Analysis of the Attack

We first analyze Step 2(a), and show that given the input and output differences
of the OR operation in the two pairs of the quartet, the expected number of
suggestions for the key KL8,2 is 2−16. This means that the 238 · 232 = 270

(quartet, subkey guesses) tuples suggest 270 · 2−16 = 254 subkey guesses for
48-bit value.

Let us examine a difference in some bit j. There are four combinations of
input difference and output difference for this bit for each pair. Table 4 lists the
key bits that the two pairs suggest for the respective key bit.

There are nine entries that contain no value. For example, a difference 0
may never cause a difference 1 by any function. Another possible contradiction
happens when one pair suggests that the key bit is 0, while the second pair
suggests that the key bit is 1. The total number of possible key bits is 8 out of
16 entries. Thus, on average there is 1/2 a possibility for each bit. In total, for
the 16 bits there are (1/2)16 = 2−16 possibilities on average. A similar analysis
can be applied to Step 2(b).

As noted earlier, the expected number of (quartet, subkey guesses) tuples
that enter Step 2(b) is 254. For each of these tuples, we guess 32 additional
bits, resulting in 254 · 232 = 286 (quartet, subkey guesses) tuples. As step 2(b) is
similar to Step 2(a), then after its execution, the expected number of (quartet,
subkey guesses) tuples is 286 · 2−16 = 270, while the guessed subkey has 96 bits
in total.

Step 2(a) can be implemented using only a few logical operations. The test
whether a pair suggests a contradiction (a zero difference in the input with
corresponding non-zero difference in the output) can be performed as follows: Let
X ′ be the word of input differences and let Y ′ be the word of output differences.
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Compute Z = X ′ ∧ Y ′, where X ′ is the bitwise complement of X ′. If Z is non-
zero then there is some bit in X ′ which is zero, while the corresponding bit in
Y ′ is 1. Thus, we can check using two logical operation whether one of the pairs
suggests a contradiction of this kind.

We can also find which bits of the key a key suggests. For the OR operation,
the bits that a pair suggests is the bits for which X ′ has 1, and the value of
KL8,2 in these bits is the same as in Y ′. To check whether the two pairs suggest
contradicting values for the key, it suffices to check whether (X ′

1 ∧X ′
2) ∧ (Y ′1 ⊕

Y ′2) �= 0. A similar method can be used on Step 2(b) (after updating the relevant
expression to take into consideration the AND operation). Further optimizations
of the generation of the list of possible values of KL8,2 and KL8,1 can be made
using table lookups.

Step 3 goes over all 270 suggestions for the 96 bits of the key, and tries
to complete the remaining 32 bits by an exhaustive search. This can easily be
performed due to the linear key schedule of KASUMI. The time complexity of
this step is 2102 trial encryptions.

As the complexity of Step 3 is dominant, the total complexity of this attack is
2102 trial encryptions. This complexity is further reduced in the next subsection.

4.4 Improvements of the Attack

Step 3 can be improved by using counting techniques. In case we encrypt three
times the data (252.6 plaintexts encrypted under four different keys), we expect
to have nine right quartets. Instead of completing the missing key bits by an
exhaustive key search, we count how many (quartet, subkey guesses) tuples
suggest each value of the 96 bits of KO8,1, KI8,1, KO8,3, KI8,3, KL8,1 and
KL8,2. Only few possible wrong key values are expected to get more than five
suggestions. On the other hand, the right key has probability 88.4% to have at
least this number of suggestions. Therefore, we identify which 96-bit values have
more than five suggestions, and exhaustively search over the remaining bits of
these cases. The time complexity of this attack is dominated by Step 2(b). The
data complexity of the attack is 254.6 related-key chosen plaintexts and the time
complexity of the attack is equivalent to 286.2 full KASUMI encryptions.

Another improvement of the attack is based on the observation that Step 2(b)
can be implemented in two substeps. In the first one, we guess KO8,3 and the
9 bits of KI8,3,2, and find the value of only 9 bits of KL8,1. Hence, we generate
9 · 254 · 225 = 282.2 (quartet, subkey guesses) where the subkey guess is of 73
bits. As this improvement first deals only with 9 bits of KL8,1, the expected
number of remaining (quartet, subkey guesses) values is 273.2. Then, we perform
the second substep on the 7 remaining bits of KI8,3,1 and of KL8,1. The time
complexity of the attack is now dominated by the first substep of Step 2(b),
whose complexity is equivalent to about 279.2 KASUMI encryptions.

Our last improvement uses the fact that Step 2(b) (and even its first sub-
step) partially depends on Step 2(a). After Step 2(a) there are 254 tuples of the
form (quartet, subkey guesses), where the subkey guess is of 48 bits. However,
Step 2(b) uses only 32 bits of the guessed subkey, i.e., the value of KO8,1 and
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KI8,1. As mentioned earlier, a given quartet suggests about 216 values for the 48
bits of KO8,1,KI8,1,KL8,2. However, it suggests about 212.9 values for 32 bits
of KO8,1,KI8,1.

This observation is used to reduce the complexity of the attack: The purpose
of Step 2(a) is now to find the list of about 212.9 values for KO8,1,KI8,1 that
a quartet suggests, and then Step 2(b) finds the list of about 212.9 values for
KO8,3,KI8,3. Only then, in Step 3, we take into consideration the possible values
of KL8,1 and KL8,2. This reduces the time complexity of the attack to 276.1

KASUMI encryptions.
The attack can also be transformed into a related-key boomerang attack that

requires 243.2 adaptive chosen plaintexts and ciphertexts (encrypted under four
different keys). The attack is performed starting at the decryption direction, and
thus it is a chosen ciphertext attack with adaptively chosen plaintexts. The time
complexity of this related-key boomerang attack is 278.1 encryptions.

5 The Related-Key Boomerang Attack on 6-Round
KASUMI

In this section we present a related-key boomerang attack on 6-round KASUMI.
The attack is on the first six rounds (rounds 1–6). It finds 16 bits of the key
using only 768 adaptive chosen plaintexts and ciphertexts.

5.1 Another 3-Round Differential of KASUMI

In this subsection we present four related-key conditional characteristics [1] for
rounds 4–6 of KASUMI. We describe the conditional characteristics in the back-
ward direction as this is the direction in which we use them. These characteristics
can be easily adapted to hold for any three consecutive rounds starting with an
even round, either in the forward or in the backward direction.

The key difference of all these conditional characteristics is ΔKac =
(0, 0, 0, 0, 0, 1, 0, 0). Unlike regular characteristics, conditional characteristics de-
pend on the value of some key bit. The four conditional characteristics we use
depend on the same key bit. Two of them assume that the value of this key bit
is 0, while the two other assume that the value is 1. Let δ0 = (0020 0000x, 0x),
δ1 = (0020 0040x, 0x), and δ′ = (0001 0000x, 0x). The two conditional char-
acteristics that depend on the value zero are δ0 → δ0 and δ0 ⊕ δ′ → δ0. The
two conditional characteristics that depend on the value one are δ1 → δ1 and
δ1 ⊕ δ′ → δ1 (the index of the subscript of δ denotes the value of the key bit).
All these conditional characteristics have probability 1/4.

Given a pair with a ciphertext difference of the conditional characteristic,
then during the decryption the zero input difference is preserved in round 6
by the FO6, and with probability 1/2 it is also the output difference of FL6
(there is a subkey difference in one bit that is canceled with probability 1/2).
In round 5, we hope to achieve a difference of 0020 0000x after FL5, which



A Related-Key Rectangle Attack on the Full KASUMI 457

is then canceled with the key difference in KO5,1. This is where the condi-
tional property of the characteristics is used. In order to achieve the desired
output difference of FL5, the conditional characteristic depends on the value
of the key bit that is ANDed in FL5. There is an active bit in the data, and
if the value of the key bit is 1, then this difference is preserved. Otherwise, if
the value is 0, then the AND operation has a zero output difference. Thus, for
a given value of this key bit, exactly two out of the four characteristics yield
a difference 0020 0000x after FL5 (this part of the conditional characteristic
has probability 1), whereas for the other two characteristics this difference is
impossible. Therefore, in our attack we use all four characteristics in parallel,
and know that two of them pass round 5 with a zero output difference with
probability 1.

In round 4, the zero difference is preserved by the FO4 function. Again, it has
probability 1/2 to be preserved also by FL4, and probability 1/2 of not being
preserved. Thus, the input difference of the characteristic is either the output
difference (δ1 or δ2), or the output difference XORed with δ′.

Hence, either each of the first two conditional characteristics have probability
1/4, or the other two have probability 1/4. For each such case the effective
probability based on the two characteristics is q̂ =

√
(1/4)2 + (1/4)2 = 1/

√
8.

The successful conditional characteristics are determined by the value of the fifth
bit of K5 (i.e., K4

5 ).
We note that all these conditional characteristics can be rotated along with

the key difference, to produce 15 similar sets of characteristics with the same
effective probability.

5.2 A Related-Key Boomerang Distinguisher on 6-Round KASUMI

In this subsection we present a related-key boomerang distinguisher of 6-round
KASUMI. The distinguisher is mounted on rounds 1–6 of KASUMI, but it can
be easily adapted to rounds 2–7 or to rounds 3–8 as well.

Denote by E a reduced version of KASUMI consisting of the first six rounds
of the cipher. We describe E as a cascade E = E1 ◦ E0, where E0 corre-
sponds to rounds 1–3 and E1 corresponds to rounds 4–6. The attack exploits
the characteristic α = (0x, 0020 0000x) → (0x, 0020 0000x) of E0 with proba-
bility 1/4, as well as the four characteristics δ0 → δ0, δ0 ⊕ δ′ → δ0, δ1 → δ1,
and δ1 ⊕ δ′ → δ1 of E1 with probability 1/4. The key difference used in E0 is
ΔKab = (0, 0, 1, 0, 0, 0, 0, 0), and the key difference of all the characteristics of
E1 is ΔKac = (0, 0, 0, 0, 0, 1, 0, 0).

The attack essentially performs two standard related-key boomerang distin-
guishers, one for each possible value of the key bit K4

5 . A small improvement that
we use, is to save some of the data by reusing some of the plaintexts generated
in the attack. The attack algorithm is as follows:

1. Choose M pairs of plaintexts (Pa,i, Pb,i) (for 1 ≤ i ≤ M) such that Pa,i ⊕
Pb,i = α. Ask for the encryption of the pairs such that in each pair, Pa,i
is encrypted under Ka and Pb,i is encrypted under the related-key Kb =
Ka ⊕ΔKab. Denote the corresponding ciphertexts by (Ca,i,Cb,i).
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2. For 1 ≤ i ≤ M , calculate Cc,i = Ca,i ⊕ δ0 and Cd,i = Cb,i ⊕ δ0. Ask for the
decryption of the pairs (Cc,i,Cd,i) such that in each pair, Cc,i is decrypted
under Kc = Ka⊕ΔKac and Cd,i is decrypted under Kd = Ka⊕ΔKab⊕ΔKac.
Denote the corresponding plaintexts by (Pc,i, Pd,i).

3. For 1 ≤ i ≤ M , calculate Ce,i = Ca,i ⊕ δ1 and Cf,i = Cb,i ⊕ δ1. Ask for the
decryption of the pairs (Ce,i,Cf,i) such that in each pair Ce,i is decrypted un-
der Kc and Cf,i is decrypted under Kd. Denote the corresponding plaintexts
by (Pe,i, Pf,i).

4. Check whether Pc,i ⊕ Pd,i = α and count the number of such occurrences.
5. Check whether Pe,i ⊕ Pf,i = α and count the number of such occurrences.
6. If one of the two counters from Steps 4 and 5 is greater than zero, then

output “6-Round KASUMI”. Otherwise, output “Not 6-Round KASUMI”.

The total probability of the boomerang process of this distinguisher is (1/4)2 ·
(1/
√

8)2 = 1/128, either for quartets counted in Step 4 or for quartets counted
in Step 5. Therefore, for M = 256 we expect to find two right quartets in
Step 4 or Step 5 (either for the quartets (Pa,i, Pb,i, Pc,i, Pd,i) or for the quartets
(Pa,i, Pb,i, Pe,i, Pf,i)). Filtering of these pairs is expected to be very effective as
for a random permutation the probability of the event Pc,i ⊕ Pd,i = α (or the
event Pe,i ⊕ Pf,i = α) is 2−64.

The boomerang distinguisher can be improved using the following obser-
vation: Just like in the rectangle attack, by fixing two plaintext bits (P 0

aLL
=

0, P 1
aLR

= 1), the probability of the first characteristic in the encryption direction
is 1/2 (instead of 1/4)2. Therefore, if we choose all the (Pa,i, Pb,i) according to
this additional requirement, the probability of the characteristic in rounds 1–3
in the forward direction doubles.

The overall probability of this boomerang process in this case is doubled
to 1/64. Thus, M = 128 suffices for a success rate of about 86%. Hence, our
distinguisher requires a total of 3 · 128 · 2 = 768 adaptively chosen plaintexts
and ciphertexts such that 256 chosen plaintexts are encrypted and 512 adap-
tively chosen ciphertexts are decrypted. The time complexity of the attack is
negligible.

5.3 Related-Key Boomerang Key Recovery Attack on 6-Round
KASUMI

We note that the boomerang distinguisher can be also used for a key recovery
attack. As mentioned earlier, the set of characteristics (of E1) for which the
attack succeeds depends on the value of a single key bit of K5. Thus, the value of
this key bit can be detected by observing which one of the sets of characteristics
of E1 is successful. Similar attacks can be mounted by taking other single bits
of K6 to have key difference in E1. That way, all 16 bits of K5 can be retrieved
by performing the attack 16 times, each time with another key difference. The
rest of the key can be retrieved using auxiliary techniques.
2 The actual probability is slightly higher, i.e., 5/8, and the probability of the first

characteristic in the decryption direction is 5/16.
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This variant of the attack requires 256 chosen plaintexts encrypted under
two keys (Ka and Kb), and sixteen times the decryption of 512 adaptive cho-
sen ciphertexts decrypted under two related keys. The total data complex-
ity of the attack is 213 adaptive chosen plaintexts and ciphertexts encrypted
under 34 keys. The time complexity of the attack is less than 213 KASUMI
encryptions.

6 Summary and Conclusions

In this paper we apply the related-key boomerang and related-key rectangle
attacks to the KASUMI block cipher. Our attacks are first attacks on the full ci-
pher. The related-key rectangle attack requires 254.6 chosen plaintexts encrypted
under four keys (252.6 plaintexts encrypted under each key). The time complexity
is equivalent to 276.1 KASUMI encryptions.

We also present an efficient related-key boomerang distinguisher on 6-round
KASUMI requires 768 adaptive chosen plaintexts and ciphertexts, using four
related keys.3 This attack can be converted to a key recovery attack that requires
213 adaptive chosen plaintexts and ciphertexts encrypted under 34 related keys,
and finds 16 key bits with time complexity of less than 213 KASUMI encryptions.

Previous works show that the security of the KASUMI block cipher with
respect to related-key attacks is significant for proving that the modes of oper-
ations used in the 3GPP networks are secure. Our results show that KASUMI
cannot be considered secure with respect to differential-based related-key at-
tacks. Therefore, the currently existing security proofs of the protocols of the
3GPP network should be revised to reflect this situation.
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Abstract. At FSE 2005, Nandi et al proposed a method to turn an
n-bit compression function into a 2n-bit compression function. In the
black-box model, the security of this double length hash proposal against
collision attacks is proven, if no more than Ω(22n/3) oracle queries to the
underlying n-bit function are made.

We explore the security of this hash proposal regarding several classes
of attacks. We describe a collision attack that matches the proven security
bound and we show how to find preimages in time 2n. For optimum
security the complexities of finding collisions and preimages for a 2n-bit
compression function should be respectively of 2n and 22n. We also show
that if the output is truncated to s ≤ 2n bits, one can find collisions in
time roughly 2s/3 and preimages in time roughly 2s/2.

These attacks illustrate some important weaknesses of the FSE 2005
proposal, while none of them actually contradicts the proof of security.

1 Introduction

1.1 Hash Functions

Cryptographic hash functions are important primitives in cryptology. They are
used in a wide range of applications including message integrity, authentication
schemes or public key encryption schemes. Most importantly, they are used to
speed up digital signature schemes, which otherwise would be slow and unlikely
to be implemented widely. A cryptographic hash function takes an input of
arbitrary size and produces an output, also called the hash value, of a fixed,
predetermined size. In practice there is a limit for the length of the input, but
typically this is chosen big enough for all practical applications. The important
properties of a cryptographic hash function are :

– collision-resistance : it should be difficult to find a pair x �= x′ of inputs to
the hash function H such that H(x) = H(x′)

– 2nd preimage-resistance : it should be difficult, for a given x to find x′ �= x
such that H(x) = H(x′)

B. Roy (Ed.): ASIACRYPT 2005, LNCS 3788, pp. 462–473, 2005.
c© International Association for Cryptologic Research 2005



Some Attacks Against a Double Length Hash Proposal 463

– preimage-resistance : it should be difficult, for a given y to find x such that
H(x) = y

There are generic attacks which apply to any hash function. If the size of the
hash value is n bits, then it is well-known that collisions can be found in time
2n/2 and preimages can be found in time 2n. For 2nd preimages, the complexity
of generic attacks ranges between 2n/2 and 2n, depending on the length of the
target message. Recent results by Kelsey and Schneier show that the complexity
can be only 2n/2 if the length of the target message is also 2n/2 [10]. In general,
hash functions are built by iterating a basic function called the compression
function. Attacks can target either the full hash function or the compression
function only, although there are connections between both approaches.

1.2 Recent Results in Attacking Hash Functions

Many advances have been made recently for hash function cryptanalysis :

– Some important weaknesses have been shown for popular algorithms. It is
the case of MD4 [7, 17], MD5 [19], SHA-0 [2, 4, 20] and SHA-1 [18], for which
it was shown how to find collisions much faster than 2n/2. These results
illustrate some weaknesses of the underlying compression functions.

– The generic construction itself could be at risk. Most hash functions are
iterative and are built using the Merkle-Damgård method [6, 12]. Recent
results suggest that this construction is not necessarily a good choice [9, 10].

– Computing power is always growing. Attacks with complexity 264 are already
accessible using distributed computing. And attacks with complexity 280 may
also soon be feasible. Therefore hash functions with output size ≤ 160 bits
are not a good choice for long term security.

In light of all this, more work is probably needed for hash function design. In
particular, it is believed that a good solution is to increase the size of the internal
state. This idea has been independently proposed by Lucks [11], Hirose [8] and
Nandi et al.[14]. Unfortunately the output size of most available compression
functions is not large enough, so one needs to design compression functions
with an increased output length. Rather than building a new primitive from
scratch, Nandi et al. suggested to use a secure n-bit compression function, in
order to build a larger compression function (of size 2n-bit for example). The
small compression function could then be instantiated with one of the available
function, or with a block cipher in the Davies-Meyer construction. An interesting
argument for this new construction is that its security has been proven, using
some assumptions on the underlying "small" compression function.

1.3 Our Results

In this paper, we focus on the security of the new double length hash proposal of
FSE 2005 [14] against all usual attacks. Regarding the proven security, the authors
have only focused on collision attacks, so one may hope to find (second) preimage
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attacks without contradicting the security proof. Another interesting open prob-
lem is to find a collision attack that matches the security proof claimed in [14].

First, we show that a collision can be found for this proposal in time 22n/3,
which fits the proven security bound (but a generic attack on a 2n-bit function
would cost 2n). Secondly, we show that preimages can be found in 2n, while the
best generic attack on a 2n-bit compression function costs 22n.

An interesting question is how these results would apply to a full hash func-
tion built using the FSE 2005 compression function. Iterated constructions gen-
erally require the compression function to be collision-resistant in order to guar-
antee the security of the full hash function. This is the case of the popular
Merkle-Damgård construction [6, 12]. Another example was given at Crypto’05,
where Coron et al. revisited the Merkle-Damgård construction [5]. In their analy-
sis, the compression function is modeled as a random oracle.

Sometimes the iterative structure even allows to find better attacks against
the full hash than against the compression function alone, as demonstrated in [9,
19]. However we did not take into account such scenarios.

1.4 Notions of Security for Truncated Hash

We introduce new notions of security for compression functions and hash func-
tions. These notions are the near-preimage resistance and the near-collision
resistance. The idea is that it should remain difficult to find collisions or preim-
ages on a truncated version of the function. It is often easier to find "near" attacks
than attacks against the full hash. This was illustrated in the case of the SHA
family where Biham and Chen first described near collisions [1] before "real"
collision attacks were later demonstrated [2, 18].

There are important motivations for taking into account near-collision and
near-preimage attacks in practice. First, truncating the output diminishes the
size of the hash value. This can be critical to reduce data storage or to reduce the
communication complexity (case of MAC’s for instance). When it is estimated
that s bits are a sufficient level of security, it is customary to truncate the output.
In some case, this even helps to prevent some attacks (it makes more difficult to
detect internal collisions in MAC algorithms, for instance).

Secondly, another motivation is that new hash functions may need to re-
main compatible backward with former applications. For instance, an output
of size 160 bits may be needed for compatibility with systems that previously
implemented SHA-1. Therefore it is likely that new designs may end up being
truncated for practical purpose. A nice illustration of hash function truncation
is given by the SHA-2 family [15] : intermediate hash sizes (224 bits and 384
bits) are obtained by truncation of the larger hash sizes (256 bits and 512 bits).

It is expected that the best attacks against truncated hash function remain
generic attacks. If the output size is reduced from n to s bits, then the best
collision attack should cost 2s/2 steps and the best preimage attack should cost
2s steps. In their original paper, Biham and Chen [1] considered near preimages
where the truncated positions are freely chosen by the attacker. With
these additional degrees of freedom, the task of the attacker is easier, because
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he can first test several messages and choose the truncated positions only after-
wards. For example, it is very easy to find a near preimage for SHA with s = 80
when the attacker can choose the truncated positions. However, such scenarios
are not very realistic in practice, so we only focus on near attacks where
the truncated positions are predetermined.

On the one hand, the security of a truncated hash function is unlikely to drop
dramatically compared to the full version. Suppose that one can find preimages
in time T for a s-bit truncated output. Then, for a given n-bit challenge y,
an attacker can simply truncate y to s bits and obtain a preimage x for the
truncated value. Then, s bits of the initial challenge are already satisfied by x,
and the attacker can simply hope that the remaining n− s bits also satisfy the
challenge. Therefore a preimage attack for the full hash should cost :

T ′ = T × 2n−s

However there is no guarantee. The previous relation is true for most designs,
but there may also exist special designs where this is not true.

On the other hand, truncated the hash function may improve the level of
security. This situation has been observed for MAC algorithms where truncation
sometimes prevents the detection of internal collisions. Therefore, it is interesting
to analyze how the complexity of an attack changes when the output is truncated.
For instance, the FSE 2005 double length hash proposal [14] has a security
regarding collision attacks proven with a bound of 22n/3. Thus, it is very tempting
to truncate its output to

2× (2n/3) = 4n/3

bits only, since it appears to be the highest security one can achieve. Unfortu-
nately, in that case, we show that collision attacks would become much easier
than 22n/3. More generally, when the hash output is truncated to s < 2n bits,
we show how to find collisions in time 2s/3 and preimages in time 2s/2.

2 Description of the Double Length Compression
Function

A compression function is a function F : {0, 1}m → {0, 1}n where m > n.
Suppose that F requires t calls to either

– a block cipher of block size l.
– a smaller compression function with inputs of l bits

Then, the rate r of F is generally defined as the ratio :

r =
m− n

tl

It represents the amount of data compressed for each application of the block
cipher (or the smaller function). Achieving a compression function with a ratio
r = 1 and which is practical seems to be a very difficult task [3]. In their paper,
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Fig. 1. The double length 1/3-rate construction of FSE 2005

Nandi et al. [14] introduce two new constructions of respective rates r = 1/3
and r = 2/3. The attacks against both proposals are essentially the same, so we
consider first the compression function of rate 1/3.

Let fi : {0, 1}2n → {0, 1}n be independent random functions, for i = 1, 2, 3.
We define the double-length compression function F : {0, 1}3n → {0, 1}2n by :

F (x, y, z) = (F1(x, y, z) | F2(x, y, z))
= (f1(x, y)⊕ f2(y, z) | f2(y, z)⊕ f3(z, x))

This function has a rate of 1/3 : it compresses one block of n bits with 3 evalua-
tions of the "small" fi functions. This construction is also illustrated in Figure 1.

Similarly, a function with rate 2/3 is proposed in [14]. The idea is to in-
stantiate all the fi’s with a block cipher using keys of length 2n bits, in the
Davies-Meyer construction. This allows to compress an input of 4n bits into an
output of 2n bits, thereby improving the ratio from 1/3 to 2/3. This construction
could be instantiated with AES-256 for instance.

3 Collisions

In [14], it is proven that no collision can be exhibited for the proposed 2n-bit
compression function with less than Ω(22n/3) queries to the three underlying
n-bit functions. In addition, it is described how to match this bound.

First, we quickly remind the attack proposed by the designers. Then we
argue that the number Q of oracle queries is not the proper way to estimate the
complexity of a collision attack. We denote the actual time and memory needed
for the attack by T and M : while the original attack is such that Q = 22n/3, the
authors of [14] do not give many details about its complexity. Apparently their
attack requires T = M = 2n. Using additional tricks, we propose a better attack
which satisfies Q = T = M = 22n/3. We do not take into account constant and
logarithmic factors to evaluate the complexities of all attacks.
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3.1 The Original Attack

Let us pick at random 2n/3 values for x, y and z. We call these values xi, yi and
zi for i = 1 . . . 2n/3. Compute for all pairs (i, j),

Ai,j = f1(xi, yj)

Then store all results in a table TA(i, j) with 22n/3 entries. Similarly, compute

Bi,j = f2(yi, zj)

and store in a table TB(i, j). Finally, compute

Ci,j = f3(zi, xj)

and store in a table TC(i, j). At this point Q = 3×22n/3 queries have been made
to the n-bit compression functions.

Now consider all triplets (xi, yj, zk). There are 2n such triplets and the com-
pression function F produces 2n-bit outputs. So the birthday paradox tells us
that, with good probability, two triplets will give a collision on F . One ta-
ble lookup to TA, one to TB and one to TC are sufficient to evaluate each
F (xi, yj , zk), so no new oracle query is needed. After computing the 2n out-
puts, we store them in a table and sort it, in order to detect if an element
appears twice. Therefore a collision is expected to be found with Q = 22n/3 and
T = M = 2n.

3.2 A Better Attack

While the notion of oracle queries is useful for a security proof, it is not relevant in
practice : specifications of a hash function are typically public, so an attacker can
evaluate off-line the functions fi. It is therefore not natural to make a distinction
between the time needed for the Q oracle queries and the rest of the analysis.
According to the security proof of [14] any generic attack needs to evaluate at
least 22n/3 times one of the n-bit compression functions. Therefore

T > 22n/3

for any generic collision attack. In this section, we describe how to reach this
lower bound. Fix one of the inputs of F , for instance let y = y0. Then, consider
22n/3 random values of x and z. We denote these values by xi and zi for i =
1 . . . 22n/3. Compute, for all i,

Ai = f1(xi, y0)

and store the results in a table TA. Similarly, compute for all i

Bi = f2(y0, zi)

and store the results in a table TB. Both tables have 22n/3 entries.
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Next, fix an arbitrary 2n/3-bit pattern α and compute all pairs of elements
(Ai ∈ TA,Bj ∈ TB) such that Ai ⊕ Bj starts by α in its 2n/3 least significant
bits. There are

22n/3 × 22n/3

22n/3
= 22n/3

such pairs. They can be obtained with 22n/3 computation. This merging of TA

and TB under the constraint of the pattern α can be done by first XORing α to all
the elements of TA, then sorting TB, and finally searching for a collision between
the two tables. This costs 22n/3 in time and memory. Such merging algorithms
have been known for a long time by the folklore but have been thoroughly studied
by Wagner in [16]. The resulting table is noted T = TA '(α TB.

Finally, compute F for the 22n/3 triplets (xi, y0, zj) corresponding to elements
of T . It is guaranteed that the 2n-bit output always starts by the prefix α. Hence
the probability of collision among two such triplets is 2−4n/3 instead of 2−2n.
Since there are 22n/3 triplets to test, the birthday paradox tells us that a collision
is expected. To summarize, our improved collision attack requires about

T = 22n/3

computations steps, which is an optimal result, according to the security proof
of [14]. The memory required is of the order of M = 22n/3.

For an ideal compression function with a 2n-bit output, finding a collision
should require the computation of 2n function values. Therefore the FSE hash
proposal is not optimal. Also, one might be tempted to truncate the output
of the Fi-functions, e.g., to 2n/3 bits each, thereby obtaining a hash result of
s = 4n/3 bits. However, as we shall show next, this enables one to find collisions
in time less than 22n/3.

3.3 Near-Collisions

If the output of F is truncated to s ≤ 2n we show how to find a near-collision
with T = 2s/3, that is, two inputs to F which are equal in s fixed bit-positions.

When F1 and F2 are truncated by the same number of bits, the method is
exactly similar to the one above, replacing 2n by s.

Fix the input y of F to a value y0. Then, consider 2s/3 random values of x
and z. We denote these values by xi and zi for i = 1, . . . , 2s/3. Compute, for all
i, Ai = f1(xi, y0) and store the results in a table TA. Similarly, compute for all i
Bi = f2(y0, zi) and store the results in a table TB. Both tables have 2s/3 entries.
In both tables, we truncate the outputs of f1 and f2 as it is done in F . Then,
we fix an arbitrary s/3-bit pattern β on the s/2 remaining bits, and merge TA

and TB according to this pattern. We use the same algorithm as in Section 3.2.
The result is a table T = TA '(α TB containing :

2s/3 × 2s/3

2s/3
= 2s/3

elements of s/2 bits. Finally, we apply F to all triplets (xi, y, zj) of T . It is
guaranteed that the first s/3 bits of all outputs of F1 are equal to β. Hence the
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probability of having a collision among two such triplets in all the s bits is only
2−2s/3 instead of 2−s. Since there are 2s/3 triplets to test, the birthday paradox
tells us that a collision is expected.

Now suppose F1 is truncated to s1 bits and F2 is truncated to s2 bits, with
s = s1+s2. The pattern β has length s/3 bits, while the elements in T have length
s1 bits. So when s1 < s/3 we may have problems in the previous algorithm. In
that case, we need to exchange the roles of F1 and F2, but the idea remains
essentially the same.

To summarize, independently of how the truncation is made, we find a near-
collision in s bits with about T = 2s/3 computation. The memory required is
also of the order of M = 2s/3. The number of oracle queries is also of Q = 2s/3.

4 Preimages

For a 2n-bit compression function, it is expected that 22n evaluations should be
needed in order to find an input x that maps to y = F (x) for a given challenge y.
This requirement is generally expressed as preimage resistance. Unfortunately,
the hash proposal of [14] does not satisfy this property. In this section, we de-
scribe a preimage attack with complexity of 2n steps.

4.1 The Preimage Attack

Let h be a given target of length 2n bits. Our goal is to find a preimage (x, y, z)
such that F (x, y, z) = h. We can rewrite h as (h1, h2) and re-express our goal as :

F1(x, y, z) = f1(x, y)⊕ f2(y, z) = h1 (1)
F2(x, y, z) = f2(y, z)⊕ f3(z, x) = h2 (2)

The basic idea is to consider many triplets (x, y, z), and to first eliminate those
which do not satisfy (1). Actually, merging algorithms can again be used to
check this constraint efficiently. If there are enough remaining candidates, one is
expected to satisfy (2).

More precisely, let us fix an arbitrary y and compute, for all possible x,
Ax = f1(x, y). Results are stored in a table TA with 2n entries. Similarly, we
compute all Bz = f2(y, z) and store the results in a table TB. Using a merging
algorithm [16] as in Section 3.2, we compute

T = TA '(h1 TB

T contains all pairs of (Ax,Bz) such that Ax ⊕Bz = h1, so there should be :

2n × 2n

2n

entries. The corresponding time complexity is about 2n. By construction, all
triplets (x, y, z) in table T satisfy relation (1). Then we compute F2(x, y, z) for
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each of them. We expect that h2 will be reached, since the probability for a
random triplet to satisfy (2) is 2−n. Therefore T should contain one preimage
by F for the target h = (h1, h2).

To summarize, we propose a preimage attack against the proposal of [14]
with time complexity of T = 2n computation steps. In addition, the memory
requirement is about M = 2n. The number of oracle queries to the function fi’s
is also about 2n.

For an ideal compression function of 2n bits, finding a preimage should re-
quire about 22n computation. As was the case for collisions, it is next shown
that truncating the output of the hash function will not give ideal security for
the truncated construction.

4.2 Near-Preimages

Let h be a given target of length s < 2n bits. We can find a preimage (x, y, z)
such that F (x, y, z) truncated to s bits yields h in time roughly 2s/2. If both
functions Fi’s are truncated to s/2 bits, then the method is in essence the same
as in the previous section, simply replace n by s/2.

Suppose that both halves of the hash proposal are not truncated equally. For
instance, F1 is truncated to s1 bits and F2 to s2 bits, with

s1 + s2 = s

Without loss of generality, we suppose that s1 > s/2 > s2. In this case, we fix an
arbitrary value of y and consider 2s/2 arbitrary values of x and z. We compute
all f1(x, y) and store in table TA and similarly compute all f2(y, z) into a table
TB. As in the previous section, we truncate the elements in both tables, and
then use a merging algorithm. We verify the constraint on the s1 bits of h1. The
result is a table

T = TA '(h1 TB

of size
2s/2 × 2s/2

2s1
= 2s−s1 = 2s2

At this point, we are sure to hit the target h1 for all triplets of T . Since there are
2s2 such triplets, one of them should also hit the target h2 and therefore provide
a valid preimage.

Therefore, if the double length hash is truncated to s bits (it does not matter
which bits of the output are removed), then a preimage attack costs only 2s/2.

5 Application to the 2/3 Rate Compression Function

[14] also specifies a rate 2/3 compression function and gives an example of an im-
plementation of the scheme using a block cipher as the underlying cryptographic
primitive. Here we give only the generic description of the proposal using ran-
domly chosen functions as building blocks.
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Let fi : {0, 1}3n → {0, 1}n be independent random functions, for i = 1, 2, 3.
Define the compression function F : {0, 1}4n → {0, 1}2n

F (x, y, z,w) = (F1(x, y, z,w) | F2(x, y, z,w))
= (f1(x, y,w)⊕ f2(y, z,w) | f2(y, z,w)⊕ f3(x, z,w))

This function has a rate of 2/3: it compresses two blocks of n bits with three
evaluations of the f -functions. Note however that this scheme is not directly
comparable to the first schemes presented above, since the underlying functions
are of a different nature.

Nonetheless, the collision and preimage attacks presented earlier also apply
to this variant. This is easy to observe : by fixing the value of w in the rate
2/3 scheme, one gets exactly the rate 1/3 scheme. It follows easily that all the
attacks described in the previous sections also apply to the implementation of
the proposal using a block cipher.

6 Some General Considerations

There is one important property of the compression function of [14] that makes
our attacks possible : two of three of the underlying subfunctions fi can be
attacked independently, by fixing one input variable. Another important obser-
vation is that (part of) the output is the sum of the outputs of smaller subfunc-
tions. This opens the door for techniques more efficient than the usual birthday
attack. Consider a compression function of the form

h(x) = h1(x1 | y)⊕ h2(x2 | y),

where x1 can be varied independently of x2 and vice versa. Then in a search for
a collision on h, one is looking for values x1, x

′
1, x2, x

′
2, such that

h1(x1 | y)⊕ h2(x2 | y)⊕ h1(x′1 | y)⊕ h2(x′2 | y) = 0,

a solution to which is known to be faster than the birthday attack [16].
One possible way to remove this freedom for an attacker could be to use

subfunctions whose outputs depend on all (three) input variables. We can do
so in a rate 1/3 construction using the subfunctions of the (insecure) rate 2/3
proposal of [14]. Let fi : {0, 1}3n → {0, 1}n be independent random functions,
for i = 1, 2, 3. Define the compression function F : {0, 1}3n → {0, 1}2n

F (x, y, z) = (f1(x, y, z)⊕ f2(x, y, z) | f2(x, y, z)⊕ f3(x, y, z))

Evidently this reduces to a construction of the form

F (x, y, z) = (g1(x, y, z) | g2(x, y, z)).

The construction of secure double length compression function of this form is
further investigated in recent papers by Lucks [11] and Nandi [13].
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Table 1. Summary of all attacks against [14]

Type of Attack Time Memory Oracle Query

Collision [14] 2n 2n 22n/3

Collision 22n/3 22n/3 22n/3

Near-collision (s bits) 2s/3 2s/3 2s/3

Preimage 2n 2n 2n

Near-preimage (s-bits) 2s/2 2s/2 2s/2

7 Conclusion

In this paper, we have investigated a new double block length hash function
proposed at FSE 2005 by Nandi et al.. Their idea is to turn a "small", secure,
n-bit compression function into a 2n-bit compression function. The advantage
of their method is to offer a proof of security regarding collisions attacks.

Although, we do not contradict this security proof, we show that this con-
struction is not fully satisfying. Indeed, its security level is much worse than a
generic 2n-bit compression function. Table 1 summarizes all these results.

In addition, we have introduced new notions of security for compression func-
tions, i.e. near-collision and near-preimage resistance. These notions are im-
portant, because it is quite usual that hash function outputs are truncated for
practical purposes. One could be tempted to truncate the output of [14] to 4n/3
bits or less, in order to fit to the proven security bound. Our results show that
this would be a bad idea because it would deteriate the security of the construc-
tion below 22n/3.
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Abstract. This paper reconsiders the established Merkle-Damg̊ard de-
sign principle for iterated hash functions. The internal state size w of an
iterated n-bit hash function is treated as a security parameter of its own
right. In a formal model, we show that increasing w quantifiably improves
security against certain attacks, even if the compression function fails to
be collision resistant. We propose the wide-pipe hash, internally using a
w-bit compression function, and the double-pipe hash, with w = 2n and
an n-bit compression function used twice in parallel.

Keywords: hash function, provable security, multi-collision, failure-
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1 Introduction

A cryptographic hash functionH : {0, 1}∗ → {0, 1}n maps an infinite set of inputs
to the finite set of n-bit hash values. While collisions (inputs X �= Y withH(X) =
H(Y )) necessarily exist, a hash function should be collision resistant : given H , it
should be infeasible for an adversary to actually find any collisions. But what if a
hash function fails to be collision resistant? This paper deals with failure-friendly
hash functions providing some security even if collision resistance has failed. It
has been inspired by recent advances in collision finding [25,26,27,28,1].

The design of today’s cryptographic hash functions ubiquitously follows the
Merkle/Damg̊ard (MD) structure [16,6], iterating some underlying compression
function. The hash function is collision resistant, if the compression function
is. However, if computing a compression function collision is somehow feasible,
the hash function may fail worse than expected. E.g., finding multiple collisions
should be way more expensive than finding plain (2-)collisions – but Joux [11]
disproved this for the MD design. Also, MD hash functions completely fail to
defend against 2nd collision attacks: If H(M) = H(N) for any two messages
M , N , then H(M ||S) = H(N ||S) for all S ∈ {0, 1}n. (Technically, this assumes
M and N to be “extended messages”, see below.) In other words, given a single
collision, an adversary can easily construct many more collisions. This has long
been known, but recently been exploited to turn “random” collisions (as, e.g.,
for MD5 [26]) into “meaningful” ones [12,17,14,15]. Even a 2nd preimage like
scenario is possible [7]: given any two texts T1 and T2, Daum and Lucks presented
two corresponding PostScript files with identical MD5 hashes.

B. Roy (Ed.): ASIACRYPT 2005, LNCS 3788, pp. 474–494, 2005.
c© International Association for Cryptologic Research 2005
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Our Contributions. This paper describes and analyses failure-friendly iter-
ated hash functions. The goal is to defend against certain classes of attacks
even if collision resistance fails. We propose and analyse variants of the Merkle-
Damg̊ard design, increasing the internal state to w > n bits. The wide-pipe hash
is quite similar to the Merkle-Damg̊ard hash, except for using a “largish” w-bit
compression function to finally generate n < w bits of output. The double-pipe
hash sets w = 2n and employs one single n-bit compression function, used twice
in parallel for each message block. In random and standard model settings, we
prove the security of our schemes against K-collision attacks (for K ≥ w), and
K-way preimage and 2nd preimage attacks (for K ≥ 1). Additionally, we
discuss and semi-formally verify the resistance against 2nd collision attacks.
Related Proposals. The double-pipe hash may remind the readers of the
RIPEMD-family of hash functions [22,8], also calling two compression functions
in parallel. The hash functions specified in [22,8] combine both n-bit compression
values into a single n-bit state, strictly following the Merkle-Damg̊ard design
principle, thus being as failure-unfriendly as any Merkle-Damg̊ard hash func-
tion. But [8] also outlines some double-width variants of RIPEMD-128 and -160,
which we refer to as RIPEMD-256 and -320. RIPEMD-256 and -320 can almost
be viewed as instantiation of our design principle – except for the following:

– By outputting both compression values at the end, RIPEMD-256 and -320
use the two n-bit compression functions like a single 2n-bit compression func-
tion – again following the Merkle-Damg̊ard design, thus, e.g., being entirely
vulnerable to 2nd collision attacks.

– RIPEMD-256 and -320 were proposed as a a convenience feature for applica-
tions requiring a 2n-bit hash “without needing a larger security level” [8]. On
the other hand, our double-pipe construction has been designed to improve
the security against certain attacks.

We propose a generic and failure-friendly design principle providing provable
security under reasonable assumptions. Assuming a “good” n-bit compression
function,1 our analysis would justify the usage of, say, a failure-friendly variant
of RIPEMD-320 with 2n = 320 internal state bits and n = 160 output bits.

Recently, Coron et al. [5] also analysed variants of the Merkle-Damg̊ard de-
sign in a fashion similar to the current paper. One of the proposals in [5] is
rather similar to our wide-pipe design. However, [5] aims for variably-sized ran-
dom oracles, based on an (extremely strong) ideal compression function (i.e., a
fixed-size random oracle). This is orthogonal to our approach of taking possible
compression function weaknesses into account. Nandi et. al. [18] proposed and
analysed a rather different “2/3 rate double length compression function”. Both
[5] and [18] restrict their analysis to the random and Shannon oracle, while the
current paper also provides some analyses in the standard model. Also, none of
the constructions in [5,18] resemble the current paper’s double-pipe hash design.
1 Note that [8] took great care to ensure that both compression functions behave

“differently enough”. Somewhat surprisingly, our results indicate that it would even
be OK to use the same compression function twice, instead of two different functions.
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Road map. We first describe Merkle-Damg̊ard hashing and introduce notations,
abstractions, and attacks. Section 2 describes and analyses the wide-pipe hash,
a modified Merkle-Damg̊ard design with an extended internal state size. Section
3 modifies the wide-pipe hash, introducing and analysing the double-pipe hash.
Section 4 investigates the security of a “weakened” double-pipe hash, based on a
common construction for compression functions; see Appendix A for the proofs.
Section 5 deals with extension attacks and Section 6 discusses our results and
their implications. Appendix B provides examples for our hash constructions.

1.1 The Merkle-Damg̊ard (MD) Principle for Iterated Hashing

A hash function H takes a message M ∈ {0, 1}∗ to compute H(M) ∈ {0, 1}n.
(In practice, the length |M | of M may be bounded by some huge constant.) An
iterated hash H is based on a compression function C with a fixed number of
input bits and splits M into fixed-sized chunks M1, M2, . . . , ML ∈ {0, 1}m. The
final chunk ML may contain additional information, such as |M |. (M1, . . .ML) is
the “expanded message”. Assume a compression function C : {0, 1}n×{0, 1}m →
{0, 1}n and a fixed initial value H0. Given M ∈ {0, 1}∗, one computes the MD
hash as follows:

– Expand M to (M1, . . . ,ML) ∈ {0, 1}mL. (MD strengthening: The last block
ML takes the length |M | in bits. Thus, if |M | �= |M ′|, then ML �= M ′

L′ .)
– For i ∈ {1, . . . , L}: compute Hi := C(Hi−1,Mi).
– Finally: output HL.

H[0] H[1] H[2]

M[2]

CC
H[L]H[L−1]

M[L]

C

M[1]

Fig. 1. The Merkle-Damg̊ard (MD) Hash

Note that the MD hash function does not provide any resistance against 2nd
collision attacks : consider messages M �= M ′ with expansions (M [1], . . . ,M [L])
and (M ′[1], . . . ,M ′[L]). If M and M ′ collide, then H [L] = H ′[L] for H [L] =
C(·,M [L]) and H ′[L] = C(·,M ′[L]), and therefore all expanded messages (M [1],
. . . , M [L], S[1], . . . , S[T ]) and (M ′[1], . . . , M ′[L], S[1], . . . , S[T ]) also collide.

1.2 Notation, Abstractions, and Attacks

Random Oracles. A fixed-size random oracle is a function f : {0, 1}a →
{0, 1}b, chosen uniformly at random. For interesting sizes a and b, it is infeasible
to implement f , or to store its truth table. Thus, we assume a public oracle
which, given x ∈ {0, 1}a, computes y = f(x) ∈ {0, 1}b. A variably-sized random
oracle is a random function g : {0, 1}∗ → {0, 1}b, accessible by a public oracle.
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Equivalently, g is an infinite set of fixed-size random oracles ga : {0, 1}a → {0, 1}b
for a ∈ {0, 1, 2 . . .}. We view a fixed-size random oracle as an ideal compression
function, and a variably-sized random oracle as an ideal hash function.
Shannon Oracle. An ideal block cipher is some invertible random oracle E :
{0, 1}n × {0, 1}m → {0, 1}n, such that for each M ∈ {0, 1}m, for the function
E(·,M) = EM (·) an inverse E−1(·,M) exists. Apart from that, E is uniformly
chosen at random. Given x and M , one can ask a Shannon oracle for y =
E(x,M), and, given y and M , one can ask the oracle for x = E−1(y,M).
Adversary. As usual in the context of the Shannon and random oracle models,
we consider a computationally unbounded adversary with access to either a
Shannon or a random oracle. The adversary’s “running time” is determined by
her number of oracle queries. Our adversaries are probabilistic algorithms, and
we concentrate on the expected running time (i.e., the expected number of oracle
queries). We will describe the running time asymptotically. When necessary for
clarity, we use the symbols O (“big-Oh”, for “the expected running time is
asymptotically at most”) and Ω (“big-Omega”, for “. . . at least”). 2

Classes of Attacks. Informally, a real hash function H should behave like an
ideal one (i.e., like a random oracle). This would not be useful for a formal
definition, though (see [4]). Instead, one considers somewhat simpler security
goals for H : {0, 1}∗ → {0, 1}n. We consider the following classes of attacks:

K-collision for K ≥ 2: Find K different M i, with H(M1) = · · · = H(MK).
K-way (2nd) preimage for K ≥ 1: Given Y (or M with H(M) = Y ), find K

different messages M i, with H(M i) = Y (and M i �= M).
2nd collision: Given any collision A �= B with H(A) = H(B), find C,D with

C �∈ {A,B,D} and H(C) = H(D).

The first two classes include “traditional” 2-collisions, 1-way preimages and 1-
way 2nd preimages. Some applications need protection against the large-K-
variants, e.g., [10,23,3]. The third class deals with a very natural assumption
for “good” hash functions: even if the adversary somehow – with a great deal of
luck, by doing much computational work, or by a mixture of both – has found
one collision, it should still be hard to find another one. The poor defence of
established hash functions against such attacks has been elaborated above.
Facts. Our analysis uses the following facts:

1. Fact: Finding a K-collision for a fixed size random oracle C : {0, 1}n+m →
{0, 1}n or for a variably-sized random oracle Model H : {0, 1}∗ → {0, 1}n
takes time Ω(2(K−1)n/K), and finding a K-way preimage or a K-way 2nd
preimage for H or C takes time Ω(K2n).

2. Fact: Given a collision A �= B with C(A) = C(B) for a fixed size random
oracle C{0, 1}n+m → {0, 1}n (or H(A) = H(B) for a variably-sized random
oracle H{0, 1}∗ → {0, 1}n), finding a 2nd collision C �= D, C �∈ {A,B} for
C (or H) takes time Ω(2n/2).

2 Recall f = O(g), if a constant c exists, such that f(n) ≤ cg(n) holds for all large
enough n, and f = Ω(g), if a c exists such that f(n) ≥ cg(n) for all large enough n.
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Initial Values. Like the MD hash, our hash functions depend on the compres-
sion function(s) and an initial value (IV). One can set the IV to some fixed
(“random”) constant. But for our analysis, we will even allow the adversary to
actually choose the IV.3 This makes our results all the more meaningful.
Standard Model Formalism. For a fixed hash function H : {0, 1}∗ → {0, 1}n,
trivial algorithms to “find” collisions exist: given any M �= M ′ with H(M) =
H(M ′), output M and M ′. Collision resistance implies the non-existence of
algorithms to “find” collisions. Thus, for a standard model proof of collision
resistance, we must refine our formalism. Instead of a fixed hash function, we
actually consider a hash function family H : I × {0, 1}∗ → {0, 1}n. Here, I is
a finite nonempty set of indices (or “keys”). We assume an index i∗ ∈ I being
chosen uniformly at random, write H(·) instead of H(i∗, ·) and consider the fixed
hash function H : {0, 1}∗ → {0, 1}n as a random member of its family.

Fix some RAM model of computation. In any attack game, the adversary
is given i∗ as its first input. We measure the adversary’s expected running time
over uniformly distributed random i∗ (and the adversary’s internal coin flips, if
applicable). To capture a trivial adversary using huge tables, the running time
of any program is assumed to be at least linear in the program size.

We formalise compression functions C exactly like hash functions: assume
a family C : IC × {0, 1}α → {0, 1}β and an index iC ∈ IC chosen uniformly
at random, write C(·) instead of C(iC , ·), and consider the fixed compression
function C : {0, 1}α→ {0, 1}β as a random member of its family. An adversary’s
running time is taken over random iC . If H is defined by iterating C, a random
member of the hash family H is defined by iC and some random initial value H0,
i.e., i∗ = (iC , H0). Similarly, if H is constructed by applying C′ and C′′, then
i∗ = (iC

′
, iC

′′
, H0). Recall that in our attacks we even allow the adversary to

chooseH0. The adversary can make this choice after being given iC or (iC
′
, iC

′′
).

2 The Wide-Pipe Hash: A Modified MD Hash

Constructing a collision-resistant compression function with w > n output bits
may be simpler than constructing an n-bit compression function with the same
level of collision resistance. The wide-pipe hash uses such a w-bit compression
function to generate an n-bit hash value at the end. 4 This approach defeats
Joux’ attack – and even provides security against all generic K-collision attacks
(which treat the compression function as a random oracle). Let H0 ∈ {0, 1}w be
a (random) initial value. Using two compression functions

C′ : {0, 1}w × {0, 1}m → {0, 1}w and C′′ : {0, 1}w → {0, 1}n,

we compute the wide-pipe hash H :

– For i ∈ {1, . . . , L}: compute Hi := C′(Hi−1,Mi).
– Finally: set H(M) = C′′(HL).

3 This is similar to the “aSec” and “aPre” notions of hash function security from [24].
4 This idea has independently been proposed by Finney in a mailing list [9].
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H[1]

M[2]

C’C’

H[2]

M[1]

H[L]

M[L]

C’’C’

H[L−1]H[0]

f’’

Fig. 2. The Wide-Pipe Hash

For technical reasons, we need to distinguish between different kinds of col-
lisions. Consider M �= N with H(M) = H(N). M and N are expanded to
sequences (M1, . . . ,ML) �= (N1, . . . ,NL′). Denote HM

i and HN
j for the internal

hash values when computing H(M) and H(N). We define

Final collisions: HM
L �= HN

L′ but C′′(HM
L ) = C′′(HN

L′).
Internal collisions: HM

L = HN
L′ . (Note that an internal collision implies a col-

lision for C′, i.e., (HM
i ,Mi) �= (HN

i ,Ni) with C′(HM
i ,Mi) = C′(HN

i ,Ni).)
Final K-collisions: Any K-collision M1, . . . , MK (with H(M1) = · · · =

H(MK)) is final, if all 2-collisions (M i,M j) (with i �= j) are final.

2.1 Resistance Against K-Collision Attacks

Observe that Joux finds 2k-collisions in time min{k ∗ 2w/2, 2n(2k−1)/2k}. This
tightly describes the security of H , up to the (logarithmic) factor k. Define the
composition f ′′ : {0, 1}w × {0, 1}m → {0, 1}n of C′ and C′′ by f ′′(H,M) =
C′′(C′(H,M)), as indicated in Figure 2. Make the following two assumptions:

1. C′ is collision resistant, and 2. f ′′ is K-collision resistant.

Under these assumptions, we prove the K-collision resistance of H .5 For the
concrete security analysis, we assume that finding a collision for C′ takes at
least time T ′, and finding a K-collision for f ′′ at least time T ′′(K).

Lemma 1. An adversary needs Ω(min{T ′,T ′′(K)}) units of time to find a K-
collision for the wide-pipe Hash H, even if she can choose H0.

Proof. Any final K-collision is equivalent to a K-collision for f ′′. On the other
hand, if a K-collision for H is not a final K-collision, then an internal collision
has been found. For all H0, finding an internal collision is equivalent to finding
a collision for C′. Thus, finding a K-collision for H is at least as hard as finding
either a K-collision for f ′′, or a collision for C. �

In the random oracle model, H is as secure against multi-collision attacks
as an ideal hash for w ≥ 2n.
5 It would seem natural to assume the K-collision resistance of C′′. Indeed, f ′′ is K-

collision resistant if C′ is collision resistant and C′′ is K-collision resistant. But even
if C′′ is K-collision vulnerable, f ′′ can still be K-collision resistant. E.g., model C′

as a random oracle and set C′′ to be the plain truncation of w-bit inputs to n-bit
outputs. For log2(K) ≤ w − n, C′′ is trivially K-collision weak, but f ′′ is not.
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Theorem 2. Consider the wide-pipe hash H. Allow the adversary to choose H0.

1. Model C′ and C′′ as independent random oracles. The adversary needs time
Ω(min{2w/2, 2n(K−1)/K}) to find a K-collision for H.

2. Define C′′ : {0, 1}w → {0, 1}n,C′′(x1, . . . , xw) = (x1, . . . , xn) as the n-bit
truncation of its w-bit input. Model C′ as a random oracle. The adversary
needs time Ω(min{2w/2, 2n(K−1)/K}) to find a K-collision for H.

Proof. Due to Lemma 1, finding a K-collision takes time Ω(min{T ′,T ′′(K)}).
By Fact 1, T ′ = Ω(2w/2). If C′′ is an independent random oracle, then T ′′(K) =
Ω(2n(K−1)/K). If C′′ just truncates, then f ′′ can be viewed as a random oracle
with n output bits. Again, this gives T ′′(K) = Ω(2n(K−1)/K). �

2.2 Resistance Against K-Way (2nd) Preimage Attacks

Joux’ (2nd) preimage attack also works for the wide-pipe hash. Its time O(k ∗
2w/2 +2n) tightly bounds the security of H , up to the (logarithmic) k. Let T ′ be
a lower bound for finding collisions for C′ (as before) and assume that finding
K-way preimages for f ′′ takes at least time P ′′(K).

Lemma 3. Consider the wide-pipe hash H. Allow the adversary to choose H0.

1. The adversary needs time Ω(P ′′(1)) to find a single preimage for H.
2. She needs time Ω(min{T ′, P ′′(K)}) to find a K-way preimage for H.

Proof. Finding a preimage for H implies finding a preimage for f ′′. Finding a
K-way preimage for H either implies finding at least one internal collision – and
thus a collision for C′ – or a K-way preimage for f ′′. �

In the random oracle model, we also consider 2nd preimage attacks.

Theorem 4. Consider the wide-pipe hash H. Model C′ and C′′ as independent
random oracles. An adversary allowed to choose H0 needs

1. time Ω(2n) to find a single preimage for H,
2. time Ω(min{2w/2}) to find a K-way preimage for H, and
3. time Ω(min{2w/2,K2n}) to find a K-way 2nd preimage for H.

Proof. The first two bounds are direct consequences of Lemma 3 and Fact 1.
Now consider 2nd preimages: given a random X ∈ {0, 1}w, we are searching
for one or more different X i ∈ {0, 1}w with C′′(X) = C′′(X i). We choose an
arbitrary message M with the expansion M1, . . . , ML, query the C′-oracle for
the internal hash values H1, . . . , HL, and define

C′′′ : {0, 1}w → {0, 1}n :

⎧⎨⎩C′′′(HL) = C′′(X),
C′′′(X) = C′′(HL),
C′′′(Z) = C′′(Z) if Z �∈ {X, HL}.

Note that with overwhelming probability X �= HL. Now we run the adversary to
find single or multiple 2nd preimages for M , replacing C′′ by C′′′. Observe that
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X is a random value, and, since C′ is a random oracle, HL is random, too. Thus,
C′′′ is a uniformly distributed random function just like C′′ – the adversary
can’t distinguish between C′′ and C′′′. Our little manipulation (replacing C′′ by
C′′′ for the adversary) does not affect the adversary’s probability of success or
running time. We write H ′′′ for the wide-pipe hash function using C′ and C′′′.

If the adversary succeeds, she finds 2nd preimage(s) M i with H ′′′(M) =
H ′′′(M i). We write Li for the length of the expansion of M i (in chunks). Consider
the inputs Hi

Li for C′′′. If Hi
Li = HL, we have found a collision for C′. Else, Hi

Li

is a 2nd preimage for C′′. �

Increasing w improves the security ofH against multiple (2nd) preimage attacks.
But an adversary whose running time exceeds 2w/2 can still run Joux’ attack and
benefit from the iterated structure of H . In fact, no hash function with some
fixed internal state size w can be as secure against multiple (2nd) preimage
attacks as an ideal hash.

3 The Double-Pipe Hash

There is one drawback for the wide-pipe design: its compression function C′

needs a larger output and finding collisions for C′ must be much harder than
finding collisions for the hash function itself. It would be interesting to use a
compression function which only has to satisfy essentially the same security
requirements as the hash. For instance, if we assume the internal compression
function of, SHA-1, RIPEMD-160, or SHA-256 to be as secure as an ideal 160-bit
(256-bit for SHA-256) compression function, can we construct some variant to
improve security? Note that the SHA-1 and RIPEMD-160 compression functions
can be written as C : {0, 1}160×{0, 1}512 → {0, 1}160, their SHA-256 counterpart
as C : {0, 1}256 × {0, 1}512 → {0, 1}256. Thus, the following construction would
be applicable to all of them: Using one single narrow-pipe compression function
C : {0, 1}n×{0, 1}n+m→ {0, 1}n, with m ≥ n and two distinct (random) initial
values H ′0 �= H ′′0 ∈ {0, 1}n, we compute the double-pipe hash Hd:

– For i ∈ {1, . . . , L− 1}: compute
• H ′i := C(H ′i−1, H

′′
i−1||Mi) and

• H ′′i := C(H ′′i−1, H
′
i−1||Mi)

– Finally: Hd(M) := C(H ′L−1, H
′′
L−1||ML)

So in Hd(M), we have replaced the wide-pipe chaining valuesHi−1 ∈ {0, 1}w
by pairs (H ′i−1, H

′′
i−1) ∈ ({0, 1}n)2. In each iteration, the value H ′i = C(H ′i−1,

H ′′i−1||Mi) – one half of the new chaining value – functionally depends on both
halfs H ′i−1 and H ′′i−1 of the old chaining value (similarly for H ′′i ). This is vi-
tal for the security of the double-pipe hash. Otherwise, Hd(M) would degen-
erate into the cascade of two hash functions, thus being vulnerable to Joux’
attack.
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Fig. 3. The Double-Pipe Hash

3.1 Security Against Multiple Collision Attacks

In principle, the double-pipe hash is a special case of the wide-pipe hash with
w = 2n and C′(H ′, H ′′||M) = ( C(H ′i−1, H

′′
i−1||Mi), C(H ′′i−1, H

′
i−1||Mi) ), where

C′′(H ′, H ′′) = H ′ simply truncates 2n input bits to n output bits. (Thus, we
do not need to compute the value H ′′L := C(H ′L−1, H

′′
L−1||ML), as indicated

in Figure 3.) Similarly to our analysis of the wide-pipe design, we distinguish
internal collisions from final ones. The improved security of the wide-pipe hash
over the plain MD hash depends on internal collision resistance being much
stronger than final collision resistance. Unfortunately, this reasoning does not
hold for the double-pipe construction. Finding internal collisions with H ′ = H ′′

and G′ = G′′ may be as “easy” as finding collisions for C, i.e., as finding final
collisions. To deal with this, we define two special cases of internal collisions, in
addition to considering K-collisions, and make the following three assumptions:

1. It is infeasible to find a strict (internal) collision for C, i.e., two triples
(H ′, H ′′,M) �= (G′, G′′,N) with H ′ �= H ′′ and G′ �= G′′, but
C(H ′′, H ′||M) = C(G′′, G′||N) and C(H ′, H ′′||M) = C(G′, G′′||N).

2. It is infeasible to find an (internal) cross collision for C: a triple (H ′,
H ′′, M), with H ′ �= H ′′ but C(H ′, H ′′||M) = C(H ′′, H ′||Mi).

3. It is infeasible to find K-collisions for C.

We will prove Hd to be secure under the above three assumptions. While
dealing with strict or cross collisions is unusual in cryptography, these assump-
tions appear to be natural and reasonable. We analyse the feasibility of finding
strict or cross collisions for a random oracle C. For the concrete security analy-
sis, we assume that finding strict collisions takes at least time Ts, finding cross
collisions at least time Tx, and finding K-collisions at least time T (K).

Theorem 5. If we model the compression function C as a random oracle, then
finding cross collisions for C needs time Tx = Ω(2n), and finding strict collisions
for C needs time Ts = Ω(2n),

Proof. First, consider Tx. Any triple (H ′, H ′′,M) can only be part of a cross
collision, ifH ′ �= H ′′ and C(H ′, H ′′||M) = C(H ′′, H ′||M), i.e., with a probability
of 2−n (for H ′ �= H ′′). Thus, we expect to make Tx = Ω(2n) oracle queries to
find a cross collision.
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Now consider Ts. For any triple (G′, G′′,M) with G′ �=G′′, the pair (H ′, H ′′)∈
{0, 1}2n with H ′ = C(G′, G′′||M) and H ′′ = C(G′′, G′||M) is a uniformly dis-
tributed 2n-bit random value, chosen independently from all the other C(·, ·||·)-
values. If the adversary chooses q different triples (G′, G′′,M) and makes q
queries to the C-oracle, then her probability to succeed is

∑
0≤j<q j/2

2n =
Ω(q2/22n). Thus, we expect to make Ts = q = Ω(2n) oracle queries to find
a strict collision. �

Lemma 6. Consider Hd. Allow the adversary to choose H ′0 �= H ′′0 .

1. Any internal collision for Hd reduces to a strict or to a cross collision.
2. The adversary needs time Ω(min{Ts,Tx,T (K)}) to find a K-collision.

Proof. For the first claim, observe that the initial valuesH ′0 andH ′′0 are different.
Any non-strict internal collision implies a triple (H ′i−1, H

′′
i−1, Mi) with H ′i−1 =

H ′′i−1. This implies the existence of a cross-colliding triple (H ′j , H
′′
j , Mj+1), with

j ≤ i−2, H ′j �= H ′′j , and H ′j+1 = C(H ′j , H
′′
j ||Mj+1) = C(H ′′j , H

′
j ||Mj+1) = H ′′j+1.

Thus, any non-strict internal collision implies a cross collision.
For claim 2, we argue as in the proof of Lemma 1. A K-collision for Hd either

reduces to a final K-collision (taking time T (K)), or to an internal collision. By
the first claim, an internal collision is either strict (taking time Ts), or is a cross
collision (taking time Tx). �

Theorem 7. Consider Hd, and model C as a random oracle. An adversary
who can choose H ′0 �= H ′′0 needs time Ω(2n(K−1)/K) to find K-collisions.

Proof. The result follows from Theorem 5, Lemma 6, and Fact 1. �

3.2 Resistance Against K-Way (2nd) Preimage Attacks

Our treatment of K-way (2nd) preimage attacks is quite similar to Section 2.2.
Let Ts and Tx be defined as above and assume finding preimages for C to take
at least time P (1).

Lemma 8. Consider Hd. Allow the adversary to choose H ′0 �= H ′′0 .

1. To find a single preimage, the adversary needs time Ω(P (1)).
2. To find K-way preimages, the adversary needs time Ω(min{Ts,Tx,T (K)}).

Proof. Claim 1: See proof of Lemma 3 with f ′′(·, ·||·) := C(·, ·||·). Claim 2 follows
from claim 1 of Lemma 6. Note that a K-way preimage also is a K-collision. �

Theorem 9. Consider the double-pipe hash Hd. Model the compression func-
tion C as a random oracle. An adversary who can choose H0 needs time Ω(2n)
for finding a single or K-way preimage or a single or K-way 2nd preimage.

The proof of Theorem 9 is quite similar to the proof of Theorem 12 below.
Our results indicate that in the random oracle model, the double-pipe hash

Hd is asymptotically as secure as the wide-pipe hash with w = 2n.
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4 Davies-Meyer (DM) Compression Functions

If we trust an existing MD-hash to meet its security goal, it seems reasonable to
use its compression function as the building-block C for the double-pipe hash.
But most practical hash (or rather, compression) functions (including the SHA-
family of hash functions, see Table 1) suffer from a specific structural weakness:
They use a block cipher like function E : {0, 1}n+m×{0, 1}n → {0, 1}n, i.e., that
for each “key” K ∈ {0, 1}n+m the function E(K, ·) permutates over {0, 1}n, and
both E(M, ·) and its inverse can efficiently be computed. A DM compression
function C : {0, 1}n × {0, 1}n+m → {0, 1}n is defined as follows:

C(Hi−1,Mi) = E(Mi, Hi−1) +Hi−1.

(Here “+” is any group operation over {0, 1}n.) The ability to efficiently com-
pute E−1

M (·) can be useful for the adversary, see e.g. Kelsey and Schneier [13]
for examples. Thus, we have to extend our formalism for the security proofs
accordingly – by considering a Shannon oracle, instead of a random oracle.

4.1 Double-Pipe Hash with DM Compression Function

Some generic attacks against hash functions don’t apply in the random oracle
model, but are feasible in the Shannon model [13]. Fortunately, this does not pose
a problem for the double-pipe hash. Those parts of our analysis of the double-
pipe hash which do not assume random oracles are still relevant and applicable.6

However, trusting those parts of our analysis which treat C as a random oracle
would be risky. For this reason, we additionally analyse the double-pipe hash in
the Shannon-model. See Appendix A for the proofs of the Theorems below.

Theorem 10. Consider a DM compression function C. If we model E by a
Shannon oracle, then Tx = Ω(2n) and Ts = Ω(2n).

Theorem 11. Consider Hd with a DM compression function C. If we model
E by a Shannon oracle, then finding K-collisions takes time Ω(2(n−1)(K−1)/K).

Theorem 12. Consider Hd with a DM compression function C. If we model
E by a Shannon oracle, then finding a single or K-way preimage or a single or
K-way 2nd preimage takes time P (1) = Ω(2n).

5 Resistance Against 2nd Collision Attacks

Note that our definition of a 2nd collision attack assumes the adversary to be
given the first collision essentially “for free”. This is difficult to handle in the
standard model. Thus, we concentrate on the random oracle model.

6 Observe that the “DM compression function” is the function C with some specific
non-random property. Given such C, the definition of Hd is the same.
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In general, our hash designs do not protect against 2nd collision attacks:
given an internal collision, attacking the wide-pipe or double-pipe hash is as easy
as attacking the MD hash. Our design rationale, however, has been to defend
against internal collisions, leaving final collisions as the “dotted line”, where the
hash function is likely to break (if it breaks at all). This is the foundation for
the security proofs in the previous sections. In the remainder of this section, we
thus focus on the specific case that the adversary is only given a final collision.

5.1 Wide-Pipe Hash: 2nd Collision Resistance

Consider the following attack: fix H0, choose two incomplete expanded messages
(M1, . . . , ML−1) and (N1, . . . , NL′−1), defining some pre-final internal states
HM

L−1 and HN
L′−1, receive a first collision and finally provide a 2nd collision. The

first collision is defined by ML,NL′ such that the hash collides, but C′ does not:

f ′′(HM
L−1,ML) = f ′′(HN

L′−1,NL′−1) but C′(HM
L−1,ML) = C′(HN

L′−1,NL′−1)

In this section, we consider an attack game giving the adversary even more
freedom: choose any HM

L−1 and HN
L′−1, receive ML,NL′ for a first collision as

above, and provide any four messages A,B,C,D ∈ {0, 1}∗, A �= B, C �= D,
H(A) = H(B), H(C) = H(D), with C �∈ {A,B,D}.

Theorem 13. Consider the wide-pipe hash H. Model C′ as a random oracle. If
C′′ either is an independent random oracle, or the n-bit truncation of its w-bit
input, the adversary needs time Ω(2n/2) to win the 2nd collision game for H.

Proof (Sketch). Recall that we have got a first collision for f ′′, but no collision
for C′. Finding messages A,B,C,D ∈ {0, 1}∗ as required implies finding

– an internal collision (a collision for C′), taking time Ω(2w/2) > Ω(2n/2),
– or a 2nd collision for f ′′, namely intermediate hashes HA, HB , HC , HD

∈ {0, 1}w, and final message blocks MA, MB, MC , MD ∈ {0, 1}m with
(HA,MA) �= (HB,MB),
(HC ,MC) �∈ {(HA,MA), (HB,MB), (HD,MD)},
f ′′(HA,MA) = f ′′(HB,MB), and f ′′(HC ,MC) = f ′′(HD,MD).

We argue that finding a 2nd collision for f ′′ would take time Ω(2n). If the 2nd
collision for f ′′ includes a collision for C′, then we need time time Ω(2w/2) to
find it. Else, the 2nd collision is still as hard to find as a 2nd collision for any
n-bit random oracle – both when C′′ is an independent random oracle and when
C′′ plainly truncates –, thus taking time Ω(2n/2), see Fact 2. �

5.2 The Double-Pipe Hash: 2nd Collision Resistance

We adapt the attack game from above to the double-pipe hash: choose four
arbitrary pairs G′ �= G′′, H ′ �= H ′′ ∈ {0, 1}n, receive M,N ∈ {0, 1}m with
C(G′, G′′||M) = C(H ′, H ′′||N), and provide A,B,C,D ∈ {0, 1}∗, with A �= B,
C �= D, Hd(A) = Hd(B), Hd(C) = Hd(D), and C �∈ {A,B,D}.
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Theorem 14. Consider the double-pipe hash Hd. Model C as a random oracle.
The adversary needs time Ω(2n/2) to win the 2nd collision game for Hd.

Proof (Sketch). As above, finding such A,B,C,D ∈ {0, 1}∗ with A �= B and
C �∈ {A,B,D}, implies finding

– either an internal collision, taking time Ω(2n) (→ Lemma 6, Theorem 5)
– or intermediate hashes H ′A, H

′′
A, H

′
B, H

′′
B, H

′
C , H

′′
C , H

′
D, H

′′
D ∈ {0, 1}n

and final message blocks MA,MB,MC ,MD ∈ {0, 1}m with

(H ′A, H
′′
A||MA) �= (H ′B, H

′′
B||MB),

(H ′C , H
′′
C ||MC) �∈ { (H ′A, H

′′
A||MA), (H ′B, H

′′
B||MB), (H ′D, H

′′
D||MD) },

C(H ′A, H
′′
A||MA) = C(H ′B, H

′′
B||MB), and

C(H ′C , H
′′
C ||MC) = C(H ′D, H

′′
D||MD).

The intermediate hashes and message blocks constitute a 2nd preimage for C.
According to Fact 2, finding such a 2nd preimage takes time Ω(2n/2). �

Theorem 15. Consider Hd with a DM compression function C. Model E by a
Shannon oracle. Winning the 2nd collision game takes time Ω(2n/2).

See Appendix A for a sketch of the proof.

6 Discussion

A Variant of the double-pipe hash. To reduce the set of cryptographic
assumptions, Preneel [21] proposed to use C : {0, 1} × {0, 1}n × {0, 1}n+m →
{0, 1}n with one extra bit of input. Set H ′i := C(0, H ′i−1, H

′′
i−1||Mi), H ′′i :=

C(1, H ′′i−1, H
′
i−1||Mi), and finally Hash(M) := C(0, H ′L−1, H

′′
L−1||ML). Proofs of

security for this variant of the double-pipe hash are very similar to the proofs for
Hd itself, but without the need to assume finding cross collisions to be infeasible.
Two Independent Security Parameters. The main lesson from [11,13] and
the current paper is that the internal state size w of an iterated hash function
should be seen as a security parameter of its own right.

Any security architect choosing parameters for a cryptographic hash should
choose both w and n according to her specific security requirements. For an
application where even a single hash collision would be the ultimate disaster,
w = n suffices. If, on the other hand, additional multi-collisions or (multiple or
single) preimages or 2nd preimages or feasible 2nd collisions would turn things
from bad to worse, w � n is recommendable, due to an improved failure mode.
2nd Collision Resistance. For applications such as digital signatures, 2nd
collision resistance can have a huge impact on practical security. Our construc-
tions are reasonably 2nd collision resistant. E.g., a double-pipe hash using the
MD5 compression function would fail collision resistance due to [26], but for the
double-pipe hash, this attack could only be used to generate final collisions. Ac-
cordingly, this double-pipe hash still defeats known exploits that make collisions
“meaningful” [12,17,14,15,7].
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Cascading. The idea to improve the security of hash functions by cascading has
been discussed for a long time, see, e.g., [20]. Cascading looks like an obvious
technique to improve the security of hash functions – but due to Joux’ attack,
cascading iterated hash functions is not that useful. On the other hand, the
double-pipe construction can be seen as a cascade of compression functions. To
this end, our double-pipe construction provides a theoretically sound technique
to cascade compression functions instead of the complete hash functions.

Summary. This paper takes an abstract and proof-centric look at the design
of hash functions. Similarly to [2], we consider our work a “feasible and useful
step for understanding the security” of iterated hash functions, thereby com-
plementing the attack-centric approach [11,13]. In the spirit of Merkle [16] and
Damg̊ard [6], this paper shows how to compose “good” hash functions, given
“good” compression functions. We provide standard model explanations, what
it means for the compression function to be “good”. Additionally, we analyse
the security of our constructions in the random oracle and Shannon model.

Acknowledgement. The author thanks Frederik Armknecht, John Kelsey, Ul-
rich Kühn, Arjen Lenstra, Bart Preneel, and the anonymous reviewers for their
suggestions, discussions, and inspirations.
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Appendix

A Security of Double-Pipe Hash with Davies-Meyer

A.1 Conventions

In this section, we analyse the security of the double-pipe hash with a Davies-
Meyer compression function. The adversary A has access to a Shannon oracle
for E and E−1. Similarly to [2], we assume:

– A never asks a query for which the response is already known. Namely, if
A asks for Ek(x) and receives y, she neither asks for E−1

k (y), nor for Ek(x)
again. Similarly, if she has asked for E−1

k (y) and received x.
– Recall that for the type of attacks we consider, a successful adversary always

outputs one or more messages M i, which either collide or constitute some
(2nd) preimages. Before finishing, the adversary makes all the oracle calls to
compute all hash values H(M i).
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– We define a simulator, to respond to A’s oracle queries:
• Initially:

∗ set i := 0; clear the logbook;
∗ for all (k, x): mark Ek(x) as undefined;

• At any time, domain(Ek) denotes the set of points x where Ek(x) is still
undefined. Similarly we write range(Ek), for the set of points y where
E−1
k (y) is still undefined.

• Responding to an oracle query Ek(x):
∗ set i := i+ 1
∗ randomly choose y from range(Ek)
∗ append (xi, ki, yi) := (x, k, y) to the logbook;
∗ respond y;

• Responding to an oracle query E−1
k (y):

∗ set i := i+ 1
∗ randomly choose x from domain(Ek)
∗ append (xi, ki, yi) := (x, k, y) to the logbook;
∗ respond x;

For our proofs, we will discuss the logbook entries (xi, ki, yi).

This is without loss of generality: any adversary not following the first two
conventions can easily be transformed into an equivalent one following them. And
an adversary following the first two conventions cannot distinguish the simulator
from a “true” Shannon oracle.

A.2 Internal Collisions

Theorem 10. Consider a DM compression function C. If we model E by a
Shannon oracle, then Tx = Ω(2n) and Ts = Ω(2n).

Proof. For the proof, we assume that the adversary does not make more than
q ≤ 2n−1 queries. This is technically correct, since 2n−1 = Ω(2n).

Time Tx to find cross collisions: a cross collision is described by H ′i−1 �=
H ′′i−1, Mi with

C(H ′i−1, H
′′
i−1||Mi) = H ′i = H ′′i = C(H ′′i−1, H

′
i−1||Mi). (1)

In time q, we can check at most q/2 such triples (H ′i−1, H
′′
i−1, Mi) for cross

collisions. Now we argue that for q ≤ 2n−1, for each such triple the probability
px to satisfy Equation 1 is at most 1/2n−1. This implies that the expected
number of oracle queries we need to make before we get the first cross collision
is Tx = Ω(2n), as claimed.

We still have to show px ≤ 2n−1. If the adversary’s answer involves a cross
collision, then, by the above conventions, the simulator’s logbook contains two
triples (xa, ka, ya) and (xb, kb, yb) with a �= b,

xa = H ′i−1, ka = (H ′′i−1||Mi), ya = Eka(xa),
xb = H ′′i−1, kb = (H ′i−1||Mi), and yb = Ekb

(xb).
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Thus, we can rewrite Equation 1 as

ya︷ ︸︸ ︷
Eka(xa)+xa =

yb︷ ︸︸ ︷
Ekb

(xb)+xb,

which corresponds to
ya + xa = yb + xb. (2)

If (w.l.o.g.) a < b, then either yb or xb is a uniformly distributed random value
from a huge subset of {0, 1}n:

– If the b-th oracle queryhas beenEkb
(xb), then yb is a randomvalue fromrange(Ekb

).
– Else xb is a random value from domain(Ekb

).

Since |range(Ekb
)| = |domain(Ekb

)| = 2n−b+1 ≥ 2n−q, and due to q ≤ 2n−1,
we get px ≤ 1/2n−1, as claimed.

Time Ts to find strict collisions: for triples (G′, G′′,M) with G′ �= G′′, we
consider pairs (H ′, H ′′) ∈ {0, 1}2n, where

H ′ = C(G′, G′′||M) and H ′′ = C(G′′, G′||M). (3)

A strict collision consists of such a triple (G′, G′′,M) and another triple (F ′, F ′′,N) �=
(G′, G′′,M) with

C(F ′, F ′′||N) = H ′ and C(F ′′, F ′||N) = H ′′. (4)

After q oracle queries, there are Ω(q2) pairs ((G′, G′′,M),(F ′, F ′′,N)) of triples.
We claim that for q ≤ 2n−1, the probability ps to satisfy Equation 4 is ps ≤
1/22(n−1). Hence, the expected number of oracle queries to get a strict collision
is Ts = Ω(2n).

It remains to prove ps ≤ 1/22(n−1). Consider a triple (xa, ka, ya) with xa =
G′, ka = (G′′||M), and ya = Eka(xa) from the simulator’s logfile. We only have
a chance for a strict collision if the logfile contains another triple (xb, kb, yb) with
xb = G′′, kb = (G′||M), and yb = Ekb

(xb). Note that xb and kb are uniquely
determined by xa and ka, and vice versa. Equation 3 can then be rewritten as

H ′ = Eka(xa) + xa = ya + xa and H ′′ = Ekb
(xb) + xb = yb + xb.

A strict collision implies another triple (F ′, F ′′,N) to satisfy Equation 4. This
corresponds to two more triples (xc, kc, yc) and (xd, kd, yd) on the server’s logfile
with

H ′ = ya + xa = yc + xc (5)

H ′′ = yb + xb = yd + xd. (6)

Both equations are of the same type as Equation 2. As in that context, we argue
that due to q ≤ 2n−1 the probability for Eq. 5 to hold is no more than 1/2n−1;
similarly for Eq. 6. More importantly, the conditional probability to satisfy Eq.
6, assuming Eq. 5 is at most 1/2n−1. Thus, the joint probability ps for both Eq.
5 and Eq. 6 is ps ≤ 1/22(n−1). �
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A.3 Resistance Against K-Collision Attacks

Theorem 11. Consider Hd with a DM compression function C. If we model
E by a Shannon oracle, then finding K-collisions takes time Ω(2(n−1)(K−1)/K).

Proof. Due to the first claim of Lemma 6 and Theorem 10, we know that an
internal collision would take time Ω(2n). Thus, in time Ω(2(n−1)(K−1)/K) we
cannot expect to find any internal collision. The only chance to find a K-way
collision for H is finding a final K-collision, which takes time T (K). In the
remainder of this proof, we show T (K) = Ω(2(n−1)(K−1)/K). As in the proof of
Theorem 10, we assume q ≤ 2n−1 = Ω(2n).

A final K-collision consists of K different triples with (Gi, Hi,M i) with

C(G1, H1||M1) = · · · = C(GK , HK ||MK).

By the above conventions, this implies that there are K triples (x1, k1, y1), . . . ,
(xK , kK , yK) in the simulator’s logbook with

y1︷ ︸︸ ︷
Ek1(x1)+x1 = · · · =

yK︷ ︸︸ ︷
EkK (xK) +xK .

These are K sums xi+yi, and similarly to the proof of Theorem 10, for each such
sum either xi or yi has been chosen from a huge subset {0, 1}n. Since q ≤ 2n−1,
the size of this subset exceeds 2n− q ≥ 2n−1. For this reason, we expect to make
T (K) = Ω(2(n−1)(K−1)/K) Shannon oracle queries for a K-collision. �

A.4 Resistance Against K-way (2nd) Preimage Attacks

Theorem 12. Consider Hd with a DM compression function C. If we model
E by a Shannon oracle, then finding a single or K-way preimage or a single or
K-way 2nd preimage takes time P (1) = Ω(2n).

Proof. As in some of the proofs above, we assume q ≤ 2n−1.
Finding K-way (2nd) preimages isn’t faster than finding single (2nd) preim-

ages. Thus, we concentrate on single ones.
First, we start with singe preimages. Due to Lemma 8, finding a single

preimage for the hash Hd takes time Ω(P (1)), i.e., is asymptotically not faster
than finding a preimage for the compression function C(K,X) = EK(X) + X .
Let a target Z be given, and an adversary is trying to find K and X with
C(K,X) = EK(X) + X = Z. By the above conventions, this corresponds to an
entry (xi, ki, yi) in the simulator’s logbook with xi + yi = Z, and either xi or
yi has been chosen from a huge subset of {0, 1}n of size > 2n − q ≥ 2n−1. Thus,
for each query to the Shannon oracle, the probability to find a preimage for Z
is at most 2n−1, and we expect to make P (1) = Ω(2n) such queries to find such
a preimage.
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Now consider 2nd preimages: assume an algorithm to find 2nd preimages
for Hd. Consider we are given (K,N) and searching for some 2nd preimage
(K ′,N ′) �= (K,N) with

C(K ′,N ′) = EK′(N ′) + N ′ = EK(N) + N = C(K,N).

The following technique resembles the proof of Theorem 4. We choose some mes-
sage M , expand it to (M1, . . . ,ML) and accordingly compute the internal hashes
H ′1, H

′′
1 , . . . , H ′L−1, H

′′
L−1. Assume

(K,N) �∈ {(H ′i, H ′′i ||Mi), (H ′′i ||H ′i||Mi) | 1 ≤ i < L} (this holds with overwhelm-
ing probability).

Set N−1 := E−1
K (Z −N) and define the function E′ : {0, 1}n× {0, 1}n+m →

{0, 1}n :
E′K(N) = Z −N
E′K(N−1) = EK(N)
E′Q(R) = EQ(R) for (Q,R) �∈ {(K,N), (K,N−1)}.

Now we run the adversary, replacing the (Shannon-) oracle for E and E−1 by
an oracle for E′ and its inverse. Observe that for the adversary Hd(M) = Z
holds. Further, both E and E′ are random permutations over {0, 1}n, so the
adversary’s chances of success are not affected by the change from E to E′.

Assume the adversary succeeds in finding a 2nd preimage M for M . Write
(M1, . . . , ML) for the expansion of M and H ′1, H ′′1 , . . . , H ′

L−1
, H ′′

L−1
for the

internal hashes.

– If (H ′
L−1

, H ′′
L−1

,ML) = (H ′L−1, H
′′
L−1,ML), then the adversary has found an

internal collision. From above, we know that this needs time min{Tx,Ts} =
Ω(2n).

– Otherwise, (H ′
L−1

, H ′′
L−1

,ML) is a preimage for Z. From above, we know
that this takes time P (1) = Ω(2n).

Thus, in order to find a 2nd preimage for H , the adversary either has to find
an internal collision, or a 2nd preimage for C, and solving either problem takes
time Ω(2n). �

A.5 2nd Collision Resistance

Theorem 15. Consider Hd with a DM compression function C. Model E by
a Shannon oracle. Winning the 2nd collision game takes time Ω(2n/2).

Proof (Sketch). Recall the proof of Theorem 14. A 2nd collision for Hd either
implies an internal collision or a 2nd preimage for C. Finding an internal collision
reduces to strict or internal collisions, thus taking time Ω(2n) (→ Theorem 10).

We still have to show that finding 2nd collisions for C takes time Ω(2n/2).
From Theorem 11, we know that finding (first) collisions (i.e., K-collisions with
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K = 2) takes time Ω(2n/2). In the proof of Theorem 11, finding such collisions
for C is shown equivalent to the following task:

find x1, k1, x2, k2 with Ek1(x1) + x1 = Ek2(x2) + x2,

and (x1, k1) �= (x2, k2).

Similarly, finding 2nd collisions for C is equivalent to the task:

given xa, ka, xb, kb with Eka(xa) + xa = Ekb
(xb) + xb

with (x1, k1) �= (x2, k2),
find xc, kc, xd, kd with Ekc(xc) + xc = Ekd

(xd) + xd,

and (xa, ka) �= (xb, kb),
and (xc, kc) �∈ { (xa, ka), (xb, kb), (xc, kc) }.

Regarding the second task, we replace the family E of permutations by a modi-
fied family E′:

– Randomly choose xa, ka, xb, kb. Assume ka �= kb (this is overwhelmingly
probable).

– Compute y∗ := Ekb
(xb) + xb − xa and x∗ := Eka(y∗).

– Set E′ka
(xa) := y∗ and E′ka

(x∗) := Eka(xa). Otherwise, E′ behaves identical
to E.

– Observe E′ka
(xa) + xa = E′kb

(yb). Given such xa, ka, xb, kb, solve the second
collision task for E′ instead of E. The solution is xc, kc, xd, kd as above.

With significant probability, we have {(xc, kc), (xd, kd)} ∩ {(xa, ka), (x∗, ka)} =
{}. In this case, our 2nd collision for E′ is a first collision for E. Thus, our
proof reveals a technique to efficiently find collisions for C, if one can find 2nd
collisions. Due to Theorem 11, finding such collisions takes time Ω(2n/2). �

B Examples

The SHA standard. Two of the five SHA-∗ hash functions [19], namely SHA-
224 and -384, have already been designed according to this paper’s “wide-pipe”
paradigm, see Table 1. Of course, the authors of SHA-224 and -384 where to
reuse existing compression functions, but they could have done so – improving
the hash function’s performance – by truncating the internal hash values to 224
or 348 bit and extending the message chunk size by 256-224=32 or 512-348=128
bit. Our results provides some formal (“after the fact”) justification for the design
of SHA-224 and -348.

A natural choice for the parameters w and n would, however, be w = 2n. As
an example for the wide-pipe hash, we could set C′ := (SHA-512 compression
function) and C′′ := (SHA-256 compression function) to define a 256-bit hash
with an internal hash size of w = 512. For large messages, this 256-bit hash
would be about as fast as SHA-512. As an example for a 256-bit double-pipe
hash, consider C := (SHA-256 compression function). The size of a SHA-256
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Table 1. SHA standard hash functions and their parameters [19]

final hash internal hash message chunk uses compression
size n [bit] size w [bit] size [bit] function from

SHA-1 160 160 512 (own)
SHA-224 224 256 512 SHA-256
SHA-256 256 256 512 (own)
SHA-384 384 512 1024 SHA-512
SHA-512 512 512 1024 (own)

message chunk is m+n = 512, so the size of a double-pipe message chunk would
be m = 512− n = 256 bit. For large messages, double-piped SHA-256 would be
about four times slower than plain SHA-256. Similarly, a double-piped SHA-1
hash would be about three times slower than plain SHA-1.7

AES-based example for the double-pipe hash. Consider an AES-based
MD hash Hmd

aes, using the AES block cipher in Davies-Meyer mode. The block
size of Hmd

aes is the AES block size: 128 bit. For applications which do not require
collision resistance, it may be fine to use a 128-bit hash. But resistance against
multi-collision attacks or 2nd preimage attacks could be a concern for these
applications – and from the Joux and the Kelsey-Schneier attacks, we know that
Hmd

aes is much less resistant against these attacks than we would expect from a
128-bit hash. For a well funded and motivated adversary, it is possible to find,
say, a 216-collision for Hmd

aes. This weakness does not much depend on the AES
key size (either 128 bit, 192 bit, or 256 bit).

In contrast to Hmd
aes, its double-pipe counterpart (only defined for the AES

key size of 256 bit) provides much better protection against these attacks, as-
suming the AES itself does not suffer from some still unknown cryptanalytic
weaknesses. Even finding a 3-collision for a double-pipe 128-bit hash would take
more than 280 units of running time and therefore seems to be infeasible today.
The price for the improved security is a performance penalty by a factor of four,
similarly to double-piped SHA-256.

7 Note that sharing initial values between different hash functions is never recom-
mendable. Thus, H ′

0 and H ′′
0 should not be taken from [19].
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Abstract. In this paper, we discuss non-interactive updating of decryp-
tion keys in identity-based encryption (IBE). In practice, key revocation
is a necessary and inevitable process and IBE is no exception when it
comes to having to manage revocation of decryption keys without losing
its merits in efficiency. Our main contribution of this paper is to pro-
pose novel constructions of IBE where a decryption key can be renewed
without having to make changes to its public key, i.e. user’s identity. We
achieve this by extending the hierarchical IBE (HIBE). Regarding se-
curity, we address semantic security against adaptive chosen ciphertext
attacks for a very strong attack environment that models all possible
types of key exposures in the random oracle model. In addition to this,
we show method of constructing a partially collusion resistant HIBE from
arbitrary IBE in the random oracle model. By combining both results,
we can construct an IBE with non-interactive key update from only an
arbitrary IBE.

1 Introduction

Background. As to our best of knowledge, current public key infrastructures
involve complex construction of certification authorities (CA), consequently re-
quiring expensive communication and computation costs for certificate verifi-
cation. In 1984, Shamir introduced an innovative concept called identity-based
encryption (IBE) [25](later actualized in [7]) where any public key is determined
as an arbitrary string, e.g. user’s name, e-mail address, etc. which simplifies
certificate management in public key infrastructures. In this paper, we address
non-interactive updating of user’s decryption key in IBE. Revocation and re-
newal of decryption key is a necessary process carried out in practice, and so,
designing of IBE which allows renewal and updating of decryption keys without
losing its merits in efficiency will have considerable implications in the practical
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crypto-infrastructure. One application of IBE is of a mobile phone scenario, in
which case, phone number represents the user identity. It will be both simple and
convenient for the mobile phone users to be able to communicate and identify
each other by their phone numbers only. The users will also want to keep their
phone numbers as fixed identities, and therefore, it is necessary to be able to
renew and update the decryption key in a way its corresponding public key will
be unchanged. As you can see, in practical situations as seen in this scenario,
such problem of IBE can be critical. Our main objective is to solve this problem.

Our Results. Our main contribution of this paper is to propose novel con-
structions of IBE where a decryption key can be renewed without having to make
changes to its public key, i.e. user’s identity. We start by discussing the impos-
sibility of dealing with such a problem in the conventional IBE model, followed
by introducing a new IBE model which makes this possible. Based on the new
model, we construct a new IBE in which a decryption key can be updated “non-
interactively”, that is, allow user to renew and update his decryption key without
any help from the central authority, and most importantly, without having to change
his identity. In our scheme, similar to [13], we assume a private device (PD). PD
is not connected to the network except at each fixed time period when the de-
cryption key is updated. A helper key stored in the PD generates a key-update
information which is used to update the decryption key. All secret operations are
done by the user alone. Our scheme can be regarded as the first construction of
an identity-based version of strongly secure key insulated encryption [13]. Here,
we mean “strongly” by a system whose security is guaranteed even when its PD is
physically compromised. Our scheme is different from [13] in a way that the PD is
divided into multiple levels forming a hierarchical structure improving its security.

In brief, our proposed schemes are constructed by extending the hierarchi-
cal identity-based encryption schemes (HIBE) [24,22]. Straightforward exten-
sion of HIBE, however, will be completely vulnerable for our attack model. Our
major contribution of this paper is the proposal of two secure constructions
of IBE that can renew and update the decryption key non-interactively: (1) a
generic construction based on any HIBE, and (2) a specific construction based
on Gentry-Silverberg HIBE [22]. In the generic construction, only an arbitrary
(chosen plaintext secure) HIBE is used to build a chosen ciphertext secure IBE
with non-interactive key update. The merit of such scheme is the flexibility it
has in selecting the underlying assumption which can be determined depending
on the requirement of the system. As a by-product, the same method used in
the generic construction can also be used to build a (standard) strongly secure
key-insulated encryption from an arbitrary (H)IBE and a standard public key en-
cryption. On the other hand, the specific construction is constructed by directly
extending the Gentry-Silverberg HIBE [22]. Although being more efficient than
the generic scheme, the specific scheme is based on the bilinear Diffie-Hellman
(BDH) assumption [7,8] and flexibility may become a concern when designing
new constructions in terms of security. In addition to our main contribution, we
also show a construction of a partially collusion resistant HIBE built from only
an arbitrary IBE. This can be applied to the above result (i.e. generic scheme)
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to give a construction of IBE with non-interactive key update built from only an
arbitrary IBE. Note that we mean “partial collusion resistant” in a sense that
we argue based on the security definition in [24] and not in [22]. Security of our
schemes is proved in the random oracle model.

Applications: Mobile Phone Scenario. Now let’s consider the suitability of
introducing a private device (PD) in the mobile phone scenario (see also Back-
ground.). At first glance, it seems like a hassle to having to use the PD whenever
you need to update your decryption key, although, it is not as you might think
so. As a mobile phone user, it is your routine job to re-charge your battery every
now and then. Now, assume a PD-BC (i.e. a private device that can function
also as a battery charger). PD-BC can provide a convenient mean to update
the decryption key since updating can be done at the same time you re-charge
the battery (which you have to do it anyways). The security of the system is
also guaranteed even if the PD-BC is compromised. Here, we introduced a mo-
bile phone scenario, but this is just one of many attractive applications of IBE.
Whoever is in high risk of losing the decryption key (e.g. laptop PC user) can
benefit from this system. To further improve the security, PD can be stratified
into multiple levels. Each level has its own device which updates the device of
a level below, each level with varying updating periods. We let the lowest level
PD be the least secure device (i.e. PD-BC) of which the keys are updated more
frequently than the ones in the higher levels. Security of the devices in each
level also increases as the level of the hierarchy goes higher. As an example, the
least secure device, PD-BC, updates the decryption key everyday and the helper
key stored in the PD-BC is updated (using the PD of a level higher) every 2-3
months. Since lower level PDs are used more frequently, they must be kept in
places more handy (e.g. at home or work place) and higher level PDs which are
used not as frequently be kept somewhere not as convenient but physically safer
(e.g. safe). Our IBE system can guarantee the security even if any level PD is
compromised even of the highest one.

Related Works. The problem of revocability of private keys in identity-based
schemes was initially discussed by Shinozaki, Itoh, Fujioka and Tsujii [26]. Baek
and Zheng [2] showed an application of threshold decryption method to IBE. It
does decrease the possibility of getting the keys to be exposed in the first place,
however, it does not deal with what it can do after key exposure has actually
occured. In [16], Dodis and Yung proposed an interesting idea that refreshes
the private keys in HIBE. Their scheme provides a solution to the problem of
gradual key exposure in which the private key is assumed to slowly compromise
over time. Boneh and Franklin in their paper ([7], Section 1.1.1) showed the
first generalized method for key revocation in IBE schemes. In their scheme, a
privileged Private Key Generator (PKG) generates each user’s decryption key
where its corresponding public key is set to be the concatenation of user iden-
tity and fixed length of time the key is available, e.g. “recipient@xxx.xxx ||
2005.01.01-2005.12.31”. In such a setting, the public key, despite of whether
it is revoked or not, is renewed regularly by the PKG, and also, the renewal
interval must be set short (e.g. per day) to alleviate the damage caused by
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key exposures. Therefore, having to set the interval short and require frequent
contacts with the PKG implies increase in the total communication and compu-
tation cost, consequently, losing one of primary advantages of IBE (i.e. low costs
in communication and computation). Further, it needs to work out a way to
establish a secure channel between the PKG and the user. For instance, it needs
to compensate for additional transmission for key issuing and also has to deal
with complicated transactions if the secret information used to setup the secure
channel is exposed. Moreover, forward security must be considered. It is, hence,
not desirable to have to require frequent communication via secure channel with
the PKG in IBE as it implicates loss of primary advantages of IBE.

While, on the other hand, as a solution to key exposure and revocation
problem in conventional public key systems, Dodis, Katz, Xu and Yung [13]
proposed a scheme called key-insulated encryption. As said earlier, this scheme
also assumes a PD in which it stores the helper key. The helper key assists
the user to renew his decryption key by generating secrets necessary to update
the key. Here, the public key is fixed. In [14,15], Dodis, Franklin, Katz, Miyaji
and Yung further improved [13] with an additional property, forward security.
Notice that being able to renew the decryption key without having to make
any changes to the corresponding public key as in the key-insulated encryption
scheme, is the very technique, desired in IBE. Possible harmonization of the
advantages of the two schemes; an identity-based version of a (strongly secure)
key-insulated encryption scheme has never been constructed before. Also, there
has never been a construction built of a hierarchical version of key-insulated
encryption where the PD is organized in a hierarchical tree structure. Besides
the related works shown so far, there are other interesting researches done on
the topic of key exposure and revocation as well, for example, [21,1], but both
are looked from a non identity-based perspective.

We mentioned earlier that our IBE with non-interactive key update is con-
structed by extending the HIBE [24,22]. HIBE is a powerful cryptographic tool
and also forms the basis of various cryptographic techniques, e.g. [11]. However, all
methods known to construct HIBE [24,22,11,4,6] require specific assumptions in
elliptic curve cryptography, e.g. the BDH problem [7,8] as the underlying assump-
tion and therefore lacks flexibility in selecting the underlying assumption. (While
for IBE, besides BDH, there is also a construction based on quadratic residuosity
problem [10].) There is also an open problem for a generic construction of HIBE
based on arbitrary IBE and is one of important research topics in this area.

2 Model and Definitions

Overview of the Model. Before we start discussing the details of the actual
construction of our IBE scheme, recall earlier how we said it was impossible to
construct an IBE that allows an essential property as key revocation if based
on the model of conventional IBE. To be more specific, it is impossible, based
on the conventional IBE model, for the user to immediately revoke and renew
his decryption key only at times he needs to renew the decryption key without
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losing the advantage of IBE in terms of communication cost, since in the con-
ventional IBE, a public parameter distributed at system set up phase and the
user’s identity are the only parameters used to encrypt a message.

Recall that we said earlier, [7] showed the first generalized method for key re-
vocation based on the conventional IBE model. Their scheme, however, required
to establish a secure channel between a user and a PKG which also needed to
be available at all times. Moreover, the burden on the PKG was heavy which
required the PKG to periodically renew the users’ decryption keys at fixed and
frequent time intervals. Their model is simple and generally does not have any
problem using it and may be practical for some applications. However, there are
other situations where their assumption is neither preferred nor available.

We introduce a new model of IBE that can renew and update the decryp-
tion keys non-interactively (i.e without any loss in communication cost). We
introduce a private device (PD) which stores the helper key used to renew the
decryption key at regular time intervals without requiring interactions with other
entities. We further improve the security by giving hierarchical construction in
the PD, letting the keys of each level be renewed using the devices of a level
higher (See Applications: Mobile Phone Scenario in Sec. 1.). Our model can
be regarded as both hierarchical and identity-based extension of key-insulated
encryption [13]. Similar to [13], we address random-access key-update, namely,
allowing one-step renewal of current decryption key to any of the decryption
keys of any time period (even the past keys). Random-access key-update lets
any ciphertext of any time period to be decrypted at any time.

Model. In our model, private devices are structured hierarchically into 
-levels,
and for i = 1, · · · , 
, i-th level helper key is stored in the i-th level device. Decryp-
tion key is stored in the 0-level PD (i.e. mobile phone). Key-update information
is generated using the i-th level helper key which is used to renew the (i− 1)-th
level helper key for i = 2, · · · , 
. Decryption key is renewed using the helper key
of the 1st-level PD (i.e. PD-BC). To make things simple, we consider 
 = 2: 1st-
and 2nd-level PD corresponds to PD-BC and PD that updates PD-BC helper
key, respectively. (Note that this can be generalized for arbitrary 
 ≥ 1.)

Now, let T0(·) and T1(·) map time to corresponding time periods for de-
cryption key and 1st-level helper key, respectively. For example, assuming that
decryption key and 1st-level helper key is updated every day and every 2-3
months, respectively, we have T0(2005/Aug./26th/17 : 00) = 2005/Aug./26th
and T1(2005/Aug./26th/17 : 00) = 2005/Jul.-Sep.. In addition, we let T2(·) be
a function such that for all time, T2(time) = 0. At time, time, user updates his
decryption key if 1st-level helper key is valid for the time period T1(time), and a
1st-level helper key can be updated at any time. Def. 1 formally addresses this.

Definition 1 (IKE). A 2-level identity-based key-insulated encryption scheme
(IKE) IKE consists of 8 algorithms: IKE=(PGenIKE,GenIKE,Δ-Geni

IKE,Updi
IKE (i =

1, 2),EncIKE,DecIKE) and each are described as follows.
PGenIKE. The public-parameter generation algorithm PGenIKE(1k) where k is the
security parameter and outputs a master key s and a public parameter p. Note
that PGenIKE and GenIKE are used by the PKG only.
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GenIKE. The user-secret generation algorithm GenIKE takes s, p and user’s identity
U as inputs, and outputs U ’s initial private keys (d0

0, d
1
0, d

2
0) where d0

0 is the U ’s
initial decryption key, and di0 (i = 1, 2) are stored in U ’s i-th level PD as initial
i-th helper key.
Δ-Geni

IKE. A helper key stored in the 1st-level PD and Δ-Gen1
IKE are used to gener-

ate the key-update information required to renew the decryption key. Similarly, a
helper key stored in the 2nd-level PD and Δ-Gen2

IKE are used to generate the key-
update information required to renew the 1st-level helper key. More specifically,
for i = 1, 2, the key-update information generation algorithm Δ-Geni

IKE takes dit,
p, U and time as inputs, and outputs key-update information δi−1

Ti−1(time) only if
t = Ti(time).
Updi

IKE. U ’s decryption key, key-update information δ0T0(time)
and Upd1

IKE are used
to generate U ’s decryption key for time. Similarlly, U ’s 1st-level helper key, key-
update information δ1T1(time)

and Upd2
IKE are used to generate U ’s 1st-level helper

key for time. More specifically, for i = 1, 2, the key-update information gener-
ation algorithm Updi

IKE takes di−1
t , p and δi−1

Ti−1(time) as inputs for any t, and
outputs a new key di−1

Ti−1(time) for time period Ti−1(time).
EncIKE. The encryption algorithm EncIKE inputs m, U , p and time where m is
a plaintext, U is the user identity and time indicates the time at which m is
encrypted, and outputs ciphertext 〈c, time〉.
DecIKE. The decryption algorithm DecIKE inputs 〈c, time〉, d0

t and p, and outputs
m or ⊥ where ⊥ indicates failure. DecIKE correctly recovers the plaintext only if
t = T0(time).

Security Definition. Security of IKE is based on the assumption that adversary
does not (illegally) obtain all of the target user’s keys all at once. Recall that
helper keys of different levels in the hierarchy are managed differently (most
likely stored at different places). It is unlikely for such an event to occur, i.e. an
adversary to obtain all of the keys of all levels all at once, considering that PDs
are disconnected from the network most of the time. We also like to remind that
it gets much harder to steal the keys as the levels in the hierarchy increase this
is because PDs in the higher levels are connected to the network less frequently
and also managed in places physically much safer.

We consider an attack model based on the standard IND-ID-CCA setting in
[7,8] plus the next case: when an adversary is allowed access to any of target
user’s keys and also the helper keys but excluding the combinations of keys that
can trivially lead to the target key from the definition of IKE. Next, we give
some examples of key exposures for our security definition.

Examples of Key Exposures. We consider a 2-level IKE: decryption key is
renewed every day, 1st-level helper key is renewed every three months and 2nd-
level helper key is never updated. Then, any ciphertext for 2005/Dec./31st should
not be decrypted by dishonest means even for the following cases:

1. Exposures of the victim’s 1st-level helper keys for 2005/Jan.-Mar., · · · , 2005/
Jul.-Sep. and decryption keys for 2005/Jan./1st, · · · , 2005/Dec./30th
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2. Exposures of the victim’s 2nd-level helper key and decryption keys for 2005/
Jan./1st, · · · , 2005/Dec./30th

3. Exposures of the victim’s 2nd-level helper key and 1st-level helper keys for
2005/Jan.-Mar., · · · , 2005/Oct.-Dec.

Again, we exclude the combinations of keys that can trivially determine the
target key, for example, exposures of both the victim’s 1st-level helper key for
2005/Oct.-Dec. and decryption key for 2005/Dec./30th. It is obvious that a de-
cryption key for 2005/Dec./31st is easily computable from the definition of IKE.
We do not consider these cases.

Next, we formally address the security definition. In our attack model, ad-
versary is allowed access to the following four types of oracles: (1) key gener-
ation oracle KG(·, s, p), which on input U , returns U ’s initial decryption keys
(d0

0, d
1
0, d

2
0) and (2) left-or-right encryption oracle LR(·, ·, ·, ·, p, b) [3], which for

given U , time and equal length messages m0,m1, returns challenge ciphertext
c := EncIKE(mb, U, p, time) where b ∈R {0, 1}, and models encryption requests of
an adversary of a user identity and a message pair of his choice. The third is a
(3) decryption oracle D(·, ·, s, p) which on input U and 〈c, time〉, returns decryp-
tion result of c with the corresponding decryption key d0

t where t = T0(time).
This models chosen ciphertext attack. With these three oracles, KG, LR and D,
the standard IND-ID-CCA setting can be modeled. In addition to the above, we
introduce a (4) key issue oracle KI(·, ·, ·, s, p) which on input i, U and time, re-
turns dit where t = Ti(time). This models partial exposure of honest user’s keys
including the victim’s keys. The adversary may query the four oracles adaptively
in any order he wants subject to the restriction that he makes only one query to
LR. Let U∗ be the user’s identifier of this query, and let 〈c∗, time∗〉 denote the
challenge ciphertext returned by LR in response to this query. Also, the adver-
sary is not allowed to ask KG and KI for queries which can trivially determine
U∗’s decryption key for time∗ from the definition of IKE. The adversary succeeds
the attack by guessing the value b, and the scheme is considered to be secure
if any probabilistic polynomial time adversary has success probability negligibly
close to 1/2.

Definition 2 (KE-CCA security). Let IKE be a 2-level identity-based key-
insulated encryption scheme. Define adversary A’s succeeding probability as:

SuccA,IKE := Pr[(s, p)← PGenIKE(1k); b ∈R {0, 1};
b′ ← AKG(·,s,p),LR(·,·,·,·,p,b),D(·,·,s,p),KI(·,·,·,s,p) : b′ = b]

where U∗ is never asked to KG(·, s, p) and (U∗, 〈c∗, time〉) is never asked to
D(·, ·, s, p) such that T0(time) = T0(time∗). A can ask KI for any keys of any
users if there exists a “special level” j ∈ {0, 1, 2} such that

– KI(j, U∗, time, s, p) is never asked for any time, and
– KI(i, U∗, time, s, p) is never asked for any (i, time) such that i < j and

Ti(time) = Ti(time∗).
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Then, IKE is KE-CCA secure (KE-CCA stands for key exposure & chosen cipher-
text attack) if, for any probabilistic polynomial time adversary A, |SuccsA,IKE −
1/2| is negligible. (Note that a “special level” is a level in which the PD of U∗ is
not compromised. Also, recall 0-level PD is the user’s terminal, i.e. the mobile
phone.)

Exposure of Key-Update Information. If we look closer into the security
of IKE, it can be realized that exposure of key-update information should also
be considered in addition to the above discussion. Although, we can also see
that it is obvious that if δiTi(time)

can be computed from diTi(time)
and dit for any

time and t, then, exposure of key-update information can be simulated by using
KI. Hence, if this property holds, then the security definition so far discussed
will be sufficient (by itself) even when exposure of the key-update information
is considered. As a matter of fact all of our constructions satisfy this property.

3 Straightforward IKE from HIBE Is Insecure

Although HIBE and IKE are alike in some sense, it is not as simple as bringing
HIBE as building blocks to construct KE-CCA secure IKE. We give further
discussion on this later, but first, we clarify the relation between HIBE and
IKE.

Brief Review of HIBE. HIBE distributes the workload of the PKG in IBE
by organizing the PKGs in a hierarchical tree structure. Security definition of
an HIBE follows. This definition runs parallel with [22] which is the hierarchical
extension of Boneh and Franklin’s IBE [7,8]. Note that 1-level HIBE refers to a
standard IBE. A user in an HIBE hierarchy is defined as a tuple of identities:
(Dt−1.Dt−2. · · · .D0) where t denotes depth of the hierarchy. The user’s ancestors
in the hierarchy tree include the root-PKG and users/sub-PKGs whose identities
are {(Dt−1.Dt−2. · · · .Di : 0 ≤ i ≤ t− 1)}.

Definition 3 (HIBE). A t-level hierarchical identity-based encryption (HIBE)
HIBE consists of 3+t algorithms: HIBE = (PGenHIBE,Geni

HIBE (1 ≤ i ≤ t),EncHIBE,
DecHIBE) and are defined as follows:
PGenHIBE. The public-parameter generation algorithm PGenHIBE(1k) where k is
the security parameter, outputs root-master key s and public parameter p.
PGenHIBE is used only by the root-PKG.
Geni

HIBE. The user-secret generation algorithm Gent
HIBE inputs Dt−1, s and p,

and outputs Dt−1’s key sDt−1 . Similarly, Gent−i+1
HIBE takes Dt−1.Dt−2. · · · .Dt−i,

sDt−1.Dt−2.···.Dt−i+1 and p as inputs, and outputs Dt−1.Dt−2. · · · .Dt−i’s key
sDt−1.Dt−2.···.Dt−i for 2 ≤ i ≤ t. Here, for 1 ≤ i ≤ t − 1, sDt−1.Dt−2.···.Dt−i is
the sub-master key which enables Dt−1.Dt−2. · · · .Dt−i to generate his descen-
dant’s keys, and sDt−1.Dt−2.···.D0 is the decryption key of Dt−1.Dt−2. · · · .D0.
EncHIBE. The encryption algorithm EncHIBE takes m, Dt−1.Dt−2. · · · .D0 and p as
inputs where m is a plaintext and Dt−1.Dt−2. · · · .D0 is the receiver’s identity,
and outputs a ciphertext c.
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DecHIBE. The decryption algorithm DecHIBE takes c, sDt−1.Dt−2.···.D0 and p as in-
puts, and outputs m or ⊥ which means failure. DecHIBE recovers the plaintext
only if c is encrypted correctly using Dt−1.Dt−2. · · · .D0 as an encryption key.

Security of an HIBE is defined as follows. An adversary adaptively selects a target
user’s identity and equal length messages m0,m1 and submits to a left-or-right
encryption oracle LR which returns ciphertext of mb such that b ∈R {0, 1} for a
target user. The adversary also have access to a decryption oracle D which gives
decryption results of any ciphertext except for the challenge ciphertext from LR.
There is also a key generation oracle KG which exposes any user key except for
the target’s and its ancestors’. HIBE is secure if an adversary correctly deter-
mines b with probability at most 1/2 + neg where neg is negligible. HIBE is
IND-HID-CCA (resp. IND-HID-CPA) if unlimited access to D and KG (resp. only
KG) is allowed [22]. HIBE is IND-wHID-CCA (resp. IND-wHID-CPA) if unlimited
access (resp. no access) to D is allowed while the number of queries to KG is
bounded as follows [24]: unlimited access is allowed for at least one level in the
hierarchy, but for the rest of the levels, the number of queries do not exceed the
threshold value w such that w = O(poly(k)). See Appendix A for more details.

An Insecure IKE from HIBE. Consider the following (insecure) construction
of a 2-level IKE based on a 3-level HIBE: In the initial phase, PKG generates
(s, p) := PGenHIBE(1k) and user U ’s 2nd-level helper key d2

0 := Gen3
HIBE(U, s, p).

At time, U generates his 1st-level helper key d1
T1(time) := Gen2

HIBE(T1(time), d2
0, p)

and decryption key d0
T0(time) := Gen1

HIBE(T0(time), d1
T1(time), p). For a message m

for U at time, a ciphertext c is generated as c=EncHIBE(m,U.T1(time).T0(time), p).
Renewal of decryption keys in IBE from HIBE is described in [24] as well.

We show a straightforward construction of an IKE from HIBE which is in-
secure (i.e. not KE-CCA secure). The above (insecure) construction does not
satisfy the security of 2. and 3. of the Examples of Key Exposures. from
the previous section. Namely, if the 1st-level PD (or the PD-BC) is stolen at
2005/Oct./1st/0:00, then confidentiality of the ciphertexts generated during
period 2005/Oct.-Dec. is lost. Morover, exposure of the 2nd-level helper key can
alone compromise the security for any time period. Therefore, a straightforward
construction of IKE from HIBE is not KE-CCA secure.

4 Generic Construction

Basic Idea. As shown in the previous section, straightforward construction of
an IKE from HIBE is vulnerable, and for such a system, loss of only one of
users’ PDs implies compromisation of the entire system. In this section, we show
a generic construction of a secure IKE built from three distinct HIBEs. Here’s
the general idea: each of three HIBEs each plays a part to mutually secure the
different types of key exposures, consequently, protecting the system totally,
guaranteeing its security even if a PD is compromised. We extend a technique
called multiple encryption proposed in [28] to construct a KE-CCA secure IKE
from HIBE. It is important to note that the original [28] scheme is applied only
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PGenIKE(1k): GenIKE(s, p,U):
(sh, ph) ← PGenHIBEh

(1k), 1 ≤ h ≤ 3 parse s = (s1, s2, s3)
choose Hh, 1 ≤ h ≤ 3 sh,U ← Genh

HIBEh
(U, sh, ph), 1 ≤ h ≤ 3

return s := (s1, s2, s3) d0
0 := (s1,U , ·, ·), d1

0 := (s2,U , ·), d2
0 := s3,U

p := (p1, p2, p3, H1, H2, H3) return (d0
0, d

1
0, d

2
0)

Δ-Gen1
IKE(d1

t , p, U, time): Δ-Gen2
IKE(d2

0, p, U,time):
parse d1

t = (σ2, σ3) parse d2
0 = σ3(= s3,U )

σ′
h ← Gen1

HIBEh
(T0(time), σh, ph), h = 2, 3 σ′

3 ← Gen2
HIBE3

(T1(time), σ3, p3)
return δ0

T0(time) := (σ′
2, σ

′
3) return δ1

T1(time) := σ′
3

Upd1
IKE(d

0
t , p, δ0

T0(time)): Upd2
IKE(d

1
t , p, δ1

T1(time)):
parse d0

t = (σ1, σ2, σ3) parse d1
t = (σ2, σ3)

parse δ0
T0(time) = (σ′

2, σ
′
3) parse δ1

T1(time) = σ′
3

return d0
T0(time) := (σ1, σ

′
2, σ

′
3) return d1

T1(time) := (σ2, σ
′
3)

EncIKE(m, U, p, time):
m1, m2 ∈R {0, 1}n, m3 := m ⊕ m1 ⊕ m2

r1, r2, r3 ∈R {0, 1}k1

Rh := Hh(m, mh, r1, r2, r3), 1 ≤ h ≤ 3
U1 := U , U2 := U.T0(time), U3 := U.T1(time).T0(time)
ch := EncHIBEh (mh||rh, Uh, ph; Rh), 1 ≤ h ≤ 3

return 〈c, time〉 := 〈(c1, c2, c3), time〉
DecIKE(〈c′, time〉, d0

t , p):
output ⊥ and halt if t �= T0(time)
parse c′ = (c′1, c′2, c′3)
parse d0

t = (σ1, σ2, σ3)
(m′

h||r′h) ← DecHIBEh (c′h, σh, ph), 1 ≤ h ≤ 3
m′ := ⊕1≤h≤3m

′
h

validity check by re-encryption
return m′

Fig. 1. Generic Construction of KE-CCA Secure IKE from IND-HID-CPA HIBE

to standard public key encryption, so, straightforward adoption of this scheme,
again, does not immediately imply a secure IKE.

Construction. Fig. 1 shows a generic construction of KE-CCA secure IKE from
any HIBE where each of HIBEs has only chosen plaintext security, i.e. IND-HID-
CPA (See Appendix A). Here, we give supplementary explanation of the Fig. 1
and give discussion on our generic construction in more details.

Let HIBEh = (PGenHIBEh
,Geni

HIBEh
(1 ≤ i ≤ h),EncHIBEh

,DecHIBEh
) be h-level

HIBE for 1≤h≤3 and construct a 2-level IKE IKE = (PGenIKE,GenIKE,Δ-Geni
IKE,

Updi
IKE (i = 1, 2),EncIKE,DecIKE) as follows.
PGenIKE sets up the master keys and public parameters of HIBEh and cryp-

tographic hash functions Hh : {0, 1}2n+3k1 → COIN for 1 ≤ h ≤ 3 where n
denotes the size of a message of IKE. COIN is the internal coin-flipping space of
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EncHIBEh
assuming that n+ k1 is the size of a message in HIBEh.1 The security

analysis will view Hh as random oracles. GenIKE generates U ’s secrets of HIBEh
for 1 ≤ h ≤ 3 as U ’s initial key for IKE. Δ-Gen1

IKE generates decryption keys
of HIBE2 and HIBE3 for identities U.T0(time) and U.T1(time).T0(time), respec-
tively, as the “differential” of the U ’s previous key and of the next renewed key
at time. Then, Upd1

IKE generates U ’s decryption key of IKE for time by com-
bining the differential with the U ’s previous key. Similarly, Δ-Gen2

IKE generates
a sub-master key of HIBE3 for U.T1(time), and Upd2

IKE generates U ’s 1st-level
helper key of IKE for time by combining U ’s previous key and Δ-Gen2

IKE’s out-
put. EncIKE securely integrates the three encryption algorithms of h-level HIBE
for 1 ≤ h ≤ 3. First, a plaintext m is divided into three shares m1,m2,m3,
and each mh (1 ≤ h ≤ 3) is encrypted by h-level HIBE HIBEh for identity
Uh where U1 := U , U2 := U.T0(time) and U3 := U.T1(time).T0(time). Here,
the technique in [28] is applied (but not straightforwardly, as mentioned earlier)
to securely integrating the three underlying HIBEs. DecIKE recovers each of the
three shares and composes them to recover the plaintext. It also checks the valid-
ity of the ciphertext by re-encryption. Namely, R′h := Hh(m′,m′h, r

′
1, r

′
2, r

′
3) and

νh ← EncHIBEh
(m′h||r′h, Uh, ph; R′h) are computed for 1 ≤ h ≤ 3, unless νh = c′h,

for all h, output ⊥, otherwise output m′. This scheme can easily be generalized
to an 
-level IKE for arbitrary 
 ≥ 1.

Definition 4 (γ-uniformity [20]). LetHIBE = (PGenHIBE,Geni
HIBE (1 ≤ i ≤ t),

EncHIBE,DecHIBE) be t-level HIBE. For given Dt−1.Dt−2. · · · .D0, x, y and z, define

γ(Dt−1.Dt−2. · · · .D0, x, y, z)
:= Pr[r ←R COIN : z = EncHIBE(x,Dt−1.Dt−2. · · · .D0, y; r)],

where COIN is the internal coin-flipping space for EncHIBE. We say that HIBE is γ-
uniform if γ(Dt−1.Dt−2. · · · .D0, x, y, z) ≤ γ for any Dt−1.Dt−2. · · · .D0, x, y and
z.

Theorem 1. The above scheme is a KE-CCA secure 2-level IKE in the random
oracle model, assuming that HIBEh (1 ≤ h ≤ 3) are IND-HID-CPA HIBEs. More
precisely, suppose there is an adversary A who can break the above scheme with
probability 1/2 + εA with run time at most tA. Suppose A makes at most qKG,
qKI, qD, qH1 , qH2 , qH3 queries to KG, KI, D, H1, H2, H3, respectively. Then,
there is another adversary B who can break at least one of HIBEh (1 ≤ h ≤ 3)
in the sense of IND-HID-CPA with probability 1/2 + εB, and running time tB is:

εB ≥
1
3
εA −

1
3
qH1 + qH2 + qH3

2k1
− 1

6
qDγmax,

tB ≤ tA + 2τENC + (2qKG + 5qKI)τGEN

+qD((qH1 + qH2 + qH3)τENC + qH1qH2qH3 ·O(k)),

1 For simplicity, we assume for all HIBEh, spaces of coin-flipping and messages to be
COIN and {0, 1}n+k1 , respectively.
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assuming that γmax = max(γ1, γ2, γ3), HIBEi is γi-uniform, and running time
of Geni

HIBEh
and EncHIBEh

are at most τGEN and τENC , respectively, for any h
and i.

Proof. See Appendix B. �

Random Oracle. If we want to eliminate random oracle, multiple encryption
technique in [12] can be extended instead of the one we used of [28] to construct
a KE-CCA secure IKE, assuming that underlying HIBEs are all IND-HID-CCA
in the standard model, e.g. [11,4,5,6,27], while the above construction using [28]
requires only IND-HID-CPA HIBEs. Furthermore, by applying a similar method
to our proposed scheme, we can construct another KE-CCA secure IKE from
HIBE with only one-wayness under chosen plaintext attacks.

“Standard” Strongly Key-Insulated Encryption. By extending the multi-
ple encryption technique mentioned in the above, we can construct a generic con-
struction of a strongly secure key-insulated encryption [13] from a chosen plain-
text secure IBE and a chosen plaintext secure standard public key encryption.
This method can also be applied to the Cocks IBE [10] to construct a strongly
secure key-insulated encryption. (The Boneh-Franklin IBE based scheme was
proposed earlier in [9]).

5 Efficient Construction from Bilinear Mapping

Basic Idea. In the previous section, we showed a construction of KE-CCA secure
IKE using HIBE as a black-box. Here, we propose a construction of KE-CCA
secure IKE by directly extending Gentry-Silverberg HIBE (GS-HIBE) [22] and
Fujisaki-Okamoto conversion [19,20]. The major difference between our two con-
struction is as follows: in our specific construction, h-level HIBEs for 1 ≤ h ≤ 3
are being integrated using a homomorphic property of pairing, while our generic
construction is based on multiple encryption [28]. Our specific construction is
more efficient than the generic construction. Note that since our specific con-
struction is based on a specific assumption, i.e. BDH assumption, it may lack
flexibility in designing new construction in terms of security.

Construction. As shown in Fig. 2, a 2-level IKE IKE = (PGenIKE,GenIKE,
Δ-Geni

IKE, Updi
IKE (i = 1, 2),EncIKE, DecIKE) can be constructed using bilinear

mapping. Here, we give supplementary explanation of the Fig. 2 and give dis-
cussion on our specific construction in more details.

PGenIKE generates two cyclic groups G1 and G2 of prime order q and an effi-
ciently computable mapping ê : G1 ×G1 → G2 such that ê(aP, bQ) = ê(P,Q)ab

for all P,Q ∈ G1 and any positive integers a, b. This does not send all pairs in
G1 ×G1 to the identity in G2. Also, PGenIKE chooses cryptographic hash func-
tions H1 : {0, 1}∗ → G1, H2 : G2 → {0, 1}n+k1 and H3 : {0, 1}n×{0, 1}k1 → Zq,
where n denotes the size of the message space. The security analysis will view
H1, H2, H3 as random oracles. It further generates master key s and its corre-
sponding public paramter Q. GenIKE, Δ-Geni

IKE and Updi
IKE (i = 1, 2) are the
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PGenIKE(1k): GenIKE(s, p, U):
set up G1, G2, ê, P ∈ G1 PU := H1(U) ∈ G1

s0
1, s

1
2, s

2
3 ∈R Zq S0

1 := s0
1PU , S1

2 := s1
2PU , S2

3 := s2
3PU

Q := (s0
1 + s1

2 + s2
3)P d0

0 := (S0
1 , (·, ·), (·, ·, ·))

choose H1, H2, H3 d1
0 := (S1

2 , (·, ·))
return s := (s0

1, s
1
2, s

2
3) d2

0 := S2
3

p := (G1, G2, ê, P, Q, H1, H2, H3) return (d0
0, d

1
0, d

2
0)

Δ-Gen1
IKE(d

1
t , p, U, time): Δ-Gen2

IKE(d
2
0, p, U, time):

parse d1
t = (S1

2 , (S1
3 , Q1

3)) parse d2
0 = S2

3

s0
2, s

0
3 ∈R Zq s1

3 ∈R Zq

Pt0 := H1(U.T1(time).T0(time)) Pt1 := H1(U.T1(time))
Ŝ0

h := S1
h + s0

hPt0 , Q̂0
h := s0

hP , h = 2, 3 Ŝ1
3 := S2

3 + s1
3Pt1 , Q̂1

3 := s1
3P

return δ0
T0(time) := ((Ŝ0

2 , Q̂0
2), (Ŝ0

3 , Q̂0
3, Q

1
3)) return δ1

T1(time) := (Ŝ1
3 , Q̂1

3)
Upd1

IKE(d
0
t , p, δ0

T0(time)): Upd2
IKE(d

1
t , p, δ1

T1(time)):
parse d0

t = (S0
1 , (S0

2 , Q0
2), (S0

3 , Q0
3, Q

1
3)) parse d1

t = (S1
2 , (S1

3 , Q1
3))

parse δ0
T0(time) = ((Ŝ0

2 , Q̂0
2), (Ŝ0

3 , Q̂0
3, Q̂

1
3)) parse δ1

T1(time) = (Ŝ1
3 , Q̂1

3)
return d0

t := (S0
1 , (Ŝ0

2 , Q̂0
2), (Ŝ0

3 , Q̂0
3, Q̂

1
3)) return d1

T1(time) := (S1
2 , (Ŝ1

3 , Q̂1
3))

EncIKE(m, U, p, time):
PU := H1(U), Pt1 := H1(U.T1(time)), Pt0 := H1(U.T1(time).T0(time))
μ ∈R {0, 1}n, r := H3(μ, m), g := ê(Q, PU )
c := 〈rP, rPt1 , rPt0 , (m||μ) ⊕ H2(gr)〉

return 〈c, time〉
DecIKE(〈c′, time〉, d0

t , p):
parse c′ = 〈V, Vt1 , Vt0 , W 〉
parse d0

t = (S0
1 , (S0

2 , Q0
2), (S0

3 , Q0
3, Q

1
3))

(m′||μ′) := W ⊕ H2(
ê(S0

1+S0
2+S0

3 ,V )

ê(Q0
2+Q0

3,Vt0 )ê(Q1
3,Vt1 )

)

validity check by re-encryption
return m′

Fig. 2. KE-CCA Secure IKE from Bilinear Mapping

same as in the generic construction based on [22]. Based on the homomorphic
property of pairing, EncIKE and DecIKE integrates three HIBE encryptions into
one. Although, not mentioned in Fig. 2, to protect from active attacks, DecIKE

outputs ⊥ and halts if (i) t �= T0(time) or (ii) (V, Vt1 , Vt0 ,W ) �∈ G1
3×{0, 1}n+k1

or (iii) re-encryption of m′ for U , time and μ′ is not identical to 〈c′, time〉.

Theorem 2. The above scheme is a KE-CCA secure 2-level IKE in the random
oracle model assuming that a computational BDH (CBDH) problem [7,8] is hard
to solve. More precisely, we suppose there is an adversary A who breaks the
above scheme with probability 1/2 + εA with run time at most tA. Also, suppose
that A makes at most qKG, qKI, qD, qH2 , qH3 queries to KG, KI, D, H2, H3,
respectively. Then, there is another adversary who can solve the CBDH problem
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with probability εcbdh and running time tcbdh where

εcbdh ≥
6

e3qH2(3 + qKG + qKI)3
· (εA −

qH3

2k1
− qD

2q
),

tcbdh ≤ O(tA + (2qKG + 5qKI)τEXP + qD(τê + qH3τEXP + qH2qH3 ·O(k))),

assuming time for exponentiation over G1 is at most τEXP , and time for pairing
computation is at most τê.

Proof of the theorem is given in the full version of this paper [23].

Efficiency. In a pairing based scheme, the dominant factor that decides its to-
tal computation cost is the number of pairing computation carried out. For the
above construction of KE-CCA secure IKE from bilinear mapping, only one and
three pairing computations are required for encryption and decryption, respec-
tively. On the other hand, for the generic construction (shown in the previous
section) using [22] as the underlying HIBE, the numbers of pairing computation
for encryption and decryption are three and six, respectively.

6 Generic HIBE from Any IBE

As seen from our discussion given so far, HIBE serves as important role as build-
ing blocks of various cryptographic schemes including the ones that we have pro-
posed. In this section, we show a generic construction of HIBE from arbitrary
IBE that also provides a partial solution to an open problem of HIBE. We can,
for example, bring the Cocks IBE [10] to construct an HIBE, also implying that
hereafter a new construction of an IBE is ever proposed, it can also be converted
to construct an HIBE. For the security definition, we introduce partial collusion
resistance (i.e. IND-wHID-CCA) [24] instead of full collusion resistance (i.e. IND-
HID-CCA) [22]. The security definition is more relaxed but our contribution is
significant as this is the first generic HIBE construction built from an arbitrary
IBE. In this section, for simplicity, we show a construction of a 2-level HIBE,
but it can also be extended for a t-level HIBE for t > 2.

Security Definition. Our construction of a generic HIBE proposed here is
based on the security definition of [24]. Particularly, for our 2-level construc-
tion of HIBE, it is collusion free for the users (in the lower domain), but has
polynomial-sized collusion threshold w for the sub-PKGs (in the higher domain),
where w = O(poly(k)) and k is a security parameter.

Cover Free Family. We use cover free family (CFF) [17] as a building block,
similar to the generic construction of key-insulated encryption [13]. Reminding
that, method used in [13] only addresses chosen plaintext security, and cannot
be applied straightforwardly to construct a chosen ciphertext secure HIBE.

Definition 5 (CFF). Let L := {
1, 
2, · · · , 
u} and F = {F1, · · · , Fv} be a
family of subsets of L. We call (L, F ) an (u, v,w)-cover free family (CFF) if for
all Fi ∈ F , Fi �⊂ Fj1 ∪ · · · ∪ Fjw for any Fjκ(�= Fi) ∈ F , κ ∈ {1, ...,w}.
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PGenHIBE(1k):
generate (u, v,w)-CFF (L, F )
(si, pi) ← PGenIBE(1k), 1 ≤ i ≤ u

choose H : {0, 1}∗ → F and Hi : {0, 1}2n+ûk1 → COIN , 1 ≤ i ≤ u

return s := {si}1≤i≤u and p := (H, {pi, Hi}1≤i≤u)
Gen2

HIBE(D
1, s, p): Gen1

HIBE(D1.D0, sD1 , p):
parse s = {si}1≤i≤u parse sD1 = {si}i∈F

D1

FD1 := H(D1) ∈ F si,D1.D0 ← GenIBE(D1.D0, si, pi), i ∈ FD1

return sD1 := {si}i∈F
D1 return sD1.D0 := {si,D1.D0}i∈F

D1

EncHIBE(m, D0.D1, p):
FD1 := H(D1) ∈ F

mi ∈R {0, 1}n, i ∈ FD1 such that ⊕i∈F
D1 mi = m

ri ∈R {0, 1}k1 , i ∈ FD1

ci ← EncIBE(mi||ri, D
0.D1, pi; Hi(m,mi, R)), i ∈ FD1

return c := {ci}i∈F
D1

DecHIBE(c′, sD1.D0 , p):
parse c′ = {c′i}i∈F

D1

parse sD1.D0 = {si,D1.D0}i∈F
D1

(m′
i||r′i) ← DecIBE(c′i, si,D1.D0 , pi), i ∈ FD1

m′ := ⊕i∈F
D1 m′

i

validity check by re-encryption
return m′

Fig. 3. Generic Construction of Partially Collusion Resistant HIBE

It should be noted that there exist nontrivial constructions of CFF with u =
O(w2 log v) and #Fi = O(w log v) (1 ≤ i ≤ v). In the following, we assume
#F1 = #F2 = · · · = #Fv = û for some û and #{Fi|
j ∈ Fi ∈ F} ≥ [vû/u] for
all 
j ∈ L. Concrete methods for generating CFF are given in [18].

Construction. Fig. 3 shows a generic construction of a chosen ciphertext secure
2-level HIBE with partial collusion resistance from an arbitrary IND-ID-CPA
IBE using CFF. Here, we give supplementary explanation of the Fig. 3 and give
discussion on our generic construction of HIBE in more details.

Let IBE = (PGenIBE,GenIBE,EncIBE,DecIBE) be standard IBE (i.e. 1-level
HIBE). Then, 2-level HIBE HIBE=(PGenHIBE,Geni

HIBE (i=1, 2),EncHIBE,DecHIBE)
can be constructed as follows.

PGenHIBE generates (u, v,w)-CFF (L, F ) and u pairs of master key and public
parameter of IBE where L = {1, · · · , u}, u = O(poly(k)), v = O(exp(k)) and
w = O(poly(k)). For hash functions, n denotes the size of a message of HIBE,
and COIN represents the internal coin-flipping space of EncIBE, assuming that
n + k1 is the size of a message in IBE. The security analysis will view H and
Hi (1 ≤ i ≤ u) as random oracles. Gen2

HIBE picks master keys corresponding to
FD1 . Gen1

HIBE generates IBE decryption keys by using sD1 = {si}i∈FD1 . EncHIBE

encrypts m with encryption algorithms which correspond to FD1 where R is a
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concatenation of all ri arranged in increasing order of i for i ∈ FD1 . DecHIBE

decrypts all c′i for i ∈ FD1 . Then, it re-encrypts m′ with m′i and r′i. Unless the
encryption result is identical to c′, DecHIBE outputs ⊥, otherwise, outputs m′.

Theorem 3. The above scheme is IND-wHID-CCA in the random oracle model,
with a restriction that an adversary is allowed to query sub-PKGs’ keys at most
w times, assuming that IBE is IND-ID-CPA. More precisely, assume an adversary
A who breaks the above scheme with probability 1/2 + εA with run time at most
tA and that A makes at most qKG, qD, qHi queries to KG, D, Hi (1 ≤ i ≤ u),
respectively. Then, there is another adversary B who can break IBE in the sense
of IND-ID-CPA with probability 1/2 + εB and running time tB where

εB ≥
û

u2
(εA −

qall
2k1

− γqD
2

),

tB ≤ tA + ûτENC + qKGûτGEN + qD(qΣτENC + qΠ ·O(k)),

and qall :=
∑

1≤i≤u qHi , qΣ := max{i1,···,iû}⊆{1,···,u}(
∑

i∈{i1,···,iû} qHi) and qΠ :=
max{i1,···,iû}⊆{1,···,u}(

∏
i∈{i1,···,iû} qHi), assuming that IBE is γ-uniform, and

running time of GenIBE and EncIBE is at most τGEN and τENC , respectively.

Proof of the theorem is given in the full version of this paper [23].
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Appendix A: Formal Security Definitions for HIBE

Here, we give a formal security definition of hierarchical identity-based encryp-
tion (HIBE). The definition runs parallel with [22] and [24] which is the hierar-
chical extension of Boneh and Flanklin’s IBE [7,8].

Regarding chosen ciphertext attacks, we address the following three types of
oracles: First, is a key generation oracle KG which on input Dt−1.Dt−2. · · · .Di,
returns Dt−1.Dt−2. · · · .Di’s secret sDt−1.Dt−2.···.Di for 0 ≤ i ≤ t − 1. Next, is a
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left-or-right encryption oracle LR which for a given user D∗,t−1.D∗,t−2. · · · .D∗,0
and equal length messages m0,m1, picks b ∈R {0, 1} and returns a challenge ci-
phertext c := EncHIBE(D∗,t−1.D∗,t−2. · · · .D∗,0,mb, p). This models an encryption
request of an adversary who can pick a target’s identity and a message pair of his
choice. Finally, the adversary is allowed access to a decryption oracle D, which on
input Dt−1.Dt−2. · · · .D0 and a ciphertext c, returns a decryption result of c using
sDt−1.Dt−2.···.D0 . This models the chosen ciphertext attack. Also, if considering
only chosen plaintext attacks, any access to D is prohibited while accesses to KG
and LR remain permitted. An adversary may query the three oracles adaptively
in any order he wants, subject to the restriction that he makes only one query
to the left-or-right oracle. Let D∗,t−1.D∗,t−2. · · · .D∗,0 be the user’s identifier of
this query and let c∗ denote the challenge ciphertext returned by the left-or-right
oracle in response to this query. The adversary succeeds by guessing the value
b. A HIBE is considered secure, if any probabilistic polynomial time adversary
has success probability negligibly close to 1/2.

Definition 6. Let HIBE = (PGenHIBE,Geni
HIBE (1 ≤ i ≤ t),EncHIBE,DecHIBE) be

a hierarchical identity-based encryption scheme. Define adversary A’s succeeding
probability in the above chosen ciphertext attack game as:

SuccA,HIBE := Pr[(s, p)← PGenHIBE(1k); b ∈R {0, 1};
b′ ← AKG(·,s,p),LR(·,·,·,s,p),D(·,·,s,p) : b′ = b],

where any element in {(D∗,t−1.D∗,t−2. · · · .D∗,i : 0 ≤ i ≤ t − 1)} is never asked
to KG and A is not allowed to query D(D∗,t−1.D∗,t−2. · · · .D∗,0, c∗, s, p) if c∗ is
returned by LR. Then, HIBE is

– IND-HID-CCA if |SuccA,HIBE− 1/2| is negligible for any probabilistic polyno-
mial time adversary A (particularly, we call IND-ID-CCA if t = 1),

– IND-HID-CPA if |SuccA,HIBE − 1/2| is negligible for any probabilistic polyno-
mial time adversary A who is not allowed to submit any query to D at all
(particularly, we call IND-ID-CPA if t = 1),

– IND-wHID-CCA if |SuccA,HIBE − 1/2| is negligible for any probabilistic poly-
nomial time adversary A who is allowed to submit queries to KG at most w
times for given layers in the hierarchy (A is also allowed to submit unlimited
number of queries to KG for at least one layer),

– IND-wHID-CPA if |SuccA,HIBE − 1/2| is negligible for any probabilistic poly-
nomial time adversary A who is allowed to submit queries to KG at most w
times for given layers in the hierarchy, but no query to D is permitted (A is
also allowed to submit unlimited number of queries to KG for at least one
layer).

Next, we give concrete examples for the above IND-wHID-CCA and IND-wHID-
CPA. Suppose we have a 2-level HIBE which includes a root-PKG layer, a sub-
PKG layer and a user layer. The sub-PKG layer is set as the special layer in
which the number of queries from the adversary is bounded. In the IND-wHID-
CCA (or IND-wHID-CPA) setting, an adversary is allowed to ask the sub-PKGs’
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keys for at most w times while allowing unlimited number of user’s decryption
keys to be exposed. In addition to KG, the adversary is allowed access to D also
when considering the IND-wHID-CCA setting.

Appendix B: Proof of Theorem 1

Here, we prove KE-CCA security for our generic construction. We construct an
adversary B who can break at least one of underlying HIBEs in the sense of IND-
HID-CPA by using another adversary A who is able to break KE-CCA security
of the proposed IKE.

For given public parameters ph (1 ≤ h ≤ 3) which corresponds to HIBEh,
respectively, B chooses i′ ∈ {0, 1, 2} and computes PGenHIBEh

(1k) = (s′h, p
′
h) for

1 ≤ h ≤ 3, h �= i′ + 1. Also, B sets (p1, p
′
2, p

′
3), (p′1, p2, p

′
3) and (p′1, p

′
2, p3) for

i′ = 0, 1 and 2, respectively, as (part of) public parameter of IKE and sends it
to A. On A’s requests for the oracles, B answers to them following the next
simulation:

Simulation of LR. For an LR oracle query U∗, time∗,m0,m1 from A, B simu-
lates IKE’s LR oracle as follows. First, B sets a = i′+1. For all h (1 ≤ h ≤ 3, h �=
a), B picks mh ∈R {0, 1}n and rh ∈R {0, 1}k1 such that ⊕1≤h≤3,h �=amh = α for
α ∈R {0, 1}n. Also, B sets ma,0 = m0 ⊕ α and ma,1 = m1 ⊕ α. Then, B
picks ra,j ∈R {0, 1}k1 for j = 0, 1, and sets U∗1 = U∗, U∗2 = U∗.T0(time∗) and
U∗3 = U∗.T1(time∗).T0(time∗). Also, B sends U∗a , (ma,0||ra,0), (ma,1||ra,1) to
B’s own LR oracle which corresponds to HIBEa, and the oracle returns challenge
ciphertext c∗a. Next, B encrypts (mh||rh) by the encryption algorithm of HIBEh
with p′h and U∗h , and produces challenge ciphertexts c∗h for 1 ≤ h ≤ 3, h �= a.
Finally, B returns 〈(c∗1, c∗2, c∗3), time∗〉 to A. Note that B’s goal is to distinguish
the underlying plaintext of c∗a.

Simulation of Hh. For Hh (1 ≤ h ≤ 3) oracle queries, B returns random val-
ues if the query has never been asked before, otherwise B returns the same value
as before. If a Hh query is identical to (mb′ ,mh,ω1,ω2,ω3) such that ωa = ra,b′
and ωh = rh (1 ≤ h ≤ 3, h �= a) for some b′ ∈ {0, 1} (here, ma means ma,b′), B
outputs 〈b′, a〉 and halts.

Simulation of KG. It is clear that for any of the KG queries, B can answer it
perfectly by asking B’s own KG oracles. More precisely, on A’s request for a KG
oracle query U(�= U∗), B can ask U to B’s KG oracle corresponding to HIBEa,
as well as run user-secret generation algorithms of HIBEh with master key s′h for
1 ≤ h ≤ 3, h �= a. Then, B produces di0 for 0 ≤ i ≤ 2 by using these results and
return (d0

0, d
1
0, d

2
0).

Simulation of KI. Interestingly, answers to A’s KI oracle query can be perfectly
simulated by B when i′ is the “special level” (see Def. 2) chosen by A. Namely,
B can perfectly answer any KI oracle query by using B’s own KG oracles which
corresponds to HIBEa and master keys s′h (1 ≤ h ≤ 3, h �= a) which correspond
to HIBEh. It should be noticed that the simulation is perfect even if U = U∗.
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Simulation of D. On A’s D query for U and 〈c, time〉, B searches for the
combinations of A’s previous queries made to H1, H2, H3 such that each of the
combinations consists of the next three queries ψ1,ψ2,ψ3, where for 1 ≤ i ≤ 3,
query ψi is asked to Hi and ψi forms (m,mi, r1, r2, r3) for some n-bit strings
m, mi and k1-bit strings r1, r2, r3 such that ⊕1≤i≤3mi = m (note that m, r1, r2
and r3 are common for all ψ1,ψ2 and ψ3). If there exists such a combination
whose corresponding ciphertext (for U and time) is identical to 〈c, time〉, then
B returns m. Otherwise, B returns ⊥.

When A outputs b′, B also outputs 〈b′, a〉 as an answer for the IND-HID-CPA
game for HIBEa.

Now, we estimate B’s succeeding probability. Simulations of LR, Hh (1 ≤
h ≤ 3), and KG are perfect. Simulation of KI fails only when i′ is not the special
level chosen by A. Therefore, if we let 1/2 + εA be the succeeding probability of
A, then B’s succeeding probability can be estimated to be 1/2 + εB where

εB ≥
1
3
(
1
2

+ εA − Pr[H-Ask]) · Pr[¬D-Fail] +
2
3
· 1
2
− 1

2
,

where H-Ask denotes an event that (mb,mh,ω1,ω2,ω3) such that ωa = ra,b and
ωj = rj (j �= a) is asked to Hh for some h, and D-Fail denotes an event that B
rejects a D query which should not be rejected.

Since it is informtion-theoretically impossible tofind ra,b, we havePr[H-Ask] ≤
1 − (1 − 1/2k1)qH1+qH2+qH3 where qHi (1 ≤ i ≤ 3) are the numbers of queries
made to Hi. Simulation of D fails only when A submits a ciphertext which should
not be rejected, but its corresponding Hi oracle query is not asked. Therefore,
Pr[¬D-Fail] ≥ (1 − γmax)qD where qD is the number of queries for D, γmax =
max(γ1, γ2, γ3) assuming that HIBEi is γi-uniform.

Hence, we have

εB ≥
1
3
(
1
2

+ εA − (1− (1 − 1
2k1

)qH1+qH2+qH3 ))(1− γmax)qD +
2
3
· 1
2
− 1

2

≥ 1
3
εA −

1
3
qH1 + qH2 + qH3

2k1
− 1

6
qDγmax.

Also, if letting tA be A’s running time, then B’s running time can be estimated
to be tB, where

tB ≤ tA + 2τENC + (2qKG + 5qKI)τGEN

+qD((qH1 + qH2 + qH3)τENC + qH1qH2qH3O(k)),

assuming that the number of queries made to KG and KI is qKI and qKI, respec-
tively, and running time of Geni

HIBEh
and EncHIBEh

are at most τGEN and τENC ,
respectively, for any h and i. Therefore, εA is negligible if εB, 1/2k1 and γmax are
all negligible, and hence, our proposed generic construction of IKE is KE-CCA
secure. �
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Abstract. In this paper we describe a new identity-based signcryption
(IBSC) scheme built upon bilinear maps. This scheme turns out to be
more efficient than all others proposed so far. We prove its security in a
formal model under recently studied computational assumptions and in
the random oracle model. As a result of independent interest, we propose
a new provably secure identity-based signature (IBS) scheme that is also
faster than all known pairing-based IBS methods.

1 Introduction

Two fundamental services of public key cryptography are privacy and authentica-
tion. Public key encryption schemes aim at providing confidentiality whereas dig-
ital signatures must provide authentication and non-repudiation. Nowadays, no-
ticeably, many real-world cryptographic application require those distinct goals
to be simultaneously achieved. This motivated Zheng [39] to provide the cryp-
tographer’s toolbox with a novel cryptographic primitive which he called ‘sign-
cryption.’ The purpose of this kind of cryptosystem is to encrypt and sign data
in a single operation which has a computational cost less than that of doing
both operations sequentially. Proper signcryption schemes should provide confi-
dentiality as well as authentication and non-repudiation. As in conventional en-
cryption schemes, recovering the plaintext from a signcrypted message must be
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computationally infeasible without the recipients private key; as in conventional
digital signatures, it must be computationally infeasible to create signcrypted
texts without the senders private key.

Identity based cryptography has become a very fashionable area of research
for the last couple of years. The concept was originally introduced in 1984 by
Shamir [34] whose idea was that users within a system could use their online
identifiers (combined with certain system-wide information) as their public keys.
This greatly reduces the problems with key management that have hampered
the mass uptake of public key cryptography on a per individual basis. While
identity-based signature schemes (IBS) rapidly emerged [20,23] after 1984 (see [5]
for a thorough study of them), and despite another bandwidth-consuming pro-
posal [18], it is only in 2001 that bilinear mappings over elliptic curve were found
to yield the first fully practical identity-based encryption (IBE) solution [10].
Those bilinear maps, or pairings, subsequently turned out to yield a plenty of
cryptographic applications [2] among which several recent outstanding results
on identity-based encryption [7,8,21,36].

Several identity-based signcryption algorithms have been proposed so
far, e.g. [11,14,16,17,26,27,30,33,37]. Within this handful of results, only
[11,14,16,17,26,37] consider schemes supported by formal models and security
proofs in the random oracle model [6]. Among them, Chen and Malone-Lee’s
proposal [14] happens to yield the most efficient construction.

The main contribution of this paper is to propose a new identity-based sign-
cryption scheme that even supersedes [14] from an efficiency point of view at
the expense of a security resting on stronger assumptions. The new construction
can benefit from the most efficient pairing calculation techniques for a larger
variety of elliptic curves than previous schemes. Indeed, recent observations [35]
pinpointed problems arising when many provably secure pairing based protocols
are implemented using asymmetric pairings and ordinary curves. Our proposal
avoids those problems thanks to the fact that it does not require to hash onto an
elliptic curve cyclic subgroup. As a result of independent interest, we discovered
a new identity-based signature that happens to be faster at verification than
previously known IBS schemes.

This paper is organized as follows. Section 2 presents the basic security the-
oretic concepts of bilinear map groups and the hard problems underlying our
proposed algorithms. We describe our identity-based signature scheme and prove
its security in section 3. We propose a new identity-based signcryption scheme
in section 4, and compare its efficiency to various schemes in section 5. We draw
our conclusions in section 6.

2 Preliminaries

2.1 Bilinear Map Groups and Related Computational Problems

Let k be a security parameter and p be a k-bit prime number. Let us consider
groups G1, G2 and GT of the same prime order p and let P,Q be generators
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of respectively G1 and G2. We say that (G1,G2,GT ) are bilinear map groups if
there exists a bilinear map e : G1×G2 → GT satisfying the following properties:

1. Bilinearity: ∀ (S,T ) ∈ G1 ×G2, ∀ a, b ∈ Z, e(aS, bT ) = e(S,T )ab.
2. Non-degeneracy: ∀ S ∈ G1, e(S,T ) = 1 for all T ∈ G2 iff S = O.
3. Computability: ∀ (S,T ) ∈ G1 ×G2, e(S,T ) is efficiently computable.
4. There exists an efficient, publicly computable (but not necessarily invertible)

isomorphism ψ : G2 → G1 such that ψ(Q) = P .

Such bilinear map groups are known to be instantiable with ordinary elliptic
curves such as those suggested in [29] or [4]. In this case, the trace map can be
used as an efficient isomorphism ψ as long as G2 is properly chosen [35]. With
supersingular curves, symmetric pairings (i.e. G1 = G2) can be obtained and ψ
is the identity.

The computational assumptions for the security of our schemes were pre-
viously formalized by Boneh and Boyen [9,7] and are recalled in the following
definition.

Definition 1 ([9,7]). Let us consider bilinear map groups (G1,G2,GT ) and
generators P ∈ G1 and Q ∈ G2.

The q-Strong Diffie-Hellman problem (q-SDHP) in the groups (G1,G2)
consists in, given a (q + 2)-tuple (P,Q, αQ, α2Q, . . . , αqQ) as input, finding
a pair

(
c, 1
c+αP

)
with c ∈ Z∗p.

The q-Bilinear Diffie-Hellman Inversion problem (q-BDHIP) in the
groups (G1,G2,GT ) consists in, given (P,Q, αQ, α2Q, . . . , αqQ), computing
e(P,Q)1/α ∈ GT .

3 A New Identity-Based Signature

We here present a new identity-based signature that is significantly more efficient
all known pairing based IBS schemes as its verification algorithm requires a single
pairing calculation. This efficiency gain is obtained at the expense of letting the
security rely on a stronger assumption than other provably secure pairing based
IBS [12,15,24].

Setup: given a security parameter k, the PKG chooses bilinear map groups
(G1,G2,GT ) of prime order p > 2k and generators Q ∈ G2, P = ψ(Q) ∈ G1,
g = e(P,Q). It then selects a master key s R← Z∗p, a system-wide public key
Qpub = sQ ∈ G2 and hash functions H1 : {0, 1}∗ → Z∗p, H2 : {0, 1}∗×GT →
Z∗p. The public parameters are

params := {G1,G2,GT , P,Q, g,Qpub, e,ψ, H1, H2}

Keygen: for an identity ID, the private key is SID = 1
H1(ID)+sP .

Sign: in order to sign a message M ∈ {0, 1}∗, the signer
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1. picks a random x R← Z∗p and computes r = gx,
2. sets h = H2(M, r) ∈ Z∗p,
3. computes S = (x+ h)SID.

The signature on M is σ = (h, S) ∈ Z∗p ×G1.

Verify: a signature σ = (h, S) on a message M is accepted iff

h = H2(M, e(S,H1(ID)Q + Qpub)g−h).

The scheme can be thought of as an identity-based extension of a digital sig-
nature discussed in two independent papers [9,38]. More precisely, the method
for obtaining private keys from identities is a simplification of a method sug-
gested by Sakai and Kasahara ([33]).

In [25], Kurosawa and Heng described an identity-based identification (IBI)
protocol that implicitly suggests an IBS described in appendix E and which can
be proven secure under the same assumption as our proposal. It turns out that
ours is slightly faster than the Kurosawa-Heng IBS in the signature generation.

At Eurocrypt’04, Bellare, Namprempre and Neven established a frame-
work [5] for proving the security of a large family of identity-based signatures
and they only found two schemes to which their framework does not apply. The
present one does not either fall into the category of schemes to which it applies.
Indeed, it can be showed that our IBS does not result from the transformation of
any convertible standard identification or signature scheme (in the sense of [5])
unless the q-SDHP is easy. A direct security proof is thus needed.

3.1 Security Results

We recall here the usual model [5,12,15,19,24] of security for identity-based sig-
natures which is an extension of the usual notion of existential unforgeability
under chosen-message attacks [22].

Definition 2 ([12]). An IBS scheme is existentially unforgeable under
adaptive chosen message and identity attacks if no probabilistic polynomial time
(PPT) adversary has a non-negligible advantage in this game:

1. The challenger runs the setup algorithm to generate the system’s parameters
and sends them to the adversary.

2. The adversary F performs a series of queries to the following oracles:
- Key extraction oracle: returns private keys for arbitrary identities.
- Signature oracle: produces signatures on arbitrary messages using the

private key corresponding to arbitrary identities.
3. F produces a triple (ID∗,M∗, σ∗) made of an identity ID∗, whose private

key was never extracted, and a message-signature pair (M∗, σ∗) such that
(M∗, ID∗) was not submitted to the signature oracle. She wins if the verifi-
cation algorithm accepts the triple (ID∗,M∗, σ∗).

The next lemmas establish the security of the scheme under the q-SDH assump-
tion. Lemma 1 [12] allows to only consider a weaker attack where a forger is
challenged on a given identity chosen by the challenger. The proof of lemma 2
relies on the forking lemma [31,32].
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Lemma 1 ([12]). If there is a forger F0 for an adaptively chosen message and
identity attack having advantage ε0 against our scheme when running in a time
t0 and making qh1 queries to random oracle h1, then there exists an algorithm F1

for an adaptively chosen message and given identity attack which has advantage
ε1 ≤ ε0

(
1− 1

2k

)
/qh1 within a running time t1 ≤ t0. Moreover, F1 asks the same

number key extraction queries, signature queries and H2-queries as F0 does.

Lemma 2. Let us assume that there is an adaptively chosen message and given
identity attacker F that makes qhi queries to random oracles Hi (i = 1, 2) and qs
queries to the signing oracle. Assume that, within a time t, F produces a forgery
with probability ε ≥ 10(qs + 1)(qs + qh2)/2k. Then, there exists an algorithm B
that is able to solve the q-SDHP for q = qh1 in an expected time

t′ ≤ 120686qh2(t+O(qsτp))/(ε(1− q/2k)) +O(q2τmult)

where τmult denotes the cost of a scalar multiplication in G2 and τp is the cost
of a pairing evaluation.

Proof. See appendix A. �

The combination of the above lemmas yields the following theorem.

Theorem 1. Let us assume that there exists an adaptively chosen message and
identity attacker F making qhi queries to random oracles Hi (i = 1, 2) and qs
queries to the signing oracle. Assume that, within a time t, F produces a forgery
with probability ε ≥ 10(qs + 1)(qs + qh2)/2k. Then, there exists an algorithm B
that is able to solve the q-SDHP for q = qh1 in an expected time

t′ ≤ 120686qh1qh2(t+O(qsτp))/(ε(1 − q/2k)) +O(q2τmult)

where τmult and τp respectively denote the cost of a scalar multiplication in G2

and the required time for a pairing evaluation.

4 Fast Identity-Based Signcryption

4.1 Formal Model of Identity-Based Signcryption

The formal structure that we shall use for identity-based signcryption schemes
is the following.

Setup: is a probabilistic algorithm run by a private key generator (PKG) that
takes as input a security parameter to output public parameters params and
a master key mk that is kept secret.

Keygen: is a key generation algorithm run by the PKG on input of params and
the master key mk to return the private key SID associated to the identity
ID.

Sign/Encrypt: is a probabilistic algorithm that takes as input public parameters
params, a plaintext message M , the recipient’s identity IDR, and the sender’s
private key SIDS , and outputs a ciphertext σ = Sign/Encrypt(M, SIDS , IDR).
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Decrypt/Verify: is a deterministic decryption algorithm that takes as input
a ciphertext σ, public parameters params, the receiver’s private key SIDR

and (optionally) a sender’s identity IDS before returning a valid message-
signature pair (M, s) or a distinguished symbol ⊥ if σ does not decrypt into
a message bearing signer IDS ’s signature.

Unlike recent works of [11,14] that present two-layer designs of probabilistic
signature followed by a deterministic encryption, our construction is a single-
layer construction jointly achieving signature and encryption on one side and
decryption and verification on the other side. Although the description of our
scheme could be modified to fit a two-layer formalism, we kept the monolithic
presentation without hampering the non-repudiation property as, similarly to
[11,14], our construction enables an ordinary signature on the plaintext to be
extracted from any properly formed ciphertext using the recipient’s private key.
The extracted message-signature pair can be forwarded to any third party in
such a way that a sender remains committed to the content of the plaintext.

Unlike models of [11,14] that consider anonymous ciphertexts, the above one
assumes that senders’ identities are sent in the clear along with ciphertexts. Actu-
ally, receivers do not need to have any a priori knowledge on whom the ciphertext
emanates from in our scheme but this simply allows more efficient reductions in
the security proofs. A simple modification of our scheme yields anonymous ci-
phertexts and enables senders’ identities to be recovered by the Decrypt/Verify al-
gorithm (which only takes a ciphertext and the recipient’s private key as input).

Definition 3. An identity-based signcryption scheme (IBSC) satisfies the mes-
sageconfidentialityproperty(oradaptivechosen-ciphertext security: IND-IBSC-
CCA) if no PPT adversary has a non-negligible advantage in the following game.

1. The challenger runs the Setup algorithm on input of a security parameter k
and sends the domain-wide parameters params to the A.

2. In a find stage, A starts probing the following oracles:
- Keygen: returns private keys associated to arbitrary identities.
- Sign/Encrypt: given a pair of identities IDS, IDR and a plaintext M , it

returns an encryption under the receiver’s identity IDR of the message
M signed in the name of the sender IDS.

- Decrypt/Verify: given a pair of identities (IDS , IDR) and a ciphertext σ,
it generates the receiver’s private key SIDR

= Keygen(IDR) and returns
either a valid message-signature pair (M, s) for the sender’s identity IDS

or the ⊥ symbol if, under the private key SIDR
, σ does not decrypt into

a valid message-signature pair.
3. A produces two plaintexts M0,M1 ∈ M and identities ID∗S and ID∗R.

She may not have extracted the private key of ID∗R and she obtains C =
Sign/Encrypt(Mb, SID∗

S
, ID∗R, params), for a random a bit b R← {0, 1}.

4. In the guess stage, A asks new queries as in the find stage. This time, she
may not issue a key extraction request on ID∗R and she cannot submit C to
the Decrypt/Verify oracle for the target identity ID∗R.

5. Finally, A outputs a bit b′ and wins if b′ = b.
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A’s advantage is defined as Adv(A) := 2× Pr[b′ = b]− 1.

The next definition, given in [11], considers non-repudiation w.r.t. signatures
embedded in ciphertexts rather than w.r.t. ciphertexts themselves.

Definition 4. An identity-based signcryption scheme (IBSC) is said to be ex-
istentially signature-unforgeable against adaptive chosen messages and ci-
phertexts attacks (ESUF-IBSC-CMA) if no PPT adversary can succeed in the
following game with a non-negligible advantage:

1. the challenger runs the Setup algorithm on input k and gives the system-wide
public key to the adversary F .

2. F issues a number of queries as in the previous definition.
3. Finally, F outputs a triple (σ∗, ID∗S , ID

∗
R) and wins the game if the sender’s

identity ID∗S was not corrupted and if the result of the Decrypt/Verify ora-
cle on the ciphertext σ∗ under the private key associated to ID∗R is a valid
message-signature pair (M∗, s∗) such that no Sign/Encrypt query involved
M∗, ID∗S and some receiver ID′R (possibly different from ID∗R) and resulted
in a ciphertext σ′ whose decryption under the private key SID′

R
is the alleged

forgery (M∗, s∗, ID∗S).

The adversary’s advantage is its probability of victory.

In both of these definitions, we consider insider attacks [1]. Namely, in the
definition of message confidentiality, the adversary is allowed to be challenged on
a ciphertext created using a corrupted sender’s private key whereas, in the notion
of signature non-repudiation, the forger may output a ciphertext computed under
a corrupted receiving identity.

4.2 The Scheme

Our scheme is obtained from an optimized combination of our IBS scheme
with the most basic version of the Sakai-Kasahara IBE ([33,13]) which is only
secure against chosen-plaintext attacks when used as an encryption-only sys-
tem. This allows performing the signature-encryption operation without com-
puting a pairing whereas only two pairings have to be computed upon decryp-
tion/verification.

Setup: given k, the PKG chooses bilinear map groups (G1,G2,GT ) of prime
order p > 2k and generators Q ∈ G2, P = ψ(Q) ∈ G1, g = e(P,Q) ∈ GT . It
then chooses a master key s R← Z∗p, a system-wide public key Qpub = sQ ∈
G2 and hash functions H1 : {0, 1}∗ → Z∗p, H2 : {0, 1}∗ × GT → Z∗p and
H3 : GT → {0, 1}n. The public parameters are

params := {G1,G2,GT , P,Q, g,Qpub, e,ψ, H1, H2, H3}

Keygen: for an identity ID, the private key is SID = 1
H1(ID)+sQ ∈ G2.

Sign/Encrypt: given a message M ∈ {0, 1}∗, a receiver’s identity IDB and a
sender’s private key SIDA

,
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1. Pick x R← Z∗p, compute r = gx and c = M ⊕H3(r) ∈ {0, 1}n.
2. Set h = H2(M, r) ∈ Z∗p.
3. Compute S = (x+ h)ψ(SIDA

).
4. Compute T = x(H1(IDB)P + ψ(Qpub)).

The ciphertext is σ = 〈c, S,T 〉 ∈ {0, 1}n ×G1 ×G1.
Decrypt/Verify: given σ = 〈c, S,T 〉, and some sender’s identity IDA,

1. Compute r = e(T , SIDB
), M = c⊕H3(r), and h = H2(M, r).

2. Accept the message iff r = e(S,H1(IDA)Q + Qpub)g−h. If this condition
holds, return the message M and the signature (h, S) ∈ Z∗p ×G1.

If required, the anonymity property is obtained by scrambling the sender’s
identity IDA together with the message at step 1 of Sign/Encrypt in such a
way that the recipient retrieves it at the first step of the reverse operation.
This change does not imply any computational penalty in practice but induces
more expensive security reductions. In order for the proof to hold, IDA must be
appended to the inputs of H2.

4.3 Security Results

The following theorems claim the security of the scheme in the random oracle
model under the same irreflexivity assumption as Boyen’s scheme [11]: the signa-
ture/encryption algorithm is assumed to always take distinct identities as inputs
(in other words, a principal never encrypts a message bearing his signature using
his own identity).
Theorem 2. Assume that an IND-IBSC-CCA adversary A has an advantage ε
against our scheme when running in time τ , asking qhi queries to random oracles
Hi (i = 1, 2, 3), qse signature/encryption queries and qdv queries to the decryp-
tion/verification oracle. Then there is an algorithm B to solve the q-BDHIP for
q = qh1 with probability

ε′ >
ε

qh1(2qh2 + qh3)

(
1− qse

qse + qh2

2k

)(
1− qdv

2k
)

within a time τ ′ < τ+O(qse+qdv)τp+O(q2h1
)τmult+O(qdvqh2)τexp where τexp and

τmult are respectively the costs of an exponentiation in GT and a multiplication
in G2 whereas τp is the complexity of a pairing computation.

Proof. See appendix B. �
Theorem 3. Assume there exists anESUF-IBSC-CMAattackerA thatmakes qhi

queries to random oraclesHi (i = 1, 2, 3), qse signature/ encryption queries and qdv
queries to the decryption/verification oracle. Assume also that, within a time τ , A
produces a forgery with probability ε ≥ 10(qse + 1)(qse + qh2)/2k. Then, there is an
algorithm B that is able to solve the q-SDHP for q = qh1 in expected time

τ ′ ≤ 120686qh1qh2

τ +O((qse + qdv)τp) + qdvqh2τexp
ε(1− 1/2k)(1 − q/2k) +O(q2τmult)

where τmult, τexp and τp denote the same quantities as in theorem 2.

Proof. See appendix C. �
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We now restate theorem 2 for the variant of our scheme with anonymous
ciphertexts. The simulator’s worst-case running time is affected by the fact that,
when handling Decrypt/Verify requests, senders’identities are not known in ad-
vance. The reduction involves a number of pairing calculations which is quadratic
in the number of adversarial queries.

Theorem 4. Assume that an IND-IBSC-CCA adversary A has an advantage ε
against our scheme when running in time τ , asking qhi queries to random oracles
Hi (i = 1, 2, 3), qse signature/encryption queries and qdv queries to the decryp-
tion/verification oracle. Then there is an algorithm B to solve the q-BDHIP for
q = qh1 with probability

ε′ >
ε

qh1(2qh2 + qh3)

(
1− qse

qse + qh2

2k

)(
1− qdv

2k
)

within a time τ ′ < τ + O(qse + qdvqh2)τp + O(q2h1
)τmult + O(qdvqh2)τexp where

τexp, τmult and τp denote the same quantities as in previous theorems.

Proof. See appendix D. �

Theorem 3 can be similarly restated as its reduction cost is affected in the same
way.

A formal proof of ciphertext anonymity in the model of [11] will be given in
the full version of this paper for the anonymous version of the scheme.

We concede that even the latter variant does not feature all the properties
of the systems of Boyen ([11]) or Chen-Malone-Lee ([14]). For example, it does
not have the ciphertext unlinkability property ([11,14]): it seems infeasible for
anyone to use his private key to embed a given message-signature pair into a
proper ciphertext intended to himself. We were also unable to formally estab-
lish the ciphertext authentication property according to which a ciphertext is
always signed and encrypted by the same person and cannot be subject to a
kind of ‘man-in-the-middle’ attack. Nevertheless, the scheme does seem to have
this property because of the same reason that precludes the ciphertext unlinka-
bility property.

Overall, we believe that the scheme does satisfy the main requirements that
might be desired in practice. In our opinion, it suffices to implement most prac-
tical applications and its great efficiency renders it more than interesting for
identity-based cryptography.

5 Efficiency Discussions and Comparisons

In [35], Smart and Vercauteren pointed out problems that arise when several
pairing based protocols are implemented with asymmetric pairings. They showed
the difficulty of finding groups G2 allowing the use of the most efficient pairing
calculation techniques for ordinary curves [3] if arbitrary strings should be ef-
ficiently hashed onto them and efficient isomorphism ψ : G2 → G1 must be
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available at the same time. As a consequence, several protocols have to be im-
plemented with groups for which no efficient isomorphism ψ : G2 → G1 is
computable and their security eventually has to rely on somewhat unnatural
assumptions.

Except [33] that has no security proof (and actually has several known secu-
rity problems [28]), all known identity-based signcryption schemes would require
to hash onto G2 if they were instantiated with asymmetric pairings. Our scheme
avoids this problem since it does not require to hash onto a cyclic group. It thus
more easily benefits from optimized pairing calculation algorithms. For example,
section 4 of [35] yields an example of group G2 for which techniques of [3] can
be used and where efficient isomorphisms are available.

We now assess the comparative efficiency of several identity-based signcryp-
tion schemes, implemented according to their original descriptions. Table 1 sum-
marises the number of relevant basic operations underlying several identity-based
signcryption and signature schemes, namely, GT exponentiations, scalar point

Table 1. Efficiency comparison

Sign/Encrypt Decrypt/Verify
signcryption scheme exp mul pairings time (ms) exp mul pairings time (ms)

Boyen ([11]) 1 3 1† 9.37 2 4† 12.66
Chow-Yiu-Hui-Chow¶ ([16]) 2 2� 7.24 1 4� 11.88
Libert-Quisquater¶♠ ([26]) 2 2� 7.24 1 4� 11.88

Nalla-Reddy♦�	 ([30]) 1 2 1† 8.43 1 3† 9.06
Malone-Lee♣ ([27]) 3 1‡ 5.47 1 3 9.06

Chen-Malone-Lee ([14]) 3 1‡ 5.47 1 3 9.06
Sakai-Kasahara♣ ([33]) 2 1+1§ 6.41 1 2 9.37

Libert-Quisquater�	 ([26]) 3 1‡ 5.47 1 2 6.41
ours 1 2 2.65 1 2 6.09

Sign Verify
signature scheme exp mul pairings time (ms) exp mul pairings time (ms)

Chow-Yiu-Hui-Chow ([16]) 2 1‡ 3.60 2† 6.41
Heß([24]) 1 2 2.50 1 2† 6.41

Cha-Cheon ([12]) 2 1.87 1 2 6.41
ours 2 1.56 1 1 3.60

(†) One pairing is precomputable, incurring for each user a storage cost of one GT element for each

other user in the system.

(‡) One pairing is precomputable, incurring for each user a storage cost of one GT element for each

other user in the system, plus one GT exponentiation.

(�) Two pairings are precomputable, incurring for each user a storage cost of one GT element for

each user in the system, plus two GT exponentiations.

(§) One of the scalar multiplications is done in 〈Q〉 rather than 〈P 〉 where (P,Q) generates E[p].

(¶) Universally verifiable scheme (i.e. supports public ciphertext validation).

(♣) These schemes suffer from security problems as mentioned in [26,28].

(♠) This scheme does not provide insider-security for the message-confidentiality criterion.

(♦) This scheme has no security proof.

(��) This construction can only authenticate messages from the receiver’s point of view.
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multiplications, and pairing evaluations, and compares the observed processing
times (in milliseconds) for a supersingular curve of embedding degree k = 6 over
F397 , using implementations written in C++ and run on an Athlon XP 2 GHz.
Subtleties in the algorithms determine somewhat different running times even
when the operation counts for those algorithms are equal. We see from these
results that our proposed algorithms rank among the fastest schemes.

6 Conclusion

We have described efficient and provably secure signature and signcryption
schemes that are faster than any pairing-based scheme previously proposed in
the literature. The latter can be instantiated with either named or anonymous
ciphertexts and is more convenient than previous proposals for implementations
with asymmetric pairings.
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A Proof of Lemma 2

Proof. We first show how to provide the adversary with a consistent view and
we then explain how to apply the forking lemma.

Algorithm B takes as input (P,Q, αQ, α2Q, . . . , αqQ) and aims to find a pair
(c, 1

c+αP ). In a setup phase, it builds a generator G ∈ G1 such that it knows
q − 1 pairs (wi, 1

wi+α
G) for w1, . . . ,wq−1 ∈R Z∗p. To do so,

1. It picks w1,w2, . . . ,wq−1
R← Z∗p and expands f(z) =

∏q−1
i=1 (z + wi) to obtain

c0, . . . , cq−1 ∈ Z∗p so that f(z) =
∑q−1

i=0 ciz
i.

2. It sets generators H =
∑q−1
i=0 ci(α

iQ) = f(α)Q ∈ G2 and G = ψ(H) =
f(α)P ∈ G1. The public key Hpub ∈ G2 is fixed to Hpub =

∑q
i=1 ci−1(αiQ)

so that Hpub = αH although B does not know α.
3. For 1 ≤ i ≤ q − 1, B expands fi(z) = f(z)/(z + wi) =

∑q−2
i=0 diz

i and
q−2∑
i=0

diψ(αiQ) = fi(α)P =
f(α)
α+ wi

P =
1

α+ wi
G. (1)

The pairs (wi, 1
α+wi

G) are computed using the left member of (1).

B is then ready to answer F ’s queries along the course of the game. It first
initializes a counter 
 to 1 and launches F on the input (Hpub, ID

∗) for a randomly
chosen challenge identity ID∗ R← {0, 1}∗. For simplicity, we assume that queries
to H1 are distinct, and that any query involving an identifier ID is preceded by
the random oracle query H1(ID).
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- H1-queries on an identity ID ∈ {0, 1}∗: B returns a random w∗ R← Z∗p if
ID = ID∗. Otherwise, B answers w = w� ∈ Z∗p and increments 
. In both
cases, B stores (ID,w) (where w∗ = w or w�) in a list L1.

- Key extraction queries on ID �= ID∗: B recovers the matching pair (ID,w)
from L1 and returns the previously computed (1/(α+ w))G.

- Signature query on a message-identity pair (M, ID): B picks S R← G1, h
R←

Z∗p, computes r = e(S,QID)e(G,H)−h, where QID = H1(ID)H +Hpub, and
backpatches to define the value H2(M, r) as h ∈ Z∗p (B aborts in the unlikely
event that H2(M, r) is already defined).

We have explained how to simulate F ’s environment in a chosen-message and
given identity attack. We are ready to apply the forking lemma that essen-
tially says the following: consider a scheme producing signatures of the form
(M, r, h, S), where each of r, h, S corresponds to one of the three moves of a
honest-verifier zero-knowledge protocol. Let us assume that a chosen-message
attacker F forges a signature (M, r, h, S) in a time t with probability ε ≥
10(qs + 1)(qs + qh)/2k (k being a security parameter so that h is uniformly
taken from a set of 2k elements) when making qs signature queries and qh ran-
dom oracle calls. If the triples (r, h, S) can be simulated without knowing the
private key, then there exists a Turing machine F ′ that uses F to produce two
valid signatures (m, r, h1, S1), (m, r, h2, S2), with h1 �= h2, in expected time
t′ ≤ 120686qht/ε.

In our setting, from a forger F , we build an algorithm F ′ that replays F a
sufficient number of times on the input (Hpub, ID

∗) to obtain two suitable forg-
eries 〈M∗, r, h1, S1〉, 〈M∗, r, h2, S2〉 with h1 �= h2.

The reduction then works as follows. The simulator B runs F ′ to obtain two
forgeries 〈M∗, r, h1, S1〉, 〈M∗, r, h2, S2〉 for the same message M∗ and commit-
ment r. At this stage, B recovers the pair (ID∗,w∗) from list L1. We note that
w∗ �= w1, . . . ,wq−1 with probability at least 1 − q/2k. If both forgeries satisfy
the verification equation, we obtain the relations

e(S1,QID∗)e(G,H)−h1 = e(S2,QID∗)e(G,H)−h2 ,

with QID∗ = H1(ID∗)H +Hpub = (w∗ + α)H . Then, it comes that

e((h1 − h2)−1(S1 − S2),QID∗) = e(G,H),
and hence T ∗ = (h1 − h2)−1(S1 − S2) = 1

w∗+αG. From T ∗, B can proceed as
in [9] to extract σ∗ = 1

w∗+αP : it first obtains γ−1, γ0, . . . , γq−2 ∈ Z∗p for which
f(z)/(z + w∗) = γ−1/(z + w∗) +

∑q−2
i=0 γiz

i and eventually computes

σ∗ =
1
γ−1

[
T ∗ −

q−2∑
i=0

γiψ(αiQ)

]
=

1
w∗ + α

P

before returning the pair (w∗, σ∗) as a result.
It finally comes that, if F forges a signature in a time t with probability

ε ≥ 10(qs + 1)(qs + qh2)/2k, B solves the q-SDHP in expected time

t′ ≤ 120686qh2(t+O(qsτp))/(ε(1− q/2k)) +O(q2τmult)

where the last term accounts for the cost of the preparation phase. �
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B Proof of Theorem 2
Proof. Algorithm B takes as input 〈P,Q, αQ, α2Q, . . . , αqQ〉 and attempts to
extract e(P,Q)1/α from its interaction with A.

In a preparation phase, B selects 
 R← {1, . . . , qh1}, elements I�
R← Z∗p and

w1, . . . ,w�−1,w�+1 . . . ,wq
R← Z∗p. For i = 1, . . . , 
 − 1, 
 + 1, . . . , q, it computes

Ii = I� − wi. As in the technique of [9] and in lemma 2, it sets up generators
G2 ∈ G2, G1 = ψ(G2) ∈ G1 and another G2 element U = αG2 such that it knows
q − 1 pairs (wi, Hi = (1/(wi + α))G2) for i ∈ {1, . . . , q}\{
}. The system-wide
public key Qpub is chosen as

Qpub = −U − I�G2 = (−α− I�)G2

so that its (unknown) private key is implicitly set to x = −α− I� ∈ Z∗p. For all
i ∈ {1, . . . , q}\{
}, we have (Ii,−Hi) = (Ii, (1/(Ii + x))G2).
B then initializes a counter ν to 1 and starts A on input of (G1, G2,Qpub).

Throughout the game, we assume that H1-queries are distinct, that the target
identity ID∗R is submitted to H1 at some point and that any query involving an
identity ID comes after a H1-query on ID:

- H1-queries (let us call IDν the input of the νth one of such queries): B answers
Iν and increments ν.

- H2-queries on input (M, r): B returns the defined value if it exists and a
random h2

R← Z∗p otherwise. To anticipate possible subsequent Decrypt/Verify
requests, B additionally simulates random oracle H3 on its own to obtain
h3 = H3(r) ∈ {0, 1}n and stores the information (M, r, h2, c = M ⊕ h3, γ =
r · e(G1, G2)h2) in L2.

- H3-queries for an input r ∈ GT : B returns the previously assigned value if it
exists and a random h3

R← {0, 1}n otherwise. In the latter case, the input r
and the response h3 are stored in a list L3.

- Keygen queries on an input IDν : if ν = 
, then B fails. Otherwise, it knows
that H1(IDν) = Iν and returns −Hν = (1/(Iν + x))G2 ∈ G2.

- Sign/Encrypt queries for a plaintext M and identities (IDS , IDR) = (IDμ, IDν)
for μ, ν ∈ {1, . . . , qh1}: we observe that, if μ �= 
, B knows the sender’s private
key SIDμ

= −Hμ and can answer the query according to the specification of
Sign/Encrypt. We thus assume μ = 
 and hence ν �= 
 by the irreflexivity
assumption. Observe that B knows the receiver’s private key SIDν = −Hν by
construction. The difficulty is to find a random triple (S,T , h) ∈ G1×G1×Z∗p
for which

e(T , SIDν
) = e(S,QID�

)e(G1, G2)−h (2)

where QID�
= I�G2 + Qpub. To do so, B randomly chooses t, h R← Z∗p and

computes S = tψ(SIDν ) = −tψ(Hν), T = tψ(QID�
) − hψ(QIDν ) where

QIDν
= IνG2 + Qpub in order to obtain the desired equality r = e(T , SIDν

) =
e(S,QID�

)e(G1, G2)−h = e(ψ(SIDν
),QID�

)te(G1, G2)−h before patching the
hash value H2(M, r) to h (B fails if H2 is already defined but this only hap-
pens with probability (qse + qh2)/2k). The ciphertext σ = 〈M ⊕H3(r), S,T 〉
is returned.



530 P.S.L.M. Barreto et al.

- Decrypt/Verify queries on a ciphertext σ = 〈c, S,T 〉 for identities
(IDS , IDR) = (IDμ, IDν): we assume that ν = 
 (and hence μ �= 
 by the ir-
reflexivity assumption), because otherwise B knows the receiver’s private key
SIDν

= −Hν and can normally run the Decrypt/Verify algorithm. Since μ �= 
,
B has the sender’s private key SIDμ

and also knows that, for all valid cipher-
texts, logSIDμ

(ψ−1(S) − hSIDμ) = logψ(QIDν )(T ), where h = H2(M, r) is the
hash value obtained in the Sign/Encrypt algorithm and QIDν = IνG2 +Qpub.
Hence, we have the relation

e(T , SIDμ) = e(ψ(QIDν ),ψ−1(S)− hSIDμ) (3)

which yields e(T , SIDμ
) = e(ψ(QIDν

),ψ−1(S))e(ψ(QIDν
), SIDμ

)−h. We ob-
serve that the latter equality can be tested without inverting ψ as
e(ψ(QIDν

),ψ−1(S)) = e(S,QIDν
). The query is thus handled by computing

γ = e(S,QIDμ), where QIDμ = IμG2 + Qpub, and searching through list L2

for entries of the form (Mi, ri, h2,i, c, γ) indexed by i ∈ {1, . . . , qh2}. If none
is found, σ is rejected. Otherwise, each one of them is further examined: for
the corresponding indexes, B checks if

e(T , SIDμ
)/e(S,QIDν

) = e(ψ(QIDν
), SIDμ

)−h2,i (4)

(the pairings are computed only once and at most qh2 exponentiations are
needed), meaning that (3) is satisfied. If the unique i ∈ {1, . . . , qh2} satisfying
(4) is detected, the matching pair (Mi, 〈h2,i, S〉) is returned. Otherwise, σ is
rejected. Overall, an inappropriate rejection occurs with probability smaller
than qdv/2k across the whole game.

At the challenge phase, A outputs messages (M0,M1) and identities (IDS , IDR)
for which she never obtained IDR’s private key. If IDR �= ID�, B aborts. Otherwise,
it picks ξ R← Z∗p, c

R← {0, 1}n and S R← G1 to return the challenge σ∗ = 〈c, S,T 〉
where T = −ξG1 ∈ G1. If we define ρ = ξ/α and since x = −α − I�, we can
check that

T = −ξG1 = −αρG1 = (I� + x)ρG1 = ρI�G1 + ρψ(Qpub).

A cannot recognize that σ∗ is not a proper ciphertext unless she queries H2 or
H3 on e(G1, G2)ρ. Along the guess stage, her view is simulated as before and
her eventual output is ignored. Standard arguments can show that a successful
A is very likely to query H2 or H3 on the input e(G1, G2)ρ if the simulation is
indistinguishable from a real attack environment.

To produce a result, B fetches a random entry (M, r, h2, c, γ) or 〈r, .〉 from
the lists L2 or L3. With probability 1/(2qh2 + qh3) (as L3 contains no more than
qh2 +qh3 records by construction), the chosen entry will contain the right element
r = e(G1, G2)ρ = e(P,Q)f(α)2ξ/α, where f(z) =

∑q−1
i=0 ciz

i is the polynomial for
which G2 = f(α)Q. The q-BDHIP solution can be extracted by noting that, if
γ∗ = e(P,Q)1/α, then

e(G1, G2)1/α = γ∗(c
2
0)e
( q−2∑
i=0

ci+1(αiP ), c0Q
)
e
(
G1,

q−2∑
j=0

cj+1(αj)Q
)
.
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In an analysis of B’s advantage, we note that it only fails in providing a
consistent simulation because one of the following independent events:

E1: A does not choose to be challenged on ID�.
E2: a key extraction query is made on ID�.
E3: B aborts in a Sign/Encrypt query because of a collision on H2.
E4: B rejects a valid ciphertext at some point of the game.

We clearly have Pr[¬E1] = 1/qh1 and we know that ¬E1 implies ¬E2. We also
already observed that Pr[E3] ≤ qse(qse + qh2)/2k and Pr[E4] ≤ qdv/2k. We thus
find that

Pr[¬E1 ∧ ¬E3 ∧ ¬E4] ≥
1
qh1

(
1− qse

qse + qh2

2k

)(
1− qdv

2k
)
.

We obtain the announced bound by noting that B selects the correct element
from L2 or L3 with probability 1/(2qh2 + qh3). Its workload is dominated by
O(q2h1

) multiplications in the preparation phase, O(qse+qdv) pairing calculations
and O(qdvqh2) exponentiations in GT in its emulation of the Sign/Encrypt and
Decrypt/Verify oracles. �

C Proof of Theorem 3

Proof. The proof is almost similar to the one of theorem 1. Namely, it shows
that a forger in the ESUF-IBSC-CMA game implies a forger in a chosen-message
and given identity attack. Using the forking lemma [31,32], the latter is in turn
shown to imply an algorithm to solve the q-Strong Diffie-Hellman problem. More
precisely, queries to the Sign/Encrypt and Decrypt/Verify oracles are answered as
in the proof of theorem 2 and, at the outset of the game, the simulator chooses
public parameters in such a way that it can extract private keys associated to
any identity but the one which is given as a challenge to the adversary. By doing
so, thanks to the irreflexivity assumption, it is able to extract clear message-
signature pairs from ciphertexts produced by the forger (as it knows the private
key of the receiving identity ID∗R). �

D Proof of Theorem 4

Proof. The simulator is the same as in theorem 2 with the following differences
(recall that senders’ identities are provided as inputs to H2).

- H2-queries on input (IDS ,M, r): B returns the previously defined value
if it exists and a random h2

R← Z∗p otherwise. To anticipate subsequent
Decrypt/Verify requests, B simulates oracle H3 to obtain h3 = H3(r) ∈
{0, 1}n+n0 (where n0 is the maximum length of identity strings) and stores
(IDS ,M, r, h2, c = (M‖IDS)⊕ h3, γ = r · e(G1, G2)h2) in list L2.



532 P.S.L.M. Barreto et al.

- Decrypt/Verify queries: given a ciphertext σ = 〈c, S,T 〉 and a receiver’s iden-
tity IDR = IDν , we assume that ν = 
 because otherwise B knows the
receiver’s private key. The simulator B does not know the sender’s identity
IDS but knows that IDS �= IDν . It also knows that, for the private key SIDS

,
logSIDS

(ψ−1(S)− hSIDS
) = logψ(QIDν )(T ), and hence

e(T , SIDS
) = e(ψ(QIDν

),ψ−1(S)− hSIDS
), (5)

where h = H2(IDS ,M, r) is the hash value obtained in the Sign/ Encrypt
algorithm and QIDν

= IνG2 + Qpub. The query is handled by searching
through list L2 for entries of the form (IDS,i,Mi, ri, h2,i, c, γi) indexed by
i ∈ {1, . . . , qh2}. If none is found, the ciphertext is rejected. Otherwise, each
one of these entries for which IDS,i �= IDν is further examined by checking
whether γi = e(S,H1(IDS,i)Q + Qpub) and

e(T , SIDS,i
)/e(S,QIDν

) = e(ψ(QIDν
), SIDS,i

)−h2,i . (6)

(at most 3qh2 + 1 pairings and qh2 exponentiations must be computed),
meaning that equation (5) is satisfied and that the ciphertext contains a
valid message signature pair if both relations hold. If B detects an index
i ∈ {1, . . . , qh2} satisfying them, the matching pair (Mi, 〈h2,i, S〉) is returned.
Otherwise, σ is rejected and such a wrong rejection again occurs with an
overall probability smaller than qdv/2k. �

E The Kurosawa-Heng Identity-Based Signature

We describe here the IBS scheme that can be derived from a modification of the
Kurosawa-Heng [25] identity-based identification scheme using the Fiat-Shamir
heuristic [20].

Setup and Keygen are the same as in our scheme described in section 3. The
public parameters are

params := {G1,G2,GT , P,Q, g,Qpub, e,ψ, H1, H2}.
We also define QID = H1(ID)Q + Qpub.

Sign: to sign a message M ∈ {0, 1}∗, the signer does the following:
1. picks x R← Z∗p and computes r = e(P,QID)x ∈ GT ,
2. sets h = H2(M, r) ∈ Z∗p,
3. computes S = xP + hSID.

The signature on M is σ = (h, S) ∈ Z∗p ×G1.
Verify: a signature σ = (h, S) on a message M is accepted iff

h = H2(M, e(S,QID)g−h).

The above IBS can be proven secure under the q-Strong Diffie-Hellman assump-
tion. Even in its optimized version where e(P,H1(ID)Q+Qpub) is pre-computed
by the signer, its signature generation algorithm happens to be slightly more
expensive than our scheme’s one which requires a simple scalar multiplication
at step 3.
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Abstract. An approach of membership revocation in group signatures
is verifier-local revocation (VLR for short). In this approach, only ver-
ifiers are involved in the revocation mechanism, while signers have no
involvement. Thus, since signers have no load, this approach is suitable
for mobile environments. Although Boneh and Shacham recently pro-
posed a VLR group signature scheme from bilinear maps, this scheme
does not satisfy the backward unlikability. The backward unlikability
means that even after a member is revoked, signatures produced by the
member before the revocation remain anonymous. In this paper, we pro-
pose VLR group signature schemes with the backward unlinkability from
bilinear maps.

1 Introduction

A group signature scheme [10,8,1,15,2,9,16,13,6,7,14] allows a group member
to anonymously sign a message on behalf of a group, where a group manager
controls the membership of members. Then, often a third party can cancel the
anonymity of signatures to trace the signers. Some schemes support membership
revocation [15,2,9,16,6,7], where the membership of a member can be disabled
without influencing the other members.

This paper focuses on the membership revocation. The simplest revocation
method is that the manager changes the group public key and secret keys of all
members except the revoked member to re-distribute the keys [2]. However, the
other members’ loads are enormous. A better solution is to broadcast a small
public membership message to all signers and verifiers, as in [9,16,6]. Although
the costs of signers are better, the signer still has to obtain some data depending
on the size of the group (or the number of revoked members) whenever signing.
On the other hand, there is another approach [15,2,7], where some revocation
messages are only sent to verifiers, although the verifiers need the computational
cost depending the number of revoked members. Since the signers’ costs are
lower, this type is suitable for mobile environments where mobile hosts anony-
mously communicate with the servers. We refer to this type as Verifier-Local
Revocation (VLR for short) group signature scheme, as in [7].
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In [15,2], VLR group signature schemes based on the strong RSA assumption
are proposed. However, the schemes have some drawbacks on efficiency. The first
scheme of [15] and the scheme of [2] suffer from the inefficiency of signing, due
to the used inefficient zero-knowledge proofs. The second scheme of [15] forces a
signer to compute O(T ) exponentiations at every time interval, where T is the
total number of time intervals. Since the revocation can be performed only at
the beginning of each time interval, T should be large. This means the signer’s
heavy load.

In [7], a VLR group signature scheme based on bilinear maps is proposed by
Boneh and Shacham. The advantage of this scheme is that signatures are short,
since the elliptic curves can be adopted. On the other hand, the schemes of [15,2]
have an advantage over [7], backward unlinkability. This property means that even
after a member is revoked, signatures produced by the member before the revoca-
tion remain anonymous. However, in the scheme of [7], all the signatures produced
from the revoked member are linkable. This means that the anonymity of signa-
tures produced before the revocation is compromised. In some cases that all sig-
natures from an illegal person should be traced, the linkability is useful, as well as
traceable signatures in [13]. However, the linkability is undesirable in most cases.
In case a member leaves voluntarily, the anonymity of signatures before leaving
should be ensured. This is the same in case a member’s secret key is stolen.

In this paper, we propose VLR group signature schemes from bilinear maps,
which moreover satisfy the backward unlinkability. In the schemes, the concept of
time intervals is adopted, as [15]. For each member, there are revocation tokens
of all intervals 1, . . . ,T . When a revocation happens at interval j∗, the revoca-
tion tokens of the member at all j ≥ j∗ are sent to verifiers. Then, signatures
after j∗ (including j∗) can be detected, while signatures before j∗ remain anony-
mous. Therefore, the backward unlinkability holds. Since the proposed schemes
adopt only efficient zero-knowledge proofs, signing process is efficient. Moreover,
a signer does not need any computation depending on T .

We first propose a basic VLR group signatures scheme, and prove the secu-
rity. In the basic scheme, a group manager publishes revocation tokens at every
interval. Thus, the total data of the revocation tokens published up to a pro-
ceeded interval becomes very long. Therefore, we propose an extended scheme,
where the total data size is reduced at the sacrifice of the signer’s slight cost.

2 Model and Security Definitions

We show a model of VLR group signature scheme with backward unlinkability,
which is extended from a model of VLR group signature scheme proposed in [7].

Definition 1. A VLR group signature scheme with backward unlinkability con-
sists of the following algorithms:

KeyGen(n,T ): It is a probabilistic algorithm on inputs n, which is the number
of members, and T , which is the number of time intervals. It outputs a
group public key gpk, an n-element vector of members’ secret keys gsk =
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(gsk[1], . . . , gsk[n]), and an n×T -element vector of revocation tokens grt =
(grt[1][1], . . . , grt[n][T ]), where grt[i][j] indicates the token of member i at
time interval j.

Sign(gpk, j, gsk[i],M): This takes as inputs the group public key gpk, the cur-
rent time interval j, a secret key gsk[i], and a message M ∈ {0, 1}∗, and
outputs the signature σ.

Verify(gpk, j,RLj, σ,M): This takes as inputs gpk, j, a set of the revocation
tokens RLj at the time interval j, a signature σ, and the message M . Then,
it outputs either valid or invalid. The validity means that σ is a correct
signature on M at interval j w.r.t. gpk, and that the signer is not revoked
at the interval j.

Remark 1. In practice, algorithm KeyGen is performed by a trusted group
manager. The manager gives each gsk[i] to each group member indexed by i,
who can compute a group signature using algorithm Sign. Furthermore, at each
interval j, the manager distributes revocation list RLj, which consists of tokens
grt[i][j] for all revoked members at j, to verifiers. The verifiers can verify a
group signature using algorithm Verify.

Then, the security requirements, Correctness, Traceability, and BU-
anonymity, are defined as follows, which are also extended from [7].

Definition 2 (Correctness). Correctness requires that for all (gpk, gsk, grt)=
KeyGen(n,T ), all j ∈ [1,T ], all RLj, all i ∈ [1, n], and all M ∈ {0, 1}∗,

Verify(gpk, j,RLj,Sign(gpk, j, gsk[i],M),M) = valid ⇐⇒ grt[i][j] /∈ RLj.

As well as [7], we introduce implicit tracing algorithm: For any interval j,
using the revocation token grt[i][j] of all members, the implicit tracing algorithm
can trace the signer from a valid signature-message pair (σ,M).

The following traceability requirement captures the unforgeability of group
signatures, introduced first by [3]. Consider the following traceability game be-
tween an adversary A and a challenger, where A tries to forge a signature that
cannot be traced to one of members corrupted by A.

Setup: The challenger runs KeyGen(n,T ), and obtains gpk, gsk, and grt. He
provides A with gpk and grt, and sets U with empty.

Queries: A can query the challenger about the following.
Signing: A requests a signature on an arbitrary message M for an arbi-

trary member i at an arbitrary interval j. The challenger responds the
corresponding signature.

Corruption: A requests the secret key of an arbitrary member i. The chal-
lenger adds i to U , and responds the key.

Output: Finally, A outputs a message M∗, an interval j∗, a set RL∗j∗ of revo-
cation tokens, and a signature σ∗.

Then, A wins if (1) Verify(gpk, j∗,RL∗j∗ , σ
∗,M∗) = valid, and (2) σ∗ traces to

a member outside of the coalition, i.e, U \ RL∗j∗ or the trace is failure, and (3)
A did not obtain σ∗ by making a signing query at M∗.
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Definition 3 (Traceability). Traceability requires that for all PPT A, the
probability that A wins the traceability game is negligible.

The following BU-anonymity requirement captures the anonymity with the
backward unlinkability. Consider the following BU-anonymity game.

Setup: The challenger runs KeyGen(n,T ), and obtains gpk, gsk, and grt. He
provides A with gpk.

Queries: At the beginning of every interval j ∈ [1,T ], the challenger announces
the beginning of j to A, where j is incremented. At the current interval j,
A can query the challenger about the following.
Signing: A requests a signature on an arbitrary message M for an arbi-

trary member i at the current interval j. The challenger responds the
corresponding signature.

Corruption: A requests the secret key of an arbitrary member i.
Revocation: A requests the revocation of an arbitrary member i at the

current interval j. The challenger responds grt[i][j].
Challenge: A outputs a message M and two members i0 and i1. The corruption

of i0 and i1 must not be requested. Furthermore, the revocations of i0 and
i1 must not be requested before the current interval j0 (including j0). The
challenger chooses φ ∈R {0, 1}, and responds the signature on M of member
iφ at the current interval j0.

Restricted queries: Similarly, A can make the signing queries, corruption
queries, and revocation queries, while the time interval is incremented. How-
ever, A cannot query the corruptions of i0 and i1, and the revocations of i0
and i1 at the interval j0 (Note that the revocations of i0 and i1 after j0 is
permitted).

Output: Finally, A outputs a bit φ′ indicating its guess of φ.

If φ′ = φ, A wins. We define the advantage of A as |Pr[φ′ = φ]− 1/2|.
Definition 4 (BU-anonymity). BU-anonymity requires that for all PPT A,
the advantage of A on the BU-anonymity game is negligible.

3 Preliminaries

3.1 Bilinear Groups

Our scheme utilizes bilinear groups and bilinear maps as follows:

1. G1, G2 and G′ are multiplicative cyclic groups of prime order p,
2. g1 is a generator of G1, and g2 is a generator of G2,
3. ψ is an efficiently computed isomorphism from G2 to G1, with ψ(g2) = g1,
4. e is an efficiently computed bilinear map: G1 × G2 → G′, i.e., (1) for all
u ∈ G1, v ∈ G2 and a, b ∈ Z, e(ua, vb) = e(u, v)ab, and (2) e(g1, g2) �= 1.

Hereafter, for simplicity, we consider only the case of G1 = G2, and we set
G = G1 = G2, and g = g1 = g2. Our scheme can be extended to the case of
G1 �= G2, as [7].
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3.2 Assumptions

Our scheme is based on the q-SDH assumption [6,7] and the DBDH assumption
[4] in G.

Definition 5 (q-SDH assumption). For all PPT algorithm A , the probability

Pr[A(g, gγ , . . . , g(γq)) = (g(1/γ+x), x) ∧ x ∈ Z∗p ]

is negligible, where γ ∈R Z∗p .

Definition 6 (Decision BDH (DBDH) assumption). For all PPT algo-
rithm A, the probability

|Pr[A(g, ga, gb, gc, e(g, g)abc) = 0]− Pr[A(g, ga, gb, gc, e(g, g)d) = 0|

is negligible, where a, b, c, d ∈R Z∗p .

3.3 Proving Relations on Representations

As well as [6,7], we adopt signatures converted by Fiat-Shamir heuristic (us-
ing a hash function) from zero-knowledge proofs of knowledge (PK), where a
signer can convince a verifier of knowledge with relations on representations. We
call the signatures SPKs. The SPKs we adopt are the generalization of the
Schnorr signature, and the underlying PKs are basically derived from [11,12,8].
We introduce the following notation.

SPK{(x1, . . . , xt) : R(x1, . . . , xt)}(M),

which means a signature of message M by a signer who knows secret values
x1, . . . , xt satisfying a relation R(x1, . . . , xt). In this paper, the following SPKs
on G,G′ are utilized.

SPK of representation: An SPK proving the knowledge of a representation
of C ∈ G to the bases g1, g2, . . . , gt ∈ G on message M is denoted as

SPK{(x1, . . . , xt) : C = gx1
1 · · · gxt

t }(M).

This can be also constructed on group G′.
SPK of representations with equal parts: An SPK proving the knowledge

of representations of C,C′ ∈ G to the bases g1, . . . , gt ∈ G on message M ,
where the representations include equal values as parts, is denoted as

SPK{(x1, . . . , xu) : C = g
xj1
i1
· · · gxjv

iv
∧ C′ = g

xj′1
i′1
· · · g

xj′
v′

i′
v′
}(M),

where indices i1, . . . iv, i′1, . . . i′v′ ∈ {1, . . . , t} refer to the bases g1, . . . , gt, and
indices j1, . . . jv, j′1, . . . , j

′
v′ ∈ {1, . . . , u} refer to the secrets x1, . . . , xu. This

SPK can be extended for different groups G and G′ with the same order p,
as follows.

SPK{(x1, . . . , xu) : C = g
xj1
i1
· · · gxjv

iv
∧C′ = g′

xj1
i′1
· · · g′

xj′
v′

i′
v′
}(M),

where C, g1, . . . , gt ∈ G, and C′, g′1, . . . , g
′
t ∈ G′.
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In the random oracle model, the SPK can be simulated without the knowl-
edge using a simulator in the zero-knowledge-ness of the underlying PK. More-
over, the SPK has an extractor of the proved secret knowledge given two ac-
cepting protocol views whose commitments are the same and whose challenges
are different.

4 Proposed Scheme

4.1 Idea

The scheme of [7] is intuitively as follows. For group public key gpk = (g, gγ),
an SDH pair (Ai = g1/(γ+xi), xi) is secret key gsk[i] of member i, which is
unforgeable without γ. Then, group signature of member i consists of T1 =
urAi and T2 = vr, where u, v ∈R G and r ∈R Z∗p , and the SPK proving the
correctness. The revocation token of member i is Ai. By checking e(T1/A, v) =
e(u,T2) for all revocation tokens A, it can be checked whether T1 includes a
token of a revoked member.

The proposed scheme is an extension of [7]. To the public key, we add hj ∈ G
for all 1 ≤ j ≤ T , and the secret key is the same. Then, the group signature is
modified into T3 = e(gxi , hj)r, T4 = gr and the SPK proving the correctness
and the ownership of Ai corresponding xi. The revocation token at interval j
is Bij = hxi

j . Then, by checking T3 = e(T4,B) for all revocation tokens B at
interval j, it can be checked whether T3 includes a token of a revoked member.
On the other hand, the revocation tokens at different interval j′ do not satisfy
the above checking. Moreover, the computation from a token hxi

j at j to another
hxi

j′ at j′ is infeasible. Therefore, backward unlinkability is achieved.

4.2 Proposed Algorithms

KeyGen(n,T ): This key generation algorithm is given the number of members
and the number of time intervals, and computes keys as follows.

1. Select a generator g ∈ G and g̃ ∈R G. Additionally, select hj ∈R G for all
j ∈ [1,T ].

2. Select γ ∈R Z∗p and compute w = gγ .
3. Select xi ∈R Z∗p and compute Ai = g1/(γ+xi) for all i ∈ [1, n].
4. Compute Bij = hxi

j for all i and j.

The group public key gpk is (g, g̃, h1, . . . hT ,w). Each member’s secret key
gsk[i] is (Ai, xi). The revocation token at interval j of member with secret
(Ai, xi) is grt[i][j] = Bij . Output (gpk, gsk, grt).

Sign(gpk, j, gsk[i],M): The inputs of this signing algorithm are gpk = (g, g̃, h1,
. . . hT ,w), the current time interval j, the signer’s secret gsk[i] = (Ai, xi) and
a signed message M ∈ {0, 1}∗. Hereafter, we assume that M includes the time
interval j in order to bind the signature to the interval. The algorithm is as
follows:
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1. Select randoms α, β, δ ∈R Z∗p .
2. Compute T1 = Aig̃

α, T2 = gαg̃β, T3 = e(gxi, hj)δ, and T4 = gδ.
3. Compute

V = SPK{(α, β, δ, xi,Ai) : T1 = Aig̃
α ∧ T2 = gαg̃β

∧ T3 = e(gxi, hj)δ ∧ T4 = gδ

∧ e(Ai,wg
xi) = e(g, g)}(M).

The detail of this SPK is shown in Section 4.3.

Output the group signature σ = (T1,T2,T3,T4, V ).

Verify(gpk, j,RLj, σ,M): The inputs are gpk = (g, g̃, h1, . . . hT ,w), the current
time interval j, the revocation list RLj that consists of grt[i][j] for all revoked
i at the interval j, a target signature σ = (T1,T2,T3,T4, V ) and the message
M ∈ {0, 1}∗.

1. Signature check. Check that σ is valid, by checking the SPK V .
2. Revocation check. Check that the signer is not revoked at the interval j,

by checking T3 �= e(T4,Bij) for all Bij ∈ RLj .

4.3 Detail of the SPK

The SPK V in the algorithm Sign is computed as the following SPK V ′.

V ′ = SPK{(α, β, δ, xi, ε, ζ, η) : T2 = gαg̃β ∧ 1 = T xi
2 (1/g)ε(1/g̃)ζ

∧ e(T1,w)(1/e(g, g)) = (1/e(T1, g))xie(g̃,w)αe(g̃, g)ε

∧ T3 = e(g, hj)η ∧ T4 = gδ ∧ 1 = T xi
4 (1/g)η}(M).

This SPK can be computed by the SPK for the representations, where ε = xiα,
ζ = xiβ, and η = xiδ are adopted.

What we require is to prove that the SPK V is equivalent to V ′. The fol-
lowing lemma ensures the equivalence.

Lemma 1. V ′ is an SPK of knowledge (α, β, δ, xi,Ai) s.t.

T1 = Aig̃
α ∧ T2 = gαg̃β ∧ T3 = e(gxi, hj)δ ∧ T4 = gδ ∧ e(Ai,wg

xi) = e(g, g).

Proof. Since V ′ is an SPK of knowledge (α, β, δ, xi, ε, ζ, η) s.t.

T2 = gαg̃β (1)
1 = T xi

2 (1/g)ε(1/g̃)ζ (2)
e(T1,w)(1/e(g, g)) = (1/e(T1, g))xie(g̃,w)αe(g̃, g)ε (3)
T3 = e(g, hj)η (4)
T4 = gδ (5)
1 = T xi

4 (1/g)η, (6)
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such knowledge can be extracted. From the equations (1), (2), the equation
gεg̃ζ = gxiαg̃xiβ holds, and thus ε = xiα holds. Then, consider the following
equation transformed from (3).

e(T1,w)e(T1, g)xi/e(g̃,w)αe(g̃, g)xiα = e(g, g).

Then, from

e(T1,w)e(T1, g)xi = e(T1,wg
xi) and e(g̃,w)αe(g̃, g)xiα = e(g̃α,wgxi),

we obtain e(T1/g̃
α,wgxi) = e(g, g). Thus, setting Ai = T1/g̃

α, we can extract
knowledge xi,Ai s.t.

T1 = Aig̃
α and e(Ai,wg

xi) = e(g, g).

On the other hand, from equations (5), (6), we obtain gη = gxiδ. Therefore,
from equation (4), we can extract knowledge xi, δ s.t. T3 = e(gxi, hj)δ. �

4.4 Details of Sign and Verify Algorithms

For efficiency consideration, this subsection describes the Sign and Verify al-
gorithms of the proposed scheme in Section 4.2, where the SPKs for represen-
tations shown in Section 4.3 are described in details. The construction of each
SPK for a representation is similar to that in [7] or Schnorr based SPKs on
groups with known orders. Thus, we omit the proof that underlying PKs of
following SPKs are zero-knowledge proofs of knowledge.

Sign(gpk, j, gsk[i],M):

1. Select randoms α, β, δ ∈R Z∗p , and set ε = xiα, ζ = xiβ, and η = xiδ.
2. Compute T1 = Aig̃

α, T2 = gαg̃β, T3 = e(gxi, hj)δ, and T4 = gδ.
3. Compute SPK V ′ (i.e., V ) as follows.

(a) Pick blinding factors rα, rβ , rδ, rxi , rε, rζ , rη ∈R Zp.
(b) Compute

R1 = grα g̃rβ ,

R2 = T
rxi

2 (1/g)rε(1/g̃)rζ ,

R3 = (1/e(T1, g))rxi e(g̃,w)rαe(g̃, g)rε ,

R4 = e(g, hj)rη ,

R5 = grδ ,

R6 = T
rxi

4 (1/g)rη .

(c) Compute a challenge c ∈ Zp using a hash function H that is regarded as
a random oracle.

c = H(gpk, j,M,T1,T2,T3,T4,R1,R2,R3,R4,R5,R6).

(d) Compute sα = rα + cα, sβ = rβ + cβ, sδ = rδ + cδ, sxi = rxi + cxi,
sε = rε + cε, sζ = rζ + cζ, and sη = rη + cη in Zp.

Output the group signature σ = (T1,T2,T3,T4, c, sα, sβ , sδ, sxi , sε, sζ , sη).
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Verify(gpk, j,RLj, σ,M):

1. Signature check. Check that σ is valid, by checking the SPK V ′, as follows.
(a) Retrieve

R̃1 = gsα g̃sβ (1/T2)c,
R̃2 = T

sxi
2 (1/g)sε(1/g̃)sζ ,

R̃3 = (1/e(T1, g))sxi e(g̃,w)sαe(g̃, g)sε((1/e(T1,w))e(g, g))c,
R̃4 = e(g, hj)sη (1/T3)c,

R̃5 = gsδ (1/T4)c,
R̃6 = T

sxi
4 (1/g)sη .

(b) Check the challenge c:

c = H(gpk, j,M,T1,T2,T3,T4, R̃1, R̃2, R̃3, R̃4, R̃5, R̃6).

2. Revocation check. Check that the signer is not revoked at the interval j,
by checking T3 �= e(T4,Bij) for all Bij ∈ RLj .

Signature Length. This group signature includes 3 elements from G, 1 element
from G′ and 8 elements from Zp. When an elliptic curve is used as well as [7], p
is 170 bits, elements of G are 171 bits, and elements of G′ is 1020 bits. In that
case, this group signature is 2893 bits or 362 bytes.
Performance. The signature generation requires 10 multi-exponentiations and
1 bilinear map computation (plus 3 bilinear map computations that can be
pre-computed). The verification requires 6 multi-exponentiations and 2 + |RLj |
bilinear map computations (plus 4 bilinear map computations that can be pre-
computed).

5 Security

Since the correctness is straightforward, only BU-anonymity and traceability are
shown.

5.1 BU-Anonymity

Theorem 1. The proposed scheme satisfies the BU-anonymity in the random
oracle model under the DBDH assumption.

The following lemma implies the above theorem.

Lemma 2. Suppose adversary A breaks the BU-anonymity of the proposed scheme
with the advantage ε and qH hash queries and qS signature queries. Then, we
can construct B that breaks the DBDH assumption with the advantage (1/nT −
qSqH/p)ε.
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Proof. The input of B is (g, g1 = ga, g2 = gb, g3 = gc,Z), where a, b, c ∈R Z∗p
and either Z = e(g, g)abc or Z = e(g, g)d for d ∈R Z∗p . B decides which Z it is
given by communicating with A, as follows.

Setup. B simulates KeyGen(n,T ) as follows.
1. B picks i∗ ∈R [1, n] and j∗ ∈R [1,T ].

Furthermore, B selects g̃ ∈R G. Additionally, B selects rj ∈R Z∗p and
computes hj = grj for all j ∈ [1,T ] except j∗. For j∗, B sets hj∗ = g2 =
gb.

2. As usual, B selects γ ∈R Z∗p and computes w = gγ .
3. As usual, B selects xi ∈R Z∗p and computes Ai = g1/(γ+xi) for all i ∈ [1, n]

except i∗. For i∗, define xi∗ = a and Ai∗ = g1/(γ+a), which are unknown
for B.

4. As usual, B computes Bij = hxi

j for all i except i∗ and all j. For i∗,
B sets Bi∗j = g

rj

1 = garj = haj except for j∗. For i∗ and j∗, define
Bi∗j∗ = gab = hxi∗

j∗ , which is also unknown.
Note that simulated hj and Bij have the same distributions as the real, since
a, b, xi, rj ∈R Z∗p .

Hash queries. At any time, A can query the hash function used in SPK. B
responds with random values with consistency.

Phase 1. A can request signing queries, corruption queries, and revocation
queries at any time interval j. If i �= i∗, then B uses the secret key of i
to respond to the query as usual. If i = i∗, B responds as follows.
Signing queries: B computes a simulated group signature of i∗, as follows.

1. B selects δ ∈R Z∗p .
2. B selects T1,T2 ∈R G. Furthermore, B computes T3 = e(g1, hj)δ =

e(ga, hj)δ = e(gxi∗ , hj)δ, and T4 = gδ.
3. B computes the simulated SPK V by using the simulator of the

perfect zero-knowledge-ness, which includes the backpatch of the
hash function. If the backpatch is failure, B outputs a random guess
ω′ ∈R {0, 1} and aborts.

Then, B responds signature σ = (T1,T2,T3,T4, V ) to A. Note that each
value in σ has the same distribution as the real, since α, β ∈R Z∗p in
the real and T1,T2 ∈R G in the simulation, and due to the perfect zero-
knowledge-ness of SPK.

Revocation queries: If j �= j∗, B responds Bi∗j . Otherwise (i.e., j = j∗),
B outputs a random guess ω′ ∈R {0, 1} and aborts.

Corruption queries: B outputs a random guess ω′ ∈R {0, 1} and aborts.
Challenge. A outputs a message M , the current time interval j and two mem-

bers i0, i1 to be challenged. If j �= j∗, B outputs a random guess ω′ ∈R {0, 1}
and aborts. Otherwise, B picks φ ∈R {0, 1}. Then, if iφ �= i∗, B outputs a
random guess ω′ ∈R {0, 1} and aborts. Otherwise, B responds the following
simulated group signature of i∗ and j∗.
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1. B regards c as δ, which is unknown.
2. B selects T1,T2 ∈R G. Furthermore, B sets T3 = Z and T4 = g3 = gc.

Note that if Z = e(g, g)abc, T3 = e(ga, gb)c = e(gxi∗ , hj∗)δ.
3. B computes the simulated SPK V by using the simulator of the perfect

zero-knowledge-ness.
Phase 2. This is the same as Phase 1.
Output. A outputs its guess φ′ ∈ {0, 1}. If φ = φ′, B outputs ω′ = 1 (implying

Z = (g, g)abc), and otherwise outputs ω′ = 0 (implying Z = (g, g)d).

Now, we evaluate the advantage of the guess of B. Let ω ∈ {0, 1} denote
whether the input Z is e(g, g)d (ω = 0) or e(g, g)abc (ω = 1). Let abort be the
event that B aborts. Then, we have Pr[ω = ω′|abort] = 1/2. On the other hand,
assume that B does not abort. If ω = 0, i.e., Z = e(g, g)d, then the challenged
signature has no information on xi∗ . Thus, Pr[ω′ = 0|abort ∧ ω = 0] = 1/2. If
ω = 1, i.e., Z = e(g, g)abc, then B perfectly simulates the real and thus A guesses
correctly with the advantage ε. Therefore, we obtain Pr[ω′ = 1|abort∧ω = 1] =
1/2 + ε.

Putting everything together, we obtain the advantage of B’s guess, as follows.

|Pr[B(g, ga, gb, gc, e(g, g)abc) = 0]− Pr[B(g, ga, gb, gc, e(g, g)d) = 0|
= |Pr[ω′ = 0|ω = 1]− Pr[ω′ = 0|ω = 0]|
= |(1− Pr[ω′ = 1|ω = 1])− Pr[ω′ = 0|ω = 0]|
= |1− Pr[abort]Pr[ω′ = 1|abort ∧ ω = 1]

− Pr[abort]Pr[ω′ = 1|abort ∧ ω = 1]
− Pr[abort]Pr[ω′ = 0|abort ∧ ω = 0]
− Pr[abort]Pr[ω′ = 0|abort ∧ ω = 0]|

= |1− Pr[abort](
1
2

+
1
2
)− Pr[abort]((

1
2

+ ε) +
1
2
)|

= Pr[abort]ε.

In the rest, we evaluate Pr[abort]. If the guesses of i∗ and j∗ are correct, B
aborts only when the backpatch is failure in the signing query. The probability
that a specific signature causes the failure is at most qH/p, as well as [7]. Thus,
for all signature queries, the probability that B aborts due to the failure of the
backpatch is at most qSqH/p. On the other hand, since A has no information on
i∗ and j∗ and φ ∈R {0, 1}, the probability that B correctly guesses i∗ and j∗ is
at least 1/nT . Thus, Pr[abort] ≥ 1/nT − qSqH/p.

Therefore, the advantage that B’ guesses ω is at least (1/nT − qSqH/p)ε. �

5.2 Traceability

Theorem 2. The proposed scheme satisfies the traceability in the random oracle
model under the SDH assumption.

The following lemma implies the above theorem.
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Lemma 3. Suppose adversary A breaks the traceability of the proposed scheme
with the advantage ε and qH hash queries and qS signature queries. Then, we
can construct B that breaks the (n + 1)-SDH assumption with the advantage
(ε/n− 1/p)/(16qH).

Proof sketch. This is similar to the proof in [7]. Consider the following framework
with A.

Setup. It is given g, w = gγ , and n pairs (Ai, xi). For each i ∈ [1, n], either
si = 1 indicating that an SDH pair (Ai, xi) is known, or si = 0 indicating
that xi is known but Ai is unknown. Furthermore, as usual, choose g̃, hj ∈R
G for all j ∈ [1,T ] and compute Bij = hxi

j for all i, j. Then, run A on
gpk = (g, g̃, h1, . . . , hT ,w) and grt = (B11, . . . ,BnT ) .

Hash queries. At any time, A can query the hash function used in SPK.
Respond with random values with consistency.

Signing queries. A queries a signature on message M at member i and interval
j. If si = 1, respond a signature using the secret key (Ai, xi). If si = 0, pick
T1,T2 ∈R G and δ ∈R Z∗p and compute T3 = e(gxi, hj)δ and T4 = gδ. Fur-
thermore, obtain a simulated SPK V using the simulator of the SPK, which
includes the backpatch of the hash function. Respond (T1,T2,T3,T4, V ).

Corruption queries. A requests the secret key at member i. If si = 0, then
abort. Otherwise, respond requested key (Ai, xi).

Output. Finally, A outputs a forged signature σ∗ = (T ∗1 ,T
∗
2 ,T

∗
3 ,T

∗
4 , V

∗) in-
cluding a secret key A∗. Using all Bij , we can identify the member. If the
identification fails (i.e., the member is outside of all i), output σ. Otherwise,
some i is identified. If si = 0, then output σ. Otherwise (i.e., si = 1), abort.

Then, there are two types of forger on the above framework. Type 1 forger
forges a signature of the member who is different from all i. Type 2 forger forges
a signature of the member i whose corruption is not requested.

For q-SDH instance (g, gγ , . . . , gγ
q

), we can obtain g,w = gγ and q − 1 SDH
pairs (Ai, xi) s.t. e(Ai, g

xiw) = e(g, g), using the technique of [5]. On the other
hand, any SDH pair besides these q − 1 pairs can be transformed a solution of
the q-SDH instance, which means that the q-SDH assumption is broken, using
the same technique. As well as [7], we treat two types of forger differently.

Type 1. Given (n + 1)-SDH instance, obtain n SDH pairs (Ai, xi) with (g,w).
Then, perform the framework with Type 1 forger A (i.e., all si = 1). A finally
outputs a signature with secret key A∗ s.t. A∗ �= Ai for all i. In this case, the
simulation is perfect, and thus A succeeds with advantage ε.

Type 2. Given n-SDH instance, obtain n−1 SDH pairs (Ai, xi), which distributes
n pairs, and set si = 1. For the unfilled entry at random index i∗, select xi∗ ∈R Z∗p
(Ai∗ is unknown), and set si∗ = 0. Then, perform the framework with type 2
forger A. In this case, it succeeds only if A never requests the corruption of i∗,
but forges the signature including Ai∗ . As discussed in [7], the value of i∗ is
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independent A’s view. Thus, the probability that A outputs the signature of i∗

is at least ε/n.
Now we show how to obtain another SDH pair beyond the given q − 1 SDH

pairs, using the framework with Type 1 or Type2. We can rewind the framework
to obtain two forged signatures on the same message M and the same interval
j, where the commitments in the SPK V are the same but the challenges and
responses are different. As shown in [7], by the forking lemma, the successful
probability is at least (ε′ − 1/p)2/(16qH), where ε′ is the probability that the
framework on each forger succeeds. Thus, using the extractor of the SPK V , we
can obtain a pair (A∗, x∗) s.t. A∗ �= Ai and x∗ �= xi for all i with the probability
(ε′ − 1/p)2/(16qH).

Putting everything together, we have shown the following. Using Type 1
forger, we can solve the (n + 1)-SDH instance with (ε − 1/p)2(16/qH). Using
Type 2 forger, we can solve the n-SDH instance with (ε/n− 1/p)2(16/qH). We
can guess the type of forger with the probability 1/2. Therefore, the pessimistic
Type 2 forger proves the theorem. �

6 Extension

In practice, the revocation tokens Bij ∈ RLj are published at the beginning of
each interval j, where the group manager adds the revocation tokens to a public
directory. Verifiers fetch needed RLj from the directory on demand. Since the
revocation can be performed only at the beginning of each interval, parameter
T should be large. Furthermore, it is general that the list RLj becomes longer
as interval j proceeds. Therefore, all data in the public directory at a proceeded
interval j, i.e., RL1, . . . ,RLj becomes very long.

In this section, we propose an extended scheme, where the data size of the
published revocation tokens in the public directory is reduced at the sacrifice of
the signer’s slight cost.

At first, modify h1, . . . , hT as follows. Consider a k-ary tree with two levels
for an integer k s.t. T ≤ k2 (see Fig. 1). Although we show only the case of two
levels, the extension to more levels is easy. In the tree, the root node is N0, Nj1

is the j1-th child of N0, and Nj1j2 is the j2-th child of Nj1 , for j1, j2 ∈ [1, k].
Each node Nj1 is assigned to hj1 ∈R G, and each node Nj1j2 is assigned to

N0

N1 N2 Nk

. . .

N11N12

...

N1k N21N22

...

N2k Nk1Nk2

...

Nkk

Fig. 1. A k-ary tree with two levels
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hj1j2 ∈R G. In this situation, every interval j ∈ [1,T ] can be correspondent to
a pair of two indexes j1 and j2 for j1, j2 ∈ [1, k] such that j = j1k + j2. Then,
the next interval of (j1, j2) is (j1, j2 + 1) unless j2 �= k, and if j2 = k, the next
interval is (j1 + 1, 1). In each interval (j1, j2), the values hj1 and hj1j2 along the
path are used.

A group signature on message M by member i at interval (j1, j2) is computed
as T1 = Aig̃

α, T2 = gαg̃β, T3 = e(gxi , hj1)δ, T4 = gδ, T ′3 = e(gxi, hj1j2)δ
′
, and

T ′4 = gδ
′
for α, β, δ, δ′ ∈R Z∗p , together with the following SPK V .

V = SPK{(α, β, δ, δ′, xi,Ai) : T1 = Aig̃
α ∧ T2 = gαg̃β

∧ T3 = e(gxi , hj1)
δ ∧ T4 = gδ

∧ T ′3 = e(gxi , hj1j2)
δ′ ∧ T ′4 = gδ

′

∧ e(Ai,wg
xi) = e(g, g)}(M).

The difference between the basic scheme and this extended scheme is the parts
T3,T4,T

′
3,T

′
4 and V . On the other hand, revocation token Bi(j1,j2) for member

i at interval (j1, j2) is a pair (Bij1 = hxi

j1
,Bij1j2 = hxi

j1j2
). Then, for Bij1j2 , by

checking T ′3 = e(T ′4,Bij1j2), it can be detected whether a group signature was
made by member i at interval (j1, j2). On the other hand, for Bij1 , by checking
T3 = e(T4,Bij1), group signatures of i at intervals (j1, ∗) can be detected, where
∗ means any value of [1, k]. Namely, one level of tokens (the upper level, tokens
of the form Bij1) allows to revoke an user during k ≈

√
T time intervals at once.

Consider how to publish the revocation tokens as follows. Assume that mem-
ber i is revoked at interval (j∗1 , j

∗
2 ). Then, if j∗2 �= 1, the manager publishes

Bij∗1 j
∗
2

= hxi

j∗1 j
∗
2

in the public directory. Afterward, at each interval (j∗1 , j2) s.t.
j∗2 < j2 ≤ k, the manager similarly publishes Bij∗1 j2

. After that, at every inter-
val (j1, 1) s.t. j∗1 < j1 ≤ k, the manager publishes Bij1 = hxi

j1
. Note that the

manager does not publish Bij1j2 any longer. If j∗2 = 1, Bij1 is only published at
every interval (j1, 1) for j∗1 ≤ j1 ≤ k.

In the extended scheme, the manager has only to publish revocation tokens
per k ≈

√
T intervals, except for the initial overhead (i.e., the publication of

Bij∗1 j2
). Thus, the total size of revocation tokens in public directory is suffi-

ciently reduced. On the other hand, the signer has to compute T ′3,T
′
4 and the

corresponding SPK additionally. The communication overhead is 1531 bits and
the computational overhead is 6 exponentiations (plus 1 bilinear map computa-
tions that can be pre-computed). The security of the extended scheme can be
easily proved in the similar way to the basic one.

7 Concluding Remarks

Based on the bilinear maps, we have proposed a VLR group signature scheme
with the backward unlinkability, and extended it to a scheme where the published
revocation tokens are reduced.
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In the proposed scheme, after a revocation, the revoked member remains ex-
cluded forever. However, it is easily extended to the scheme where the member is
excluded only for specific intervals. This property is useful in some applications.

An open problem is to construct a shorter VLR group signature scheme with
the backward unlinkability. Our group signature includes an elements of G′,
which is longer than elements of G. It is better to construct a signature from
only elements of G.
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Abstract. The security of key agreement protocols has traditionally
been notoriously hard to establish. In this paper we present a modu-
lar approach to the construction of proofs of security for a large class
of key agreement protocols. By following a modular approach to proof
construction, we hope to enable simpler and less error-prone analysis
and proof generation for such key agreement protocols. The technique
is compatible with Bellare-Rogaway style models as well as the more re-
cent models of Bellare et al. and Canetti and Krawczyk. In particular,
we show how the use of a decisional oracle can aid the construction of
proofs of security for this class of protocols and how the security of these
protocols commonly reduces to some form of Gap assumption.

1 Introduction

Background
The first works formalizing the notion of security for key agreement were those
of Bellare and Rogaway [7,8]. Extensions have been made to these models, most
notably by Blake-Wilson et al. [9] and later Bellare et al. [6]. Although these
models are generally accepted as being reasonable approaches to modelling the
security of key agreement protocols, in general it appears to be rather difficult
to prove key agreement protocols secure in such models and only relatively few
protocols have full proofs of security in these models.

A more “modular” approach to constructing key agreement protocols was ad-
vocated by Bellare, Canetti and Krawczyk [5]. This approach entails constructing
a secure protocol for ideally “authenticated links”, and then applying “authen-
ticators” to all the protocol flows to obtain a protocol secure in the standard
“unauthenticated links” model. A library of basic protocols and authenticators
may be built up, from which many different secure key agreement protocols may
be constructed.

The disadvantage of using this modular approach is that it says nothing
about the security of certain very efficient protocols that are not constructed
in this modular way. In addition, cryptographic primitives such as encryption,
signatures or MACs are usually required to build these “authenticators” and
� This author is funded by Hewlett-Packard Laboratories.

B. Roy (Ed.): ASIACRYPT 2005, LNCS 3788, pp. 549–565, 2005.
c© International Association for Cryptologic Research 2005
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the application of these “authenticators” often increases the round complexity
of a protocol. Therefore the resulting protocols are also often less efficient than
protocols designed without the modular approach in mind. Of course protocols
constructed using this modular approach may be modified to be more efficient
using various techniques, but then the security proof may no longer be valid.

However, due to the ease of designing secure protocols using this modular ap-
proach, it has subsequently been advocated in later models such as [15,16] and has
been used in the design of various key agreement protocols such as [12,13,11,22].
Although the security models of [5,15,16] do not mandate a modular approach in
that their definitions of security apply directly in the standard unauthenticated
network model, they do not consider protocols that are not constructed in this
modular fashion. Direct proofs for non-modular protocols in the standard unau-
thenticated network models of [5,15,16] seem to be difficult to construct.

In many environments, the benefits of being able to easily design secure
protocols outweigh the possible disadvantages. However there exist environments
in which efficiency is of utmost importance, and most key agreement protocols
optimized for efficiency are not constructed in a modular way. Indeed we can
find several efficient key agreement protocols in the literature which do not have
formal proofs of security (such as protocols in [9,19,23,24,27]) or have only proofs
of security in weakened models (such as protocols in [2,3,17]. Since the structure
of these protocols is not compatible with the modular approach in [5], complete
proofs of security for such protocols appear to be difficult to construct.

Contributions
In this paper, we consider protocols which are not designed in a modular way
but which we nevertheless wish to prove secure. Since such protocols are not
designed in a modular way, the proofs of security are often complicated and
error-prone. We present a technique by which the proof process of a large class
of key agreement protocols can be simplified.

Informally, our technique for proving the security of a protocol Π works as
follows. The first step is to prove that protocol Π has a property that we call
“strong partnering” (which is defined in Section 4.1). The second step is to prove
that a related protocol π is secure in a highly reduced security model. Finally,
as the main result of the paper, we show how the proof of security of π in the
reduced model can be translated into a proof of security for Π in the full security
model using a Gap assumption.

Each step above is far simpler than a single proof of security in the full
security model. The result is a modular technique for constructing proofs of
security for a large class of key agreement protocols which are not constructed
using the modular approach presented in [5].

We then use this technique to consider various key agreement protocols in the
literature previously without proofs or with incomplete proofs of security. It is
possible, using our techniques, to provide full proofs of security for protocols such
as [2,3,9,17,27] (possibly after slight modifications to the protocols if necessary).
Due to lack of space, we focus in detail only on the long-standing Protocol 4 in
[9] which was previously without proof.
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We also hope that our methods will aid future designers of lightweight key
agreement protocols in the formal analysis of their protocols in simplifying their
task by breaking it up into components.

Related Work
Since the pioneering work of Bellare and Rogaway [7,8], many extensions and
modifications have been made to the definition of secure key agreement
[6,5,9,15,16,26]. The model of security in which work is a slightly modified ver-
sion of the model of Bellare et al. [6], although analogous versions of our results
also hold in the models of [7,9,15].

Our technique also makes use of Gap assumptions, as defined by Okamoto
and Pointcheval [25]. Informally, a Gap problem is the problem of solving some
computational problem (e.g. computational Diffie-Hellman) with the help of a
corresponding decisional oracle (in this case a decisional Diffie-Hellman oracle).
The decisional problem may be easy or hard; irrespective of this a Gap problem
may still be defined.

Gap assumptions have recently found several applications in cryptography.
In particular, Gap assumptions have been used in [1,14,20] to prove the security
of certain key agreement protocols.

In this paper, we show that, if a protocol satisfies some weakened notion of
security and has a specific form, then using the Gap assumption, a full proof
of security can be constructed. This result holds for protocols analyzed in the
Bellare-Rogaway model [7] (or its extensions [6,9]) or in the Canetti-Krawczyk
model of SK-security [15].

2 Preliminaries

Following the notation of Okamoto and Pointcheval [25], we informally define a
family of Gap problems.

Let f : X ×Y → {0, 1} be any relation on sets X and Y . The computational
problem (or inverting problem in the language of [25]) of f is, given x ∈ X , to
compute any y ∈ Y such that f(x, y) = 1 if such a y exists, or to return Fail
otherwise.

The decisional problem of f is, given (x, y) ∈ X × Y , to decide whether
f(x, y) = 1 or not.

Definition 1. The Gap problem of f is to solve the computational problem of
f using an oracle which solves the decisional problem of f .

As an example, we define the computational, decisional and Gap Diffie-
Hellman problems.

Let p and q be primes where q|p − 1. Let G be a multiplicative subgroup
of Z∗p, of order q, and let g ∈ G generate G. We denote by DL(g, h) ∈ Zq the
discrete logarithm of h ∈ G with respect to base g. So gDL(g,h) = h mod p.

Given a, b, c ∈ Zq, we define the Diffie-Hellman relation fDH as follows:

fDH : (G×G)×G→ {0, 1}, where fDH(ga, gb, gc) =
{

1 if gab = gc

0 otherwise
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We can now define the computational, decisional and Gap problems of fDH ,
better known as the computational, decisional and Gap Diffie-Hellman problems.

Computational Diffie-Hellman (CDH) Problem: Given ga, gb∈G, where
a, b ∈R Zq, compute gc ∈ G, such that fDH(ga, gb, gc) = 1. That is, compute
gc = gab mod p.

Decisional Diffie-Hellman (DDH) Problem: Given ga, gb, gc ∈ G, where
a, b ∈R Zq, determine whether fDH(ga, gb, gc) = 1 or not. That is, determine
whether c = ab mod q or not.

Gap Diffie-Hellman (GDH) Problem: Given ga, gb ∈ G where a, b ∈R Zq,
as well as an oracle that solves the DDH problem on G, compute gab mod p.

The corresponding assumptions are that the above problems are hard, that
is, they are infeasible to solve in polynomial time in a security parameter used
to define the problem instances.

3 The Modified Bellare-Rogaway Model

We start by defining a modified Bellare-Rogaway (mBR) model for authenticated
key agreement protocols. The model follows closely the model of Bellare et al.
[6] which extends the original Bellare-Rogaway model [7]. However we present
our model in the public key setting as in the model of Blake-Wilson et al. [9].

The model includes a set of participant IDs {U}, where each participant
has a distinct ID U , a long-term public key PU and a long-term private key
SU . We use Πi

U to denote the oracle modelling the ith instance of participant
U . An oracle Πi

U may accept at any time, and once accepted it should hold a
role role ∈ {initiator, responder}, a partner ID pid (the ID of the oracle with
which it assumes it is communicating), a session ID sid and a session key sk.
We note that the value i is not the sid but rather an internal session counter for
each oracle. This may act as an internal identifier for the session until the sid is
established.

Oracles follow the rules of the protocol, responding to input messages (from
the adversary). Each oracle maintains a public transcript TΠi

U
which records all

messages they have sent or received as a result of queries they have answered.

3.1 The mBR Game

The security of a key agreement protocol is modelled via the following game
between a challenger C and an adversary E.

C runs a Setup algorithm on a security parameter k to create the public
parameters, a set of participants {U} and oracles Πi

U to model instances of
each participant U , and to distribute long-term keys to each participant. C also
randomly selects a bit b.

The model also includes an adversary E who is given all the participants’
public keys and has access to all the participants’ oracles as well as any random
oracles in the game. E can make the following queries:
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Send(U, i,M): E can send the oracle Πi
U a message M . If oracle Πi

U has
pid = U ′, then Πi

U assumes that M has come from U ′ and responds according
to the protocol. E may also make a special Send query λ to an oracle Πi

U

which instructs U to initiate a protocol run with its partner U ′. An oracle
Πi

U sets roleU = initiator and is called an initiator oracle if the first message
it has received is λ. If Πi

U did not receive a message λ as its first message,
then it sets roleU = responder and is called a responder oracle.

Reveal(U, i): this allows E to ask the oracle Πi
U to reveal the session key (if

any) it currently holds to E.
Corrupt(U): this allows E to ask participant U to reveal its long-term private

key.

Oracle States. An oracle exists in one of the following possible states:

Accepted: an oracle has accepted if it decides to accept, holding a session key,
after receipt of properly formulated messages.

Rejected: an oracle has rejected if it decides not to establish a session key and
to abort the protocol.

State *: an oracle is in state * if it has not made any decision to accept or
reject.

Revealed: an oracle is revealed if it has answered a reveal query.
Corrupted: an oracle is corrupted if it has answered a corrupt query.

Partners. When running the protocol, if oracles ΠiU holding (sk, sid, pid) and
Πj

U ′ holding (sk′, sid′, pid′) have both accepted and the following conditions hold:

1. sid = sid′, sk = sk′, pid = U ′ and pid′ = U ,
2. roleU = initiator and roleU ′ = responder or vice versa,
3. No oracle in E’s game besides Πi

U or Πj
U ′ accepts with session ID equal to

sid,

then Πi
U and Πj

U ′ are said to be partners.

Freshness. An oracle Πi
U is called unfresh if it is revealed, or it has a revealed

partner, or if its partner ΠjU ′ was corrupted. If an oracle is not unfresh, then the
oracle is fresh.

Test Query. E may make a polynomial number of queries in k. Then at some
pointE makes a special Test query to an oracle Πi

U . This oracle must be accepted
and fresh, and it answers as follows. If b = 0, then Πi

U randomly chooses a session
key sk and outputs it, otherwise if b = 1 it outputs its own session key skiU .

After this point E can continue querying the oracles except that E cannot
reveal or corrupt the test oracle or its partner (if it exists). Finally E outputs a
guess b′ for b.

E’s advantage, denoted advantageE(k), is the probability that E outputs a
bit b′ such that b = b′.
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3.2 Definition of Security

We define a benign adversary as in [7]. Informally, a benign adversary is one who
simply relays messages between parties without modification. We then define
secure authenticated key agreement (AKE) protocols as follows:

Definition 2. A protocol is an mBR-secure AKE protocol if:

1. In the presence of the benign adversary, two oracles running the protocol both
accept holding the same session key and session ID, and the session key is
distributed uniformly at random on {0, 1}k; and

2. For any adversary E, AdvantageE(k) is negligible.

We say that protocol Π is mBR-insecure if it is not mBR-secure. That is,
there exists an adversary E which, with non-negligible probability (in k), wins
the game against challenger C. We say that such an adversaryE can successfully
mBR-attack protocol Π.

3.3 Notes on the Security Model

Our model of security is closely related to that of Bellare et al. [6]. However we
do not explicitly distinguish between acceptance and termination as is done in
[6], and we do not model perfect forward secrecy. Both of these properties can
be added as in [6]. We omit them for simplicity of presentation, but our results
still hold if these properties are included.

Notice that corruption in our model is simply a query to an oracle which re-
veals the long-term secret key held by the oracle. The adversary does not learn
other internal state of the oracle and does not gain control of the oracle. There-
fore a corrupted oracle may still be considered to be fresh and can therefore still
be chosen as a Test oracle. This is important in order to model key compro-
mise impersonation attacks as defined in [9], since these attacks involve oracles
whose long-term private keys have been compromised but which are not under
adversarial control.

The main differences between our model and the original models of Bellare
and Rogaway [7] and its public key version [9], are that our model is adaptive
(that is, the adversary may continue making queries after the Test query), and
we define partnering via session IDs and partner IDs (as in [6]) rather than by
matching conversations. We also include the possibility for corrupted oracles to
be considered fresh, allowing us to model key compromise impersonation attacks.
As mentioned before, our model can easily be extended to model perfect forward
secrecy as well.

We direct the reader to [6] for further details of the model presented here
and to [5,6,7,9,15] for details of other models illustrating different methods for
dealing with partnering, corruptions and freshness.

4 Modular Construction of Security Proofs

From now on, we assume that we are only dealing with key agreement protocols
that produce a hashed session key on completion of the protocol. By this we mean
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that the key agreement protocol Π specifies that the session key be computed
as the hash H of some string which we call the session string ssΠ . We define
the session string for a particular oracle ΠiU ′ to be ssΠi

U
. We will model H as a

random oracle in our security analysis.
This reliance on hashing to produce a session key does not seem to be too

strong a restriction since it is fairly common to use a key derivation function
to obtain a session key from a secret value established during a key agreement
protocol, and this key derivation function is usually implemented via a hash
function.

4.1 Protocol Partnering

When trying to establish that a protocol Π is secure in the BR-style model,
we need to ensure that an adversary cannot trivially win the game defined in
Section 3.1 by an attack on the partnering properties of Π.

Definition 3. Suppose Π is a key agreement protocol. If there exists an adver-
sary E, which when attacking Π in an mBR game defined in Section 3.1 and with
non-negligible probability in the security parameter k, can make any two oracles
Πi

U and Πj
U ′ accept holding the same session key when they are not partners,

then we say that Π has weak partnering. If Π does not have weak partnering,
then we say that Π has strong partnering.

If a protocol Π had weak partnering against an adversary E, then E could make
oracles Πi

U and Πj
U ′ accept holding the same session key but without being

partners. The rules of the mBR game would then allow the adversary to reveal
the session key held by Πi

U , and then choose Πj
U ′ as the test session, allowing E

to can trivially win the game.
Therefore, for Π to be a secure key agreement protocol as defined in Definition

2, Π must have strong partnering.
The observations above apply equally to our BR-style model as they do

to the Canetti-Krawczyk model [15], even though the concept of partners are
slightly different in the two models. In our security model, partnership is defined
via session keys, session IDs and partner IDs. For oracles Πi

U and Πj
U ′ to accept

holding the same session key but without being partners, they must have different
sids and/or pids. To ensure that the protocol Π has strong partnering, we must
ensure that (with overwhelming probability) skiU = skjU ′ only if roleiU �= rolejU ′ ,
sidiU = sidjU ′ and pidiU = pidjU ′ . This can be ensured by including roleiU , sidiU
and pidiU in the session string ssΠi

U
(and therefore in the computation of the

session key skiU ).
This idea of including the “partnering information” in the session string en-

sures strong partnering in other models as well. For example, in the models of
[7,8,9], partnering is defined via matching conversations, or transcripts. There-
fore a key agreement protocol secure in these models can never allow two oracles
to share the same key without having identical transcripts. Strong partnering
in these models can therefore be ensured by including the protocol transcript in
the session string of each oracle.



556 C. Kudla and K.G. Paterson

4.2 Reduced Games

We now consider two reduced mBR games. The first game is identical to the
mBR game defined in Section 3.1 except that the adversary E is not allowed to
make any Reveal queries. We call this reduce game a No-Reveals mBR (NR-
mBR) game. The second game is identical to the NR-mBR game, except that the
adversary no longer makes a Test query. Instead, to win the game, the adversary
must select an accepted and fresh Test oracle at the end of its computation
and output the session key for this oracle. Since the adversary in this game
must actually compute the session key of an oracle (instead of having to decide
between a session key and a random value from the key space), we call this game
a computational NR-mBR (cNR-mBR) game. We define E’s advantage, denoted
AdvantageE(k), in the cNR-mBR game to be the probability that E outputs a
session key sk such that sk = skΠi

U
where Πi

U is the Test oracle selected by the
adversary.

Definition 4. A protocol Π is a (c)NR-mBR-secure key agreement protocol if:

1. In the presence of the benign adversary, two oracles running the protocol both
accept holding the same session key and session ID, and the session key is
distributed uniformly at random on {0, 1}k; and

2. For any adversary E, AdvantageE(k) in the (c)NR-mBR game is negligible.

We say that protocol Π is (c)NR-mBR-insecure if it is not (c)NR-mBR-
secure. That is, there exists an adversary E which, with non-negligible proba-
bility (in k), wins the (c)NR-mBR game against challenger C. We say that such
an E can successfully (c)NR-mBR-attack protocol Π.

As part of our proof process for a given protocol Π which produces hashed
session keys on completion of the protocol, we will consider a related protocol π.
Protocol π is defined in the same way as Π except that the session key generated
by π will be the session string of Π. That is, skπi

U
= ssΠi

U
. It will then be

necessary to prove that protocol π is cNR-mBR secure. Since the cNR-mBR
game is a highly reduced game, it is usually fairly easy to establish a protocol’s
security in this model. Although it may not be obvious how a proof of security
in this reduced model may be helpful, in Section 4.3 we present a theorem which
shows how a proof of cNR-mBR security for π can be transformed into a proof
of mBR security for Π using a Gap assumption, provided that Π has strong
partnering.

The reason we defined NR-mBR security when cNR-mBR security is our
focus is that, although it is a more complex game than the cNR-mBR game, a
number of recent papers presenting new key agreement protocols prove that their
protocols meet such a weakened definition of security [2,9,17,3]. That is, they
take an appropriate security model, and prove the security of their protocols in
the No-Reveals (NR) variant of the security model.

It is trivial to see that if protocol Π is NR-mBR secure, then it is also cNR-
mBR secure. We also have the following result relating the NR-mBR security of
Π and the cNR-mBR security of the related protocol π.
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Theorem 1. If a protocol Π produces a hashed session key via hash function H
and is NR-mBR secure, then the related protocol π is cNR-mBR secure.

A sketch of the proof of this theorem is in Appendix A. We note that in the
proof of the above theorem, no assumption is required concerning the properties
of H .

4.3 Handling Reveal Queries Using Gap Assumptions

We now consider a protocol Π which has strong partnering and for which the
related protocol π is cNR-mBR secure. In order to translate these results into a
proof of mBR security for Π, we need to be able to construct a challenger C in
an mBR game for Π which is able to answer an adversary E’s Reveal queries.

At first glance, it seems that C needs to be able to compute the session key
skU for any oracle Πi

U that E may wish to reveal during the mBR game. However
this is not the case if Π produces a hashed session key (via hash function H)
and if H is modelled as a random oracle. We will see below in Theorem 2 that
in this case, C only needs to be able to solve the following decisional problem:

Given the transcript T iU of oracle Πi
U in an mBR game, as well as the

PU and PU ′ (the public keys of U and U ′ where pidiU = U ′) and s, where
s is a string, decide whether s = ssΠi

U
, where ssΠi

U
is the session string

of oracle Πi
U .

We call this decisional problem the session string decisional problem for pro-
tocol Π.

We now present our main result.

Theorem 2. Suppose that key agreement protocol Π produces a hashed session
key on completion of the protocol (via hash function H) and that Π has strong
partnering. If the cNR-mBR security of the related protocol π is probabilistic
polynomial time reducible to the hardness of the computational problem of some
relation f , and the session string decisional problem for Π is polynomial time
reducible to the decisional problem of f , then the mBR security of Π is probabilis-
tic polynomial time reducible to the hardness of the Gap problem of f , assuming
that H is a random oracle.

Proof. Since the cNR-mBR security of π is probabilistic polynomial time re-
ducible (in security parameter k) to the hardness of the computational problem
of some relation f , there exists an algorithm A that, on input a problem in-
stance of the computational problem of f and interacting with an adversary
E which has non-negligible probability η of winning the cNR-mBR game for
π in time τ , is able to solve the computational problem of f with some non-
negligible probability g(η) and in time h(τ), where g and h are polynomial
functions.

We now define an algorithm B which, given an adversary D which has non-
negligible probability η′ of winning the mBR game for Π in time τ ′, is able to



558 C. Kudla and K.G. Paterson

solve the Gap problem of f with some non-negligible probability g′(η′) and in
time h′(τ ′) where g′ and h′ are polynomial functions. B will act as a challenger
for D. B will also run algorithm A and will simulate an adversary for A. Since B
attempts to solve the Gap problem of f , B will also have access to a decisional
oracle for f .

Since Π has strong partnering, we know that if two oracles share the same
session key, then they must be partners (with overwhelming probability). We
therefore know that D will never reveal a session key sk where sk is equal to the
Test oracle Πi

T ’s session key skΠi
T
. This is because D is not permitted to reveal

the session key of the Test oracle or its partner (if it exists).
We also assumed that the session string decisional problem for Π is polyno-

mial time reducible to the decisional problem of f . That is, there exists some
algorithm C which, given a decisional oracle for f , is able to solve the session
string decisional problem for Π in polynomial time τ ′′.

B runs A on the problem instance of the computational problem of f and
simulates an adversary for A. A sets up a cNR-mBR game for B and gives all the
public parameters to B. B in turn passes these public parameters to adversary
D. B now answers all of D’s queries as follows.

B passes all D’s queries besides Reveal and H queries to A. Since, in any
session, protocol π is identical to protocol Π until the session is completed and
the session key is computed, these queries will all be answerable by A. B passes
A’s responses back to D.

In order for B to answer D’s Reveal queries, B maintains a Guess session key
list (G-List). Each element on the G-List is a tuple of the form (T jV , PV , PV ′ ,Rj

V )
where T jV is the transcript of oracle Πj

V , PV is the public key of V , PV ′ is the
public key of V ′ where pidΠj

V
= V ′, and Rj

V is a random guess for the session

key skjV of oracle Πj
V . Initially the G-List is empty.

In order for B to answer E’s H queries, B maintains an (initially empty)
H-List containing tuples of the form (si, ski, str). For each H query on string s
that D makes, B checks whether s is on the H-List as the first component in
some tuple (si, ski, str). If it is, then B outputs ski. If s is not on the H-List
then B uses the algorithm C to determine whether s is a valid session string for
any oracle Πj

V on the G-List. If s = ssΠj
V

is the session string for some oracle

Πj
V on the G-List, then B outputs Rj

V and adds the tuple (s,Rj
V , str) where

str=“V,j” to the H-List. Otherwise B selects a random sk from the session key
space, adds the tuple (s, sk, str) (where str is the empty string λ) to the H-List,
and outputs sk.

When D makes a Reveal query on any oracle Πi
U which has accepted, B pro-

ceeds as follows. If Πi
U has an entry on the G-List of the form (T iU , PU , PU ′ ,Ri

U ),
B outputs the value Ri

U . Otherwise B checks whether any entry on the H-List
of the form (si, ski, str) where str = λ has si = ssΠi

U
using algorithm C. If such

an entry (si, ski, str) exists, then str is set to “U,i” on the H-List and the entry
(T iU , PU , PU ′ ,Ri

U ) is added to the G-List, where Ri
U = si, T iU is the transcript of

Πi
U , PU is the public key of U and PU ′ is the public key of U ′ where pidΠi

U
= U ′.
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Otherwise a random session key Ri
U is selected and the entry (T iU , PU , PU ′ ,Ri

U )
is added to the G-List. To answer the Reveal query, B outputs the value Ri

U in
every case.

In this way, B can consistently answer D’s Reveal and H queries. At some
point D selects a Test oracle Πi

T . B selects a random element sk from the session
key space and gives this to D.

If D does not query H on the Test oracle’s session string ssΠi
T
, then D can

only win with probability 1/SH where SH is the size of the output space of H ,
which we assume is negligible in security parameter k. So with overwhelming
probability 1−1/SH, D queries H on ssΠi

T
. B can detect this value by checking

which of the tuples (si, ski, str) on the H-List with str = λ has si = ssΠi
T

using
algorithm C. B gives this si to A.

Since ssΠi
T

= skπi
T
, B has simulated a valid adversary E for A with non-

negligible probability η = η′ · (1 − 1/SH) and in polynomial time τ = τ ′ + τ ′′ ·
NH · (NR + 1), where NH and NR are the number of H and Reveal queries
that D makes respectively. So A outputs the solution to the instance of the
computational problem of f with non-negligible probability g(η) and in time
h(τ).

Therefore B solves the Gap problem of f with non-negligible probability g(η)
and in time h(τ).

�

4.4 Different Security Models

Analogous results to Theorem 2 can be obtained for the security models of
[6,7,8,9,15].

For each of these models, an equivalent definition of strong partnering can
be made. In the models of [7,8,9] partnering is defined via the concept of match-
ing conversations, so strong partnering would be defined in this context as
well.

For each of these models, NR and cNR versions can be defined in the same
way as for our mBR model. The definition of the related protocol π is indepen-
dent of the model used.

It is then possible to prove analogous versions of Theorem 2 for these models.
These in turn illustrate how proofs in these models can be constructed in a
modular way.

We notice that analogous versions of Theorem 1 for alternative security mod-
els are also easy to formulate and prove.

Further details will be provided in the full paper.

5 Applying the Technique to Existing Protocols

We are now able to apply our results to key agreement protocols in the literature.
We find numerous protocols [2,3,9,17] which use a hash function to derive a
session key and which have proofs of security reducing to some computational
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assumption but only in the NR version of the security model used1. For each
such protocol Π, full proofs of security in the relevant model can be obtained as
follows.

1. It must be shown that the protocol Π has strong partnering. If Π does not
have strong partnering, this can be achieved by modifying the protocol to
include the appropriate partnering information (for the security model used)
in the session string. It should be checked that such modifications do not
affect the existing proof of security.

2. The appropriate version of Theorem 1 can now be applied to Π to guarantee
that the related protocol π is secure in the cNR version of the security model
used.

3. It must be shown that the appropriate decisional oracle can be used to
solve the session string decisional problem of Π. In general this is a trivial
reduction.

4. The appropriate version of Theorem 2 may now be used to obtain a complete
security proof for Π in the full version of the security model used.

For example, the proof of security for Protocol 3 of [9] can be completed in the
manner described above, although the protocol does require some modifications
to achieve strong partnering. A suitably modified version of this protocol is in
fact presented in [21] together with a proof of security. Interestingly, Protocol
3 of [9] and the modified version in [21] are vulnerable to a key compromise
impersonation attack. However this does not affect the proof of security since
the model of [9] does not capture security against these attacks.

5.1 A Concrete Example

We now consider Protocol 4 in [9], which was conjectured to be secure in [9]
but has never been proven secure. We modify the protocol slightly to guarantee
strong partnering and then prove this protocol secure in our mBR model. It is
possible to prove the unmodified protocol secure in the model of [9] using the
method described above, but the proof of strong partnering is more complicated.

We now present our modified version of Protocol 4 of [9].

Protocol 1

The Setup algorithm generates primes p and q where q|p− 1. It then chooses G
to be a multiplicative subgroup of Z∗p, where G has order q, and element g ∈ G
generates G. It also sets the session ID space S = G4 and selects a hash function
H : G2 × S → {0, 1}k . Each participant I selects a private key xI randomly
from Zq and sets their public key to be XI = gxI mod p.

Suppose that A and B are participants with public keys XA = gxA mod p
and XB = gxB mod p respectively. A and B run the protocol as follows:

1 A proof for the protocol of [17] appearing in [10] allows the adversary to make some
but not all Reveal queries.
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A, as initiator will receive some input (XB, initiator) and initiates session
Πi
A, setting pidA = XB and roleA = initiator.

A randomly picks a value a ∈ Zq, computes TA = ga mod p and sends the
following to B:

A→ B : TA,XA,XB.

On receipt of the message from A, B initiates session Πj
B with pidB = XA

and roleB = responder. B randomly picks a value b ∈ Zq and computes TB =
gb mod p. B then sends the following to A:

B → A : TB,TA,XB,XA.

B computes sidB = XA,XB,TA,TB and KB = H(T xB

A mod p,Xb
A mod p, sidB)

and accepts with session key skB = KB.
On receipt of the message from B, A computes sidA = XA,XB,TA,TB and

KA = H(Xa
B mod p,T xA

B mod p, sidA) and accepts with session key skA = KA.
If the protocol completes correctly, it is easy to see that KA = KB.
The modified version of Protocol 1 in which the session key is equal to the

session string of Protocol 1 is denoted by Protocol 1′.

Theorem 3. The cNR-mBR security of Protocol 1′ is probabilistic polynomial
time reducible to the hardness of the CDH problem in G.

This is proved in Appendix A. It is interesting to note how short the proof of
this theorem is; this is due to the simplicity of the cNR-mBR model.

We note that a common error when proving that a protocol Π is mBR-secure
(or even NR-mBR or cNR-mBR secure) is to make the assumption that the Test
oracle Πi

U has a partner, and that the input to ΠiU comes from this partner.
In fact the challenger has no control over the input to ΠiU since the adversary
controls all communications between oracles. This error can be seen in papers
such as [4,18] where proofs of security were attempted in the full security model.
Their corrected versions [3,17] provide proofs in the NR versions of the original
models.

Theorem 4. Protocol 1 has strong partnering in the random oracle model.

The simple proof of this theorem is left to the reader.

Corollary 1. Protocol 1 is secure in the random oracle model assuming the
hardness of the Gap Diffie-Hellman problem.

Proof. This result comes immediately from Theorems 2, 3 and 4 and the obser-
vation that a decisional Diffie-Hellman oracle can be used to solve the session
string decisional problem for Protocol 1. Therefore the session string decisional
problem for Protocol 1 is reducible to the decisional Diffie-Hellman problem (in
constant time). �

We note that Protocol 1 can easily be extended to have perfect forward secu-
rity by including the value T bA mod p into the computation of the hash function
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H . This extended Protocol 1 can then be proven secure in an extended mBR
model which models perfect forward secrecy.

The protocol of [27], after slight modifications to ensure strong partnering,
can also be proven secure in the random oracle model in a similar way to our
Protocol 1.

6 Special Gap Groups

The Gap assumptions may not be acceptable to all, since in developing security
proofs, one must assume the use of an oracle which is not known to exist: a
decisional oracle. For instance, for Protocol 1, the proof of security ultimately
requires an oracle which solves DDH in the group G. This is thought to be a hard
problem, so there is no known method of constructing such an efficient oracle.

However there do exist groups in which the computational problem is thought
to be hard but where the decisional problem is known to be easy. For instance,
groups of points on an elliptic curve on which an efficient bilinear map (or
pairing operation) is defined. In such groups, the pairing operation can be used
to construct an efficient DDH oracle, and the Gap problem is in fact equivalent
to the computational problem. Therefore if Protocol 1 had been defined over
such a group, then its security would in fact reduce to the CDH problem.

7 Conclusions

We have presented a modular technique that makes use of Gap assumptions for
simplifying proofs of security for key agreement protocols which are not built
using the modular approach of [5]. Protocols of this type have traditionally been
notoriously hard to prove secure, and we have indicated how the proofs of security
of many such protocols in the literature may be constructed or completed using
our technique. Our technique works not only with the model presented in this
paper, but also with the models of [7,8,9,15].

We considered in detail a long-standing protocol presented in [9] which pre-
viously lacked a proof of security. We then provided a full proof of security for a
slightly modified version of this protocol using the techniques introduced in this
paper. We also indicated how full proofs of security for protocols in [2,3,9,17,27]
may be constructed using our techniques.

References

1. M. Abdalla, O. Chevassut, and D. Pointcheval. One-time verifier-based encrypted
key exchange. In S. Vaudenay, editor, Public Key Cryptography - PKC 2005, volume
3386 of LNCS, pages 47–64. Springer-Verlag, 2005.

2. S.S. Al-Riyami and K.G. Paterson. Authenticated three party key agreement pro-
tocols from pairings. In K.G. Paterson, editor, Proceedings of 9th IMA Interna-
tional Conference on Cryptography and Coding, volume 2898 of Lecture Notes in
Computer Science, pages 332–359. Springer-Verlag, 2003.



Modular Security Proofs for Key Agreement Protocols 563

3. P.S.L.M. Barreto and N. McCullagh. A new two-party identity-based authen-
ticated key agreement. Cryptology ePrint Archive, Report 2004/122, 2005.
http://eprint.iacr.org/.

4. P.S.L.M. Barreto and N. McCullagh. A new two-party identity-based authenticated
key agreement. In Topics in Cryptology – CT-RSA’2005, volume 3376 of Lecture
Notes in Computer Science, pages 262–274. Springer-Verlag, 2005.

5. M. Bellare, R. Canetti, and H. Krawczyk. A modular approach to the design and
analysis of authentication and key exchange protocols. In Proceedings of the 30th
Annual Symposium on the Theory of Computing, pages 419–428. ACM, 1998.

6. M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated key exchange secure
against dictionary attacks. In B. Preneel, editor, Advances in Cryptology – EURO-
CRYPT 2000, volume 1807 of Lecture Notes in Computer Science, pages 139–155.
Springer-Verlag, 2000.

7. M. Bellare and P. Rogaway. Entity authentication and key distribution. In
Advances in Cryptology - CRYPTO ’93, volume 773 of LNCS, pages 232–249.
Springer-Verlag, 1994.

8. M. Bellare and P. Rogaway. Provably secure session key distribution: The three
party case. In Proceedings of the 27th Annual ACM Symposium on Theory of
Computing STOC, pages 57–66. ACM, 1995.

9. S. Blake-Wilson, D. Johnson, and A. Menezes. Key agreement protocols and their
security analysis. In Cryptography and Coding, volume 1355 of LNCS, pages 30–45.
Springer-Verlag, 1997.

10. C. Boyd, K.-K.R. Choo, and Y. Hitchcock. On session key construction in provably-
secure key establishment protocols. In Proceedings of International Conference
on Cryptology in Malaysia - Mycrypt 2005, volume 3715 of LNCS, page 116131.
Springer-Verlag, 2005. http://eprint.iacr.org/2005/206.

11. C. Boyd, W. Mao, and K. Paterson. Key agreement using statically keyed au-
thenticators. In Applied Cryptography and Network Security: Second International
Conference, ACNS 2004, volume 3089 of Lecture Notes in Computer Science, pages
388–401. Springer-Verlag, 2004.
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Appendix A

Proof of Theorem 1. We provide a sketch of the proof of this theorem. The
details are left to the reader. We show that if there exists an adversary E that
can cNR-mBR attack π, then we can build an adversary A that can NR-mBR
attack Π.

Suppose that an adversary E wins the cNR-mBR game for protocol π with
non-negligible probability η. Suppose also that A runs an NR-mBR game with
challenger C. A in turn acts as a challenger for E in a cNR-mBR game. A passes
E’s queries to C and returns C’s outputs to E. Finally E will output the session
key skπi

U
of some fresh oracle πiU . Recall however that skπi

U
= ssΠi

U
.

A then chooses Πi
U as the Test oracle and receives a challenge key sk. If

sk = H(skπi
U
) then A outputs 1, otherwise it outputs 0. A wins the NR-mBR

game with probability η. �

Proof of Theorem 3. We assume that for security parameter k there exists an
adversary E for Protocol 1′ who can win the cNR-mBR game with advantage
η which is non-negligible in k and in polynomial time τ of k. Suppose that the
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number of participants is nP and the number of sessions each participant may
be involved in is nS , where nP and nS are polynomial functions of k.

We now construct from E algorithm F which solves the CDH problem in G
with non-negligible probability. That is, given as input elements gx, gy ∈ G, F ’s
task is to compute and output the value gxy mod p.

F simulates a challenger in a cNR-mBR game with E. F sets up the game
with the group G and generator g ∈ G. F generates a set of participants of
size nP . For each participant I, F sets I’s private key to be a randomly chosen
xI ∈ Zq and sets their public key to be XI = gxI mod p. However for some
participant P , F sets P ’s public key to be XP = gx. F also picks a random
participant Q �= P , a session number t ∈ {1, .., nS} and a number l ∈ {1, .., nH}.
F starts E and answers E’s queries as follows.

Send: E may make a special Send query Πs
I which sets pidI = XI′ and instructs

I to initiate a protocol run with its partner I ′. E can also send any oracle Πs
I

a message M , and the oracle responds according to the protocol. However if
E initializes or sends a message to oracle Πt

Q, then Πt
Q outputs gy.

Corrupt(U): If E corrupts participant P , then F aborts. Otherwise F gives E
the long-term private key of the participant.

Test: When E asks a Test query to an oracle Πs
I , F outputs a random element

from the key space G2 × S = G6.

The probability that E queries oracle Πt
Q for the Test session and that pidQ =

XP is 1
n2

P .nS
. In this case, we note that E could not have corrupted participant

P , and so F would not have aborted.
E finally outputs a session key of the form (a, b, c) where a, b ∈ G and c ∈ G4.

If Πs
I was an initiator, then F outputs b as its guess for the value gxy mod p,

otherwise F outputs a as its guess. It is now easy to see that F solves the CDH
problem on input (gx, gy) with probability η′ = η.( 1

n2
P .nS

) which is non-negligible
in k, and in time τ . �
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Abstract. This paper brings the password-based authenticated key ex-
change (PAKE) problem closer to practice. It takes into account the pres-
ence of firewalls when clients communicate with authentication servers.
An authentication server can indeed be seen as two distinct entities,
namely a gateway (which is the direct interlocutor of the client) and a
back-end server (which is the only one able to check the identity of the
client). The goal in this setting is to achieve both transparency and se-
curity for the client. And to achieve these goals, the most appropriate
choices seem to be to keep the client’s password private even from the
back-end server and use threshold-based cryptography. In this paper,
we present the Threshold Password-based Authenticated Key Exchange
(GTPAKE) system: GTPAKE uses a pair of public/private keys and, un-
like traditional threshold-based constructions, shares only the private
key among the servers. The system does no require any certification ex-
cept during the registration and update of clients’ passwords since clients
do not use the public-key to authenticate to the gateway. Clients only
need to have their password in hand. In addition to client security, this
paper also presents highly-desirable security properties such as server
password protection against dishonest gateways and key privacy against
curious authentication servers.

Keywords: Threshold Protocols, Password-based Authentication.

1 Introduction

Problem Description. Consider the familiar scenario where you are at the
airport waiting for your flight. You have checked-in and have now half an hour to
kill. What do you do? Turn on your laptop, switch on your wireless card, and pick
up the airport wireless LAN. You are prompted for a password to authenticate
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yourself and upon successful authentication a port is opened for you to browse
the Internet and/or read your e-mails. Now you may wonder what happens under
the hood. We have indeed talked to an airport gateway, often termed hotspot,
that has in turn talked to your mobile-Internet provider. T-Mobile is an example
of such a provider in the United States. The gateway has passed in an encrypted
form your password to the provider for authentication and gets back a yes/no
depending whether or not the authentication was successful.

Although this model is very attractive in practice, existing security solutions
implementing it have major drawbacks since the gateway gains some amount
of information about your password. The ideal solution is a cryptographic algo-
rithm allowing the client to securely exchange a session key with the gateway,
but the gateway does not gain any information about the password and the
authentication server does not gain any information about the session key. Ad-
ditional problems also occur if too many people, from the same provider, try to
connect to various gateways at the same time. The authentication check from
the provider would become a bottleneck. Various authentication points are very
desirable. Nevertheless, the password of the client cannot be stored at several
places, otherwise the job of hackers would be made much easier.

Scenario. To formally define a model for the above scenario, we propose a model
in which one can design a protocol among three parties (the client, the gateway
and the authentication server) which protects both the session keys and the
passwords. We indeed require the three following security notions which capture
dishonest behaviors of the client, the authentication server and the gateway
respectively: the semantic security of the sessions keys, which we model by a
Real-Or-Random (ROR) game [2] (it has been proved strictly stronger than the
more classical Find-Then-Guess (FTG) model [4]); the key-privacy notion [2]
which entails that the session key exchanged by two parties with the help of an
authentication server is unknown to the authentication server (and also to any
other party, granted the semantic security); the server password protection which
basically means that the gateway cannot learn any information about clients’
passwords from the authentication server.

The ultimate goal of this paper is to achieve the highest level of security in
the PAKE setting. With the above security notions, breaking into the gateway
would not help to gain any information about the passwords, however the au-
thentication server is a security hole. Breaking into the latter would leak the
authentication information. Furthermore, according to the above motivation ex-
ample, a unique authentication point may be a bottleneck. When data informa-
tion is crucial, a usual solution to protect it is to distribute it among several
servers such that a majority of them is needed to recover the initial data. More-
over, when we want to protect a cryptographic service we can split the private
information into several parts, each known by one server, so that a majority of
them is required to maintain the service without reconstructing the secret key in
a single place. Threshold cryptography is the field that provides such solutions
and allows to take into account adversaries that can break into any minority of
parties. It furthermore solves the bottleneck problem.
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Contribution. Our contribution in this paper is a provably-secure protocol
satisfying the previously mentioned requirements. We have constructed it by
defining a simple protocol, called the gateway PAKE (GPAKE) protocol, among
three parties (the client, the gateway and the authentication server). GPAKE pro-
tects the session keys and the passwords according to a formal security model
which we specify in this paper. It provides the additional property to be a vari-
ant of AuthA [5] perfectly transparent to the client. Transparency means that
a client does not (need to) know whether he is talking to a server directly or
whether the server is implemented as a gateway, an authentication server, or
even an application server. The gateway does not also (need to) know whether
the authentication server is distributed. A non-transparent protocol indeed raises
real concerns on the utilization of the protocol in practice since clients need to
first update their cryptographic stack in order to take advantage of the threshold
PAKE feature. A transparent protocol on the other hand lets only domain admin-
istrators worry about deploying the threshold PAKE feature to their users. We
have developed a threshold version (called gateway threshold PAKE (GTPAKE))
that does not break the transparency property of GPAKE, and defined its execu-
tion in our security model. Clients already running the two-party AuthA protocol
(e.g, OMDHKE [8]) will not have to upgrade their stack when administrators
add an extra layer of protection with GTPAKE!

Related Work. Several password-based key exchange protocols in the thresh-
old setting have been proposed in the past by MacKenzie et al. [14] and by Di
Raimondo and Gennaro [10], to name a few. In particular, the protocol by Di
Raimondo and Gennaro in Eurocrypt 2003 [10], which is a threshold version of
the 2-party KOY protocol [12], is proven secure in the standard model. In that
paper, they have introduced the notion of transparent protocols, where the ini-
tial protocol and its threshold version are the same from the point of view of the
client. Unfortunately, their solution is not very efficient from a practical point of
view since it requires several rounds of communication between the client and
the server and among the servers themselves. Moreover, like previous proposals
of threshold password-based key exchange protocols, their protocol requires the
password to be shared among all the servers.

The solution we propose in this paper does not require passwords to be
shared across different servers. Instead, we only share the secret decryption key
for a public-key encryption scheme under which all passwords are encrypted.
This provides an additional feature: it is quite easy for a client to modify his
password. He just needs to send the new one encrypted under the authentication
servers’ public key.

Moreover, contrary to the hybrid model of Halevi and Krawczyk [11], where
the server has a public/secret key pair and the client only knows a password,
the client is not required to check the authenticity of the public key during the
execution of the protocol. Integrity is required only during the registration or
when the user wants to update his password.

Organization of the Paper. In Section 2, we present the formalization used
to define the execution of the GPAKE and GTPAKE protocols. Our formalization
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extends that of Abdalla et al. to the threshold setting [2]. In Section 3, we
present the intractability assumptions used throughout the paper. In Section 4,
we describe the GPAKE system and show that it achieves semantic security and
key privacy in a provable secure way. In Section 5, we describe the GPAKE
system’s threshold version and show that it is secure —via a reduction from
the security of GTPAKE to the intractability assumptions— against dictionary
attacks.

2 Security Model

In this section, we present the security model we will use in the rest of the paper
to define the execution of our protocol for threshold password-authenticated key
exchange.

2.1 Overview

Gateway-oriented password-based key exchange. A gateway-oriented
password-based key exchange is a three-party protocol among a client, a gateway,
and an authentication server. The goal of protocol is to establish an implicitly
authenticated session key between the client and the gateway with the help
of the authentication server, where the authentication is done by means of a
short password. In our model, the password is known to both the client and the
authentication server, but not to the gateway. In fact, no long-term secrets are
stored in the gateway. The authentication server, on the other hand, is assumed
to know the password. While the communication channel between the gateway
and the authentication server is assumed to be authenticated and private, the
channel connecting the client to the gateway may be insecure and perhaps under
the control of an adversary.

The security goals of our gateway-oriented password-based key exchange
model are also somewhat different from those of previous models for password-
based schemes. In particular, we ask that the session key shared between the
gateway and the client should remain private to the authentication server (see
Section 2.2 for more details). Moreover, we also ask that the chances of the gate-
way learning some information on the password after multiple interactions with
the server, perhaps concurrently, should be negligible.

Protocol participants. The participants in a gateway-oriented password-
based key exchange are the client C ∈ C, the gateway G ∈ G, and the authenti-
cation server S ∈ S. We denote by U the set of all participants (i.e., U = C∪G∪S)
and by U a non-specific participant in U . Each client C ∈ C holds a password
pwC . Each server S ∈ S holds a vector of passwords PWS = 〈pwC〉C∈C with an
entry for each client.

2.2 Security Model

Since we assume an authenticated and private channel between the gateway
and the server, the communication model is similar to previous one for 2-party
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authenticated key exchange. In particular, we adopt the Real-Or-Random (ROR)
security model of Abdalla et al. [2] for password-based authenticated key ex-
change protocol, which in turn implies that of Bellare et al. [4]. As in the standard
model, all the interactions between an adversaryA and the protocol participants
in the ROR model are done via oracle queries. Let U i denote the instance i of a
participant U . The list of oracles available to the adversary are as follows:

– Execute(Ci, Gj): This query models passive attacks in which the attacker
eavesdrops on honest executions among a client instance Ci and a gateway
instance Gk. The output of this query consists of the messages that were
exchanged during the honest execution of the protocol.

– Send(U i,m): This query models an active attack against the client or gate-
way instance U i, in which the adversary may intercept a message and then
modify it, create a new one, or simply forward it to the intended recipient.
The output of this query is the message that the participant instance U i

would generate upon receipt of message m.

The Real-Or-Random Model [2]. In the ROR model, in addition to the
above-mentioned oracles, an attacker is also given access to a less restrictive
Test oracle. Let b be a bit chosen uniformly at random at the beginning of the
experiment defining the semantic security of session keys. The Test oracle in the
ROR model is defined as follows:

– Test(U i): If no session key for instance U i is defined, then return the unde-
fined symbol ⊥. Otherwise, return the session key for instance U i if b = 1 or
a random of key of the same size if b = 0.

As in standard models, the Test oracle in the ROR model also tries to capture
the adversary’s ability (or inability) to tell apart a real session key from a random
one. The main difference is that it does so not only for a single session but for
all sessions. More precisely, the adversary in the ROR model is not restricted to
ask a single Test query, but it can in fact ask multiple ones. All Test queries in
this case will be answered using the same value for the hidden bit b that was
chosen at the beginning of the experiment defining the semantic security of the
session keys. That is, the keys returned by the Test oracle are either all real or all
random. However, in the random case, the same random key value is returned
for Test queries that are asked to two instances that belong to the same session
(see notion of partnering below). The goal of the adversary in the ROR model is
still the same: to guess the value of the hidden bit b used to answer Test queries.
The adversary is considered successful if it guesses b correctly.

Partnering. As in [2], we use the notion of partnering based on session iden-
tifications (sid), which says that two instances are partnered if they hold the
same non-null sid. More specifically, a client instance Ci and a gateway instance
Gj are said to be partners if the following conditions are met: (1) Both Ci and
Gj accept; (2) Both Ci and Gj share the same session identifications; (3) The
partner identification for Ci is Gj and vice-versa; and (4) No instance other than
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Ci and Gj accepts with a partner identification equal to Ci or Gj . In practice,
the sid is taken to be the partial transcript of the conversation among the client
and the gateway instances before the acceptance.

Freshness. Differently from [2], we opt not to embed the notion of freshness
inside the definition of the oracles. Instead, we take the more standard approach
of explicitly defining the notion of freshness and mandating the adversary to only
perform tests on fresh instances. The two approaches are however equivalent. In
particular, we say that a instance of a client or gateway is fresh if it has accepted.

Formal definition. Let Succ denote the event in which the adversary is
successful. The ake− ror-advantage of an adversaryA in violating the semantic
security of the protocol P in the ROR sense and the advantage function of the
protocol P , when passwords are drawn from a dictionary Dict, are respectively

Advake−ror

P,Dict (A) = 2 · Pr[Succ ]− 1 and

Advake−ror

P,Dict (t,R) = max
A
{Advake−ror

P,Dict (A) },

where the maximum is over all A with time-complexity at most t and using
resources at most R (such as the number of queries to its oracles). The definition
of time-complexity that we use henceforth is the usual one, which includes the
maximum of all execution times in the experiments defining the security plus
the code size.

Please note that, as proven in [2], any scheme proven secure in the ROR
model is also secure in the model of Bellare et al. [4]. The converse, however, is
not necessarily true (see [2] for more details).

Authentication. The notion of semantic security does not guarantee the ex-
istence of a partner, but only the secrecy of the session key (implicit authen-
tication). In order to address this problem, one usually adds mechanisms for
explicit authentication of client and gateway instances. In this paper, we only
consider unilateral authentication of the gateway, by which a client instance can
be ensured that it has in fact established a key with the gateway instance it
intended to. As in [7], we denote by SuccG−auth

A the probability that adversary
A successfully impersonates the gateway in an execution of the protocol. This is
the probability with which a client instance accepts without having a gateway
partner. The advantage function of the protocol can be defined as in previous
cases.

Key Privacy. The notion of key privacy was introduced in [2] to capture the
idea that the session key computed by two parties with the aid of an authenti-
cation server should only be known to those two parties and not to the server.
The goal in this case is to reduce the amount of trust one puts into the server.
In order to meet this goal, one has to consider an adversary with access to
all the secret information stored in the server and then show that such ad-
versary cannot distinguish actual session keys from random ones if we restrict
this adversary to test sessions in which the keys are shared between two ora-
cles. The latter restriction is important since an adversary with access to the
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secrets of the authentication server could always establish a key with a client
by playing the roles of the gateway and authentication server. Since one of our
main goals is to show that the key shared between the client and the gate-
way is not known to the authentication server, we also use the notion of key
privacy.

To capture the above intuition more formally, [2] considers an adversary
which has access to all the secrets held by the authentication server and to the
oracles used in the experiment defining semantic security. They then introduce a
new type of oracle, called TestPair, whose goal is to capture the adversary’s ability
to distinguish the real session key shared between any two oracle instances from
a random one. The inputs to the TestPair oracle are the specific oracle instances
whose shared session key the adversary thinks it can tell apart from a random
key.

Formal definition. Consider an execution of the key exchange protocol P by
an adversary A with access to all the secret held by the authentication server
as well as to the Execute, Send, and TestPair oracles. Let Succ denote the event
in which the adversary is successful in guessing the hidden bit used by TestPair
oracle when only asking TestPair queries to instances pairs that have accepted.
The kp-advantage of an adversary A in violating the key privacy of the pro-
tocol P in the ROR sense (Advake−kp

P,Dict
(A)) and the advantage function of P

(Advake−kp

P,Dict
(t,R)), when passwords are drawn from a dictionary Dict, are then

defined as in previous definitions.

Server Password Protection. As we mentioned earlier, one of the goals of
our protocol is to guarantee that the gateway is not capable of learning the
user’s password that is stored in the server. Clearly, as in the case of semantic
security, one cannot hope for much since, in each interaction, the adversary may
be able to eliminate one candidate password from the list of possible passwords.
However, we ask that the adversary should not be able to do much better than.
That is, if the adversary interacts q times with the server, then the probability
that it can distinguish the true password from a random one in the dictionary
should be only negligibly larger than O(q/N), where N is the size of the dic-
tionary. The hidden constant in this case should be as small as possible (prefer-
ably 1). Note that, in this definition, the dictionary is assumed to be uniformly
distributed.

2.3 Threshold Security Model

Threshold gateway-oriented password-based key exchange. A (t, k,
n)-threshold gateway-oriented password-based key exchange is an extension of
the basic gateway-oriented password-based key exchange in which the authenti-
cation server is a distributed entity. More specifically, the clients’ passwords are
no longer known to any single server. Instead, each server in the set of n au-
thentication servers is assumed to hold a share of the secret key of a public-key
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encryption scheme, under which clients’ passwords are encrypted. The authenti-
cation of any client will require the cooperation of some size-k subset of honest
servers. In addition, any adversary who learns t or fewer shares of the secret key
should not learn any information about the clients’ passwords.

Participants. The participants in a threshold protocol are the client C ∈ C,
the gateway G ∈ G, the set of authentication servers {S1, . . . , Sn} with Si ∈ S,
and a trusted dealer.

Semantic Security. The definition of semantic security of threshold protocols
follows the one given above for gateway-oriented protocols. At the beginning
of the semantic security experiment, the adversary selects a subset of at most
t = k− 1 servers to corrupt. We say that the adversary is static when it chooses
the set of servers to corrupt in advance, before seeing anything. A special server,
called the combiner, will be used to perform some tasks that do not require
any secret. The combiner is also in charge of all communications between the
gateway and the other servers.

The dealer generates a public key pk and a secret key sk for an encryption
scheme. Then, he performs the secret sharing of sk and sends the part ski to Pi
along with a verification key vki. The adversary obtains the secret key shares of
the corrupted servers, along with the public key and the verification keys.

After this phase, the adversary is given access to the same set of oracles used
in the standard security model for gateway-oriented password-based authenti-
cated key exchange protocols.

Robustness. We say that a threshold scheme is robust when it takes into
account malicious adversaries whose behavior can be different from the protocol.
To force the servers to correctly perform their job, we use proofs of validity in
our protocol. This also enables the combiner to correctly decrypt.

3 Diffie-Hellman Assumptions

In this section, we recall the definitions of standard Diffie-Hellman assumptions
and introduce some new variants, which we use in the security proof of our
protocol. We also present some relations between these assumptions.

3.1 Classical Assumptions

Henceforth, we assume a finite cyclic group G of prime order p generated by an
element g. We also call the tuple G = (G, g, p) a represented group.

Computational Diffie-Hellman Assumption: CDH. The CDH assump-
tion, in a represented group G, with respect to the basis X , states that given
two elements X ′ = Xu and Y = Xv, where u and v were drawn at random from
Zp, it is hard to compute Y ′ = Y u = Xuv. This can be defined more precisely
by considering an experiment Expcdh

G (A,X), in which we select an exponent u
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in Zp, an element Y in G, compute X ′ = Xu, and then give both X ′ and Y

to A. Let Y ′ be the output of A. Then, the experiment Expcdh
G (A,X) outputs

1 if Y ′ = Y u and 0 otherwise. We define the advantage of A in violating the
CDH assumption with respect to X as Advcdh

G (A,X) = Pr[Expcdh
G (A,X) = 1 ],

the advantage of A in violating the CDH assumption (with a random basis) as
Advcdh

G (A) = EX

[
Advcdh

G (A,X)
]
, and the advantage functions, Advcdh

G (t,X)

and Advcdh
G (t), as the maximum values of Advcdh

G (A,X) and Advcdh
G (A) over

all A with time-complexity at most t.
It is also often assumed that, independently of what the value of X is (as

long as it is a generator, of order p), the CDH problem with respect to the basis
X is hard: the maximal value of Advcdh

G (t,X) over all generators X is small for
any reasonable t.

Decisional Diffie-Hellman Assumption: DDH. Roughly, the DDH assump-
tion, with respect to the basis X , states that the distributions (X,X ′ = Xu,Y,
Y ′ = Y u) and (X,X ′ = Xu,Y,Z = Y v) are computationally indistinguishable
when Y is drawn at random from G, and u and v are drawn at random from Zp.
As before, we can define the DDH assumption more formally by defining two
experiments, Expddh-real

G (A,X) and Expddh-rand
G (A,X). In both experiments,

we compute two random values X ′ = Xu and Y as before. But in addition to
that, we also provide a third input, which is Y u in Expddh-real

G (A,X) and Y v,
for a random v, in Expddh-rand

G (A,X). The goal of the adversary is to guess a
bit indicating the experiment he thinks he is in. We define the advantage of A
in violating the DDH assumption, with respect to the basis X , Advddh

G (A,X),
as Pr[Expddh-real

G (A,X) = 1 ] − Pr[Expddh-rand
G (A,X) = 1 ], and advantage of

A in violating the DDH assumption (with random basis) as Advddh
G (A) =

EX

[
Advddh

G (A,X)
]
. The advantage functions Advddh

G (t,X) and Advddh
G (t) are

then defined in a similar manner as above.
Again, it is also often assumed that, independently of what X is (as long as

it is a generator, of order p), the DDH problem with respect to the basis X is
hard: the maximal value of Advddh

G (t,X) over all generators X is small for any
reasonable t.

3.2 Password-Based Chosen-Basis Diffie-Hellman Assumptions

The actual proofs of security of our protocol use password-related versions of the
above Diffie-Hellman assumptions, in which the adversary has some control over
the basis, hence the name password-based chosen-basis decisional/computational
Diffie-Hellman assumptions. They make use of a dictionary D = {U1, . . . , UN}
of size N . Then, we assume that when the adversary has not correctly predicted
the password (1 chance over N), he has no significant advantage. Hence, its
overall advantage cannot be significantly larger than 1/N .

We start by presenting the password-based chosen-basis computational
Diffie-Hellman assumption.
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Definition 1 (PCCDH). Let G = (G, g, p) be a represented group and let A be
an adversary. Consider the following experiment, where D is a dictionary of N
elements in G.

Experiment Exppccdh
G

(A,D)
(X, s)← A(find,D)
Π

R← D ; Y
R← G

K ← A(guess, s,Y, Π)
return 1 if K = CDH(X/Π,Y )

We define the advantage of A in violating the PCCDH assumption with respect
to the dictionary D, Advpccdh

G,N (A,D), the advantage of A Advpccdh
G,N (A), and the

advantage functions, Advpccdh
G,N (t,D) and Advpccdh

G,N (t), as above. ♦

In our security proofs, we actually need a simple variation of the above prob-
lem, in which the adversary, in the second stage, outputs a set of s candidates for
the CDH value. The adversary wins if the set indeed contains K. This problem
is thus named Set Password-based Chosen-basis Computational Diffie-Hellman
Problem (SPCCDH).

We define the advantage Advspccdh
G,N (A,D, s) of A in violating the SPCCDH

assumption with respect to the dictionary D, the advantage Advspccdh
G,N (A, s)

of A, and the advantage functions Advspccdh
G,N (t,D, s) and Advspccdh

G,N (t, s) as in
previous definitions.

Fortunately, the two new assumptions are not so strong, since one can prove
that the SPCCDH problem is equivalent to the CDH problem as proven in
Appendix B. The general result proven in Appendix B can be simplified in the
particular case of not so large dictionaries:

Lemma 2. Advspccdh
G,N (t, s) ≤ 1

N + N2s2 ×Advcdh
G (2t+ τe).

In addition to the computational assumptions above, we also make use of the
following decisional assumption in our security proofs.

Definition 3 (PCDDH). Let G = (G, g, p) be a represented group and let A be
an adversary. Consider the following experiment, defined for b = 0, 1, where D
is the dictionary of N elements in G.

Experiment Exppcddh
b (A,D)

(X,Y, s)← A(find,D)
Π

R← D ; s0, s1
R← Zp

Y ′ ← Y s0 ; X ′ ← (X/Π)sb

b′ ← A(guess, s,X ′,Y ′, Π)
return b′

We define the advantage of A in violating the PCDDH assumption with respect
to the dictionary D, Advpcddh

G,N (A,D), the advantage of A, Advpcddh
G,N (A), and

the respective advantage functions of G for a given value N , Advpcddh
G,N (t,D) and

Advpcddh
G,N (t), as above. ♦



576 M. Abdalla et al.

Fortunately again, this problem is not new. It has already appeared in [3]
under the name PCDDH2. In that paper, the authors have also shown that
Advpcddh

G,N (t,D) and Advpcddh
G,N (t) cannot be significantly larger than 2/N .

4 The Gateway PAKE System

In this section, we describe GPAKE, the underlying gateway-oriented password-
based protocol used in the construction of our threshold gateway-oriented pass-
word-based protocol.

4.1 Description

Our gateway-oriented password-based protocol, GPAKE, builds upon previous
password-based key exchange protocols in [5,8,13], which in turn are based on
the encrypted key exchange of Bellovin and Merritt [6]. Its description is given in
Figure 1, where G = (G, g, q) is a represented group; 
 is a security parameter;
and G : U2 × Dict→G, Hash1 : U2 × G × G→{0, 1}�, and Hash2 : U2 × G ×
G→{0, 1}�, are random oracles.

The protocol consists of four message exchanges, two between the client and
the gateway and two between the gateway and the authentication server. Since
the channel connecting the gateway to the server is assumed to be authenticated
and private, from the client perspective, the protocol resembles almost exactly
the 2-party protocol OMDHKE in [8]. The only difference is in the key derivation
function, which does not include the password.

The protocol starts with the client choosing a random element x ∈ Zp and
computing X = gx, and encrypting it using G(C, G, pw) as a mask to obtain

Client C Gateway G Authentication Server S

G, Hash1, Hash2 G, Hash1, Hash2 G, Hash1, Hash2
pw ∈ Dict pw ∈ Dict

PW = G(C, G, pw) ∈ G PW = G(C, G, pw) ∈ G

unauthenticated
channel

authenticated
private channel

accept ← false accept ← false

x
R← Zq, X ← gx

X� ← X × PW
C, X�

−−−−−−−−→

y
R← Zq, Y ← gy C, X

�
, Y−−−−−−−−→

s
R← Zq

X ← X�/PW

X, Y←−−−−−−−− X ← Xs, Y ← Y s

K ← Xy

AuthG ← Hash2(C, G, X�, Y , K)
G, Y , AuthG←−−−−−−−−

K ← Y x

AuthG′ ← Hash2(C, G, X�, Y , K)
AuthG′ = AuthG?

SK ← Hash1(C, G, X�, Y , K) SK ← Hash1(C, G, X�, Y , K)
accept ← true accept ← true

Fig. 1. GPAKE:Agateway-orientedpassword-basedauthenticatedkeyexchangeprotocol
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X�. The client then sends to the gateway both X� and its identity string C.
Upon receiving a message from the client, the gateway chooses a random ele-
ment y ∈ Zp and computes Y = gy, and forwards to the server both Y and
the value X� that it has received from the client. Upon receiving the values
(X�,Y ) from the gateway, the server computes X = X�/G(C, G, pw), chooses
a random element s ∈ Zp, computes (X = Xs,Y = Y s), and sends it back to
the gateway. Upon receiving (X,Y ), the gateway computes the Diffie-Hellman
key K = X

y
, the authenticator AuthG = Hash2(C, G,X�,Y ,K) and the session

key SK = Hash1(C, G,X�,Y ,K), and sends (G,Y ,AuthG) to the client. Upon
receiving (G,Y ,AuthG), the client computes the Diffie-Hellman key K = Y

x
,

checks whether AuthG = Hash2(C, G,X�,Y ,K), and sets the session key to
SK = Hash1(C, G,X�,Y ,K) if the test passes. The session identification is de-
fined to be the transcript (C, G,X�,Y ) of the conversation between the client
and the gateway.

4.2 Security

Semantic security. As the following theorem states, GPAKE is a secure
gateway-oriented password-based key exchange protocol as long as the SPCCDH
problem is hard in G. As shown in Section 3, this is equivalent to assuming that
CDH problem is hard in G. The proof can be found in the full version of this
paper [1]. Nevertheless, we note here that the proof of security assumes Dict to
be a uniformly distributed dictionary and of size smaller than 2�.

Theorem 4. Let G = (G, g, q) be a represent group of prime order q and let Dict
be a uniformly distributed dictionary of size N = |Dict|. Let GPAKE describe the
gateway-oriented protocol associated with these primitives as defined in Figure 1.
Then,

Advake−ror

GPAKE,G,Dict(t, qexe, qfake−C, qfake−G, qactive, qtest, qHash1 , qHash2 , qG) ≤

q2active + q2G
q

+
q2exe

q2
+ 2

q2Hash1
+ q2Hash2

2�
+

2 (qHash1 + qHash2) ·Advcdh
G (t+ (4qexe + 4)τe) +

2 · qactive · (qHash1 + qHash2) ·Advcdh
G (t+ 2τe) + 4 · qfake−C/N +

2 · qfake−G ·Advspccdh
G,N (t, qHash1 + qHash2) ,

where qG, qHash1 , and qHash2 represent the number of queries to the G, Hash1 and
Hash2 oracles, respectively; qexe represents the number of queries to the Execute
oracle; qfake−C and qfake−G represent the number of attempts of the adversary to
fake the client and the gateway, respectively; qactive represents the total number
of queries to the Send oracle; qtest represents the total number of queries to the
Test oracle; and τe denotes the exponentiation computational time in G.

Remark 5. In the security model presented in Section 2, the adversary is not
allowed to corrupt gateway instances. Consequently, the proof of Theorem 4
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does not guarantee the security of GPAKE in that scenario. Even though GPAKE
appears to be secure in the presence of such adversaries, a new proof of security
would be required in this case.

Key Privacy. As the following shows, GPAKE achieves the goal of key privacy
as long as the DDH problem is hard in G.

Theorem 6. Let G = (G, g, q) be a represent group of prime order q and let Dict
be a uniformly distributed dictionary of size N = |Dict|. Let GPAKE describe the
gateway-oriented protocol associated with these primitives as defined in Figure 1.
Then,

Advake−kp

GPAKE,G,Dict
(t, qexe, qtest) ≤ 2 ·Advddh

G (t+ (4qexe + 4)τe) ,

where qexe and qtest represent the total number of queries to the Execute and
TestPair oracles; and τe denotes the exponentiation computational time in G.

The proof of Theorem 6 is in [1]. It is worth mentioning that, when proving the
security of GPAKE, we do not give the server access to a Send oracle since we
assume the server to be honest but curious. We do so because, in the actual
implementation of GPAKE, the server is distributed and we assume the majority
of them to be honest (see Section 5). We also note that, in order to prove
key privacy in scenarios where the majority of servers is corrupted, additional
modifications would need to be made to GPAKE. These modifications would
include the addition of an authenticated Diffie-Hellman protocol between C and
G as done in [2] and a proof that the pair (X,Y ) is well formed.

Server Password Protection. The server password protection of GPAKE fol-
lows directly from the password-based chosen-basis decisional Diffie-Hellman as-
sumption (PCDDH) introduced in [3] and recalled in Section 3. More specifically,
it is easy to see that the interaction between the gateway and the server corre-
sponds exactly to the security experiment for PCDDH. Since the security of the
latter was shown in [3] to be only negligibly larger than 2/N , where N is the size
of the dictionary, it follows (via a standard hybrid argument as in [3]) that, in
each interaction with the server, an adversarial gateway cannot do much better
than eliminating two passwords from the list of possible candidates with each
interaction. As a result, after q interactions with the server, the advantage of a
malicious gateway would be only negligibly larger than 2q/N .

5 The Gateway Threshold PAKE System

In this section, our goal is to distribute the authentication server in the previ-
ous gateway-oriented password-based protocol to prevent malicious adversaries
that can corrupt up to k out of n servers. The solution is robust against static
adversaries. The threshold version is transparent from the point of view of the
client since it communicates only with the gateway. The threshold version is also
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transparent from the point of view of the gateway since a special authentication
server, called the combiner, is the only server with which the gateway communi-
cates. We also assume that the channel between the gateway and the combiner
is authenticated and private. We can use signature and encryption schemes in
order to fulfill this requirement using threshold signature and encryption.

Description. Let G is a cyclic subgroup of prime order q. We assume that
the authentication servers {S1, . . . , Sn} share a secret ElGamal encryption key
sk = x using Shamir scheme with threshold k. Server i knows ski = xi and has
a verification key vki = vxi , where v is a generator of G. The encryption of
the password c = Epk(PW) = (ec, fc) under the public ElGamal encryption key
pk = (g, y) is authenticated in a public file. At the beginning of the protocol, the
combiner, S1 wlog, receives X� = X × PW, and Y = gy.

First Stage. The combiner encrypts X� into (e, f) and proves the validity
of the encryption using a zero-knowledge proof of equality of discrete-log
EDLogy,g(e/X

�, f). Given X� and (e, f), where e = X� × yr and f = gr,
then we have to show that logy(e/X�) = logg(f). Then, he broadcasts to all
servers Y,X�, (e, f) and the proof of validity EDLogy,g(e/X�, f).

Second Stage. Each authentication server Si checks the proofs and chooses
a random value si ∈ Zq. Then, he computes Yi = Y si , e′i = (e/ec)si and
f ′i = (f/fc)si along with a proof of validity that Yi and the two parts
of (e′i, f

′
i) have been raised to the same power si: EDLogY,e/ec

(Yi, e′i) and
EDLogY,f/fc

(Yi, f ′i). All these values are broadcast to all the servers.
Third Stage. They check all proofs and they compute the values e′s =

∏
i e
′
i =

e′ i si , f ′s =
∏
i f
′
i = f ′ i si , and Y s =

∏
i Ỹi. Then, they perform a

threshold decryption of (e′s, f ′s) by computing gsi = (f ′s)xi . Next, they prove
the validity of the decryption by computing EDLogf ′s,v(gsi , vki). Finally, they
broadcast the proof along with their decryption share gsi .

Forth Stage. The combiner, without any secret, can compute f ′xs =
∏
i∈S g

sλS
0,i

i

by using Lagrange interpolation formula and X = Xs = e′s/f ′xs using k
valid decryption shares. He sends to the gateway X and Y = Y s using the
authentication and private channel.

For a pictorial description of our threshold protocol, please refer to Figure 2.

Security. We now analyze the security of the threshold variant we just pre-
sented. To this end, we show a reduction between an adversary A against the
threshold scheme and an attacker B against the underlying provably-secure
GPAKE protocol described in the previous section.

Theorem 7. If the underlying GPAKE protocol is semantically secure and the
DDH assumption holds in G, then GTPAKE is a semantically secure threshold
protocol against a static adversary.
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Gateway G Authentication Servers Si

G, Hash1, Hash2 G, Hash1, Hash2
pw ∈ Dict
PW = G(C, G, pw) ∈ G

g, v generators of G, pk = y = gx, sk = x ∈ Zq
ski = xi ∈ Zq, vk = vxi

E ElGamal encryption scheme
c = Epk(PW) = (ec, fc), ec = PW × yk, fc = gk

unauthenticated
channel

authenticated
private
channel

accept ← false

A, X
�

−−−−−−−−→

y
R← Zq, Y ← gy A, X

�
, Y−−−−−−−−→

∗S1 computes and broadcasts
Y, X�, (e, f) = Epk(X

�), EDLogy,g (e/X�, f)
∗Si checks the proof and computes

si
R← Zq, Yi ← Y si

and e′i ← (e/ec)si , f′
i ← (f/fc)si ,

and EDLogY,e/ec
(Yi, e′i), EDLogY,f/fc

(Yi, f′
i)

where (e′, f′) = Epk(X)
and broadcasts the proofs and Yi, e′i, f′

i
∗Si checks the proofs and computes
e′s ← i e′i, f′s ← i f′

i
and Y ← Y s, gs

i ← f′sxi , EDLog
f′s,v

(gs
i , vki)

where s = i si if proofs of Si are correct
and broadcasts the proof and gs

i
∗S1 checks the proofs and decrypts

X ← e′s/f′xs where f′xs ← i∈S g
sλS

0,i
i

X, Y←−−−−−−−− X = Xs, Y = Y s

K ← Xy

AuthG ← Hash2(A, G, X�, Y , K)
G, Y , AuthG←−−−−−−−−

SK ← Hash1(A, G, X�, Y , K)
accept ← true

Fig. 2. Threshold version of the gateway-oriented password-based authenticated key
exchange protocol. Since no change is required on the client side with respect to the
non-threshold protocol in Figure 1, the client side has been omitted in the diagram.

Proof. Our goal is to reduce an adversary A against the GTPAKE protocol to
an attacker B against the GPAKE protocol. We need to simulate the threshold
environment for A that can corrupt any subset of size at most k − 1 servers
from the environment of the attacker B. We essentially need to simulate the
communications among the servers, i.e. the decryption parts at the end of the
protocol and the proofs of validity.

Let i1, . . . , ik−1 be the set of corrupted servers. Recall xi = F (i) mod q for
all 1 ≤ i ≤ n, and x = F (0) mod q.

To simulate the adversary’s view, we simply choose the xij belonging to the
set of corrupted servers at random from the set Zq. This allows us to simulate all
the messages, proofs of validity and decryption shares coming from the corrupted
servers.

Once these values are chosen, the values xi for the uncorrupted servers are
also completely determined modulo q, since we have k points (the k − 1 points
of the corrupted servers and the point 0). The value at point 0 is the decryption
value f ′sx. However, they cannot be easily computed since F (0) is secret and
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corresponds to the secret key of the ElGamal scheme. The ElGamal secret key
cannot be chosen by the attacker B. Indeed, as all the passwords are encrypted
using the ElGamal public key in a public file, B cannot know it, unless he re-
covers the passwords and can easily break the semantic security of the GPAKE
scheme. However, we can easily compute the decryption parts gsi = f ′sxi of the
uncorrupted server by using the value f ′xs:

gsi = f ′sxλ
S
i,0 ×

∏
j∈S\{0}

g
sλS

i,j

j

where S = {0, i1, . . . , ik−1}.
For the “proofs of validity”, one can invoke the random oracle model for the

hash function H to get soundness and perfect zero-knowledge. The soundness is
similar to that in Appendix A.

Moreover, the interactive proof system is zero-knowledge against an honest
verifier since the adversary’s view can be simulated without knowing the values
xi. This view includes the values of the random oracle at those points where the
adversary has queried the oracle, so the simulator is in complete charge of the
random oracle. Whenever, the adversary makes a query to the random oracle,
if the oracle has not been previously defined at the given point, the simulator
defines it to be a random value, and returns the value to the adversary. When we
have to perform a fake proof for (ui, ūi), since the simulator does not know xi, he
chooses at random c ∈ Zq and z ∈ Zq and defines the values of the random oracle
at (p, q, g, ḡ, ui, ūi, gz/uci , ḡ

z/ūi
c) to be c. With all but negligible probability, the

simulator has not defined the random oracle at this point before, and so it is free
to do so. It is easy to verify that the distribution produced by this simulator is
perfect.

Finally, as we need the semantic security of ElGamal encryption scheme, the
security is based on the DDH assumption. �
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A Basic Tools

A.1 Threshold Secret Sharing

Let q be a prime and 1 ≤ k ≤ n < q. Shamir secret sharing over Zq is a k-
out-of n sharing where any subset of at least k parties can recover the secret,
but any subset of strictly less than k parties cannot gain any information about
the secret. It is defined as follows: the dealer knows a secret x ∈ Zq, chooses
k − 1 random points f1, . . . , fk−1 ∈ Zq, sets f0 = x and define the polynomial
F (X) =

∑k−1
j=0 fjX

j. For 1 ≤ i ≤ n, let xi = F (i) ∈ Zq be the i-th share of x.
Thanks to the Lagrange equality, we can show that if k shares are revealed, x
is completely and can be determined by interpolation. For S ⊂ Zq of cardinality
k, any i ∈ Zq and any j ∈ S, there exists an element λS

i,j =
∏
j′∈S\{j}(i −

j′)/
∏
j′∈S\{j}(j − j′) ∈ Zq such that

F (i) =
∑
j∈S

λS
i,jF (j) mod q

A.2 Zero-Knowledge Proof of Equality of Discrete Logarithm

Let G be a group of prime order q with generators g and ḡ. Let EDLogg,ḡ be
the language of pairs (u, ū) ∈ G2 such that logg u = logḡ ū. We will use a zero-
knowledge proof of membership for the language EDLogg,ḡ. It is not a proof of
knowledge since we only want to prove the correctness of the values computed
by the authentication servers. We use the zero-knowledge proof system due to
Chaum and Pedersen[9]. Although it happens to also be a proof of knowledge,
we will not use this property. We describe here the non-interactive version using
the Fiat-Shamir heuristic in the random oracle model.

Let (u, ū) ∈ EDLogg,ḡ be given, so there exists r ∈ Zq such that u = gr and
ū = ḡr.

– The prover chooses t ∈ Zq at random, computes w = gt and w̄ = ḡt. He
computes c = H(p, q, g, ḡ, u, ū,w, w̄) whereH is modeled as a random oracle.
Finally, he computes z = t+ rc mod q and sends to the verifier, (c, z)

– The verifier checks whether the following equality holds

c = H(p, q, g, ḡ, u, ū, gz/uc, ḡz/ūc)
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It is well-known that the interactive version of this proof is sound since a
cheating prover can be accepted only with probability at most 1/q. Assume that
(u, ū) �∈ EDLogg,ḡ, then u = gr and ū = ḡr̄ where r �= r̄. If a proof is correct, then
there exists a unique z such that w = gz/uc and w̄ = ḡz/ūc, then z− rc = t and
z − r̄c = t̄. Therefore, we get t− t̄ = (r̄ − r)c mod q and since r̄ − r �= 0 mod q,
there is a unique value for t− t̄ and so with probability 1/q, the cheating prover
is detected.

Finally, the interactive proof system is zero-knowledge against an honest
verifier

B Proof of Lemma 2

In this section, we show that the Set Password-based Computational Diffie-
Hellman SPCCDH problem is equivalent to the (basic) computational
Diffie-Hellman problem CDH: For proving this relation, one simply applies the
splitting lemma [15]:

Lemma 8 (Splitting Lemma). Let S ⊂ A × B such that Pr[(a, b) ∈ S] ≥ α.
For any β < α, define

T =
{

(a, b) ∈ A×B Pr
b′∈B

[(a, b′) ∈ S] ≥ α− β
}

Then (i) Pr[T ] ≥ β (ii) ∀(a, b) ∈ T ,Prb′∈B[(a, b′) ∈ S] ≥ α− β.

Let A be an adversary against the SPCCDH problem, with success probability
α = 1/N + ε. Then, we can use the splitting lemma, with β = ε/2, on

A = {(ω,X,D)} and B = {1, . . . ,N} ≈ D.

Our adversary B receives as input a random CDH instance (U,X). It chooses a
random tape ω for A, as well as N random distinct exponents ui ∈ Zp. It defines
Ui = Uui , which specifies the dictionary D: with probability greater than ε/2,
the success probability is greater than 1/N + ε/2, over the probability space
B = {1, . . . ,N}. It is thus a multiple of 1/N , not smaller than 1/N + ν, where
ν is the maximum in {1/N, ε/2}. One first simply runs A with a random k,
and with probability greater than 1/N + ν, one gets a first set S1 with K =
CDH(X/Uk,Y ) = CDH(X/Uuk ,Y ). One runs A again, with another random
k′ �= k, and with probability greater than ν, one gets a second set S2 with K ′ =
CDH(X/Uk′ ,Y ) = CDH(X/Uuk′ ,Y ). Then, CDH(X, U) = (K/K ′)1/(uk−uk′ ).
By choosing two elements at random in S1 and S2, one gets CDH(X, U) with
probability 1/s2.
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Abstract. We examine various indistinguishability-based proof models
for key establishment protocols, namely the Bellare & Rogaway (1993,
1995), the Bellare, Pointcheval, & Rogaway (2000), and the Canetti &
Krawczyk (2001) proof models. We then consider several variants of these
proof models, identify several subtle differences between these variants
and models, and compare the relative strengths of the notions of secu-
rity between the models. For each of the pair of relations between the
models (either an implication or a non-implication), we provide proofs
or counter-examples to support the observed relations. We also reveal
a drawback with the original formulation of the Bellare, Pointcheval, &
Rogaway (2000) model, whereby the Corrupt query is not allowed.

1 Introduction

Key establishment protocols are used for distributing shared keying material in
a secure manner. However, despite their importance, the difficulties of obtaining
a high level of assurance in the security of almost any new, or even existing,
protocol are well illustrated with examples of errors found in many such protocols
years after they were published. The treatment of computational complexity
analysis adopts a deductive reasoning process whereby the emphasis is placed on
a proven reduction from the problem of breaking the protocol to another problem
believed to be hard. Such an approach for key establishment protocols was made
popular by Bellare & Rogaway [6] who provide the first formal definition for a
model of adversary capabilities with an associated definition of security (which
we refer to as the BR93 model in this paper). Since then, many research efforts
have been oriented towards this end which have resulted in numerous protocols
with accompanying computational proofs of security proposed in the literature.

The BR93 model has been further revised several times. In 1995, Bellare and
Rogaway analysed a three-party server-based key distribution (3PKD) proto-
col [7] using an extension to the BR93 model, which we refer to as the BR95
model. A more recent revision to the model was proposed in 2000 by Bellare,
� This work was partially funded by the Australian Research Council Discovery Project

Grant DP0345775. The full version of this paper appears in [14].
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Pointcheval and Rogaway [5], hereafter referred to as the BPR2000 model. Col-
lectively, the BR93, BR95, and BPR2000 models will be referred to as the
Bellare–Rogaway models. In independent yet related work, Bellare, Canetti, &
Krawczyk [4] built on the BR93 model and introduced a modular proof model.
However, some drawbacks with this formulation were discovered and this mod-
ular proof model was subsequently modified by Canetti & Krawczyk [12], and
will be referred to as the CK2001 model in this paper.

Proof Models. There are several important differences between the BR93,
BR95, BPR2000, and CK2001 models (which have a significant impact on the
security of the models), as follows:

1. the way partner oracles are defined (i.e., the definition of partnership),
2. the powers of the probabilistic, polynomial-time (PPT) adversary,
3. the modular approach adopted in the CK2001 model, and
4. the provable security goals provided by the models.

DIFFERENCE 1: Security in the models depends on the notions of partner-
ship of oracles and indistinguishability of session keys. The BR93 model defines
partnership using the notion of matching conversations, where a conversation
is a sequence of messages exchanged between some instances of communicating
oracles in a protocol run. Partnership in the BR95 model is defined using the
notion of a partner function, which uses the transcript (the record of all Send
oracle queries) to determine the partner of an oracle by providing a mapping
between two oracles that should share a secret key on completion of the protocol
execution. However, such a partner definition can easily go wrong. One such
example is the partner function described in the original BR95 paper for the
3PKD protocol [7], which was later found to be flawed [15].

The BPR2000 model and the CK2001 model define partnership using the
notion of session identifiers (SIDs). Although in the BPR2000 model, the con-
struction of SIDs is suggested to be the concatenation of messages exchanged
during the protocol run, protocol designers can construct SIDs differently. There
is no formal definition of how SIDs should be defined in the CK2001 model.
Instead, SIDs are defined to be some unique values agreed upon by two commu-
nicating parties prior to the protocol execution. We observe that the way SIDs
are constructed can have an impact on the security of the protocol in the model.

DIFFERENCE 2: The CK2001 model enjoys the strongest adversarial power
(compared to the Bellare–Rogaway models) as the adversary is allowed to ask
the Session-State Reveal query that will return all the internal state (including
any ephemeral parameters but not long-term secret parameters) of the target
session to the adversary. In contrast, most models only allow the adversary to
reveal session keys for uncorrupted parties. In the original BR93 and BPR2000
models, the Corrupt query (that allows the adversary to corrupt any principal at
will, and thereby learn the complete internal state of the corrupted principal) is
not allowed.
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In this paper, we consider the BR93 model which allows the adversary ac-
cess to a Corrupt query because later proofs of security in the BR93 model
[2,8,9,13,16,17,19] allow the Corrupt query. However, we consider the original
BPR2000 model without Corrupt query because the basic notion of BPR2000
freshness restricts the adversary, A, from corrupting anyone in the model (i.e.,
effectively restricting A from asking any Corrupt query). However, we show that
the omission of such a (Corrupt) query in the BPR2000 model allows an insecure
protocol to be proven secure in the model.

DIFFERENCE 3: A major advantage of the CK2001 model is its modular ap-
proach whereby protocols may be proven secure in an ideal world (AM) model
in which the passive adversary is prevented from fabricating messages coming
from uncorrupted principals, and translating such a protocol proven secure in
the AM into one that is secure in the more realistic real world model (the UM).
As Boyd, Mao, & Paterson [10] have pointed out, the CK2001 modular approach
facilitates an engineering approach to protocol design, where protocol compo-
nents may be combined by “mix and match” to tailor to the application at hand
(analogous to a Java API library).

DIFFERENCE 4: Both the BR93 and BPR2000 models provide provable se-
curity for entity authentication & key distribution, whilst the BR95 model pro-
vides provable security for only the key distribution. Intuitively, protocols that
provide both entity authentication and key distribution are “stronger” than pro-
tocols that provide only key distribution. In this paper, we refer to the BR93
and BPR2000 models that provide provable security for only key distribution as
BR93 (KE) and BPR2000 (KE) respectively, and the BR93 and BPR2000 models
that provide provable security for both entity authentication & key distribution
as BR93 (EA+KE) and BPR2000 (EA+KE) respectively.

Motivations. We are motivated by the observations that no formal study has
been devoted to the comparisons of relations and relative strengths of secu-
rity between the Bellare–Rogaway and the Canetti–Krawczyk models. Although
Shoup [18] provides a brief discussion on the Bellare–Rogaway models and the
Canetti–Krawczyk model, his discussion is restricted to an informal comparison
between the Bellare–Rogaway model and his model, and between the Canetti–
Krawczyk model and his model. To the best of our knowledge, no distinction
has ever been made between the Bellare–Rogaway proof model and its variants
shown in Table 1.

Table 1. The Bellare–Rogaway proof model and its variants

Bellare–Rogaway [5,6,7]
↙ ↓ ↘

BR93 BR95 BPR2000
↙ ↘ ↙ ↘

BR93 (KE) BR93 (EA+KE) BPR2000 (KE) BPR2000 (EA+KE)
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CK2001BR93 (KE)

BPR2000 (KE) BR95

4,3.4

4

4,3.4

3.1.1
[14]

([14])

3.6

[14]
[14]

3.2�

3.5⊥

([14])

� holds if SIDs are constructed in the same manner in both models.
⊥ holds if SIDs are not defined to be the concatenation of messages exchanged during
the protocol run.

Fig. 1. Notions of security between the Bellare–Rogaway and Canetti–Krawczyk key
establishment proof models

BR93 (EA+KE)BPR2000 (EA+KE)
3.1

4

BR93 (KE)

CK2001

([14])[14]∇

∇ holds if SIDs are defined to be the concatenation of messages exchanged during the
protocol run.

Fig. 2. Additional comparisons

Contributions. We regard the main contributions of this paper to be of three-
fold significance:

1. contributing towards a better understanding of the different flavours of proof
models for key establishment protocols by working out the relations be-
tween the Bellare–Rogaway proof model (and its variants) and the Canetti–
Krawczyk proof model,

2. demonstrating that the Bellare–Rogaway (and its variants) and the Canetti–
Krawczyk proof models have varying security strength by providing a com-
parison of the relative strengths of the notions of security between them,
and

3. identifying a drawback in the BPR2000 model (not identified in any previ-
ous studies) which allows an insecure protocol to be proven secure in the
BPR2000 model, as presented in Section 4.

This work may ease the understanding of future security protocol proofs (proto-
cols proven secure in one model maybe automatically secure in another model),
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and protocol designers can make an informed decision when choosing an ap-
propriate model in which to prove their protocols secure. Our main results are
summarized in Figures 1 and 2. We observe that if SIDs in the CK2001 model
are defined to be the concatenation of messages exchanged during the protocol
run, then the implication CK2001 → BR93 holds, and the CK2001 model offers
the strongest definition of security compared to the BR93 model.

The notation x→ y denotes that protocols proven secure in model x will also
be secure in model y (i.e., implication relation where x implies y), x � y denotes
that protocols proven secure in model x do not necessarily satisfy the definition
of security in model y. The number on the arrows represent the section in which
the proof is provided, and the numbers in brackets on the arrows represent the
sections in which the implication relation is proven.

Organization. Section 2 provides an informal overview of the Bellare-Rogaway
and Canetti–Krawczyk models. Section 3 provides the proofs of the implication
relations and counter-examples the for non-implication relations shown in Fig-
ures 1 and 2. In these counter-examples, we demonstrate that these protocols
though secure in the existing proof model (in which they are proven secure) are
insecure in another “stronger” proof model. Due to space constraints, some of the
proofs and counter-examples appear in the full version [14]. Section 4 presents
the drawback in the original formulation of the BPR2000 model by using a
three-party password-based key exchange protocol (3PAKE) due to Abdalla &
Pointcheval [1] as a case study. Section 5 presents the conclusions.

2 The Proof Models

In this section, an overview of the Bellare-Rogaway [5,6,7] and Canetti–Krawczyk
models [4,12] is provided primarily for demonstrating the gaps in the rela-
tions and the relative strengths of security between the variants of the Bellare–
Rogaway and the Canetti–Krawczyk models.

Adversarial Powers. In the Bellare-Rogaway and Canetti–Krawczyk models,
the adversary A is defined to be a probabilistic machine that is in control of
all communications between parties via the predefined oracle queries described
below:

Send: This query computes a response according to the protocol specification
and decision on whether to accept or reject yet, and returns them to A.

Session-Key Reveal(U1, U2, i): OracleΠi
U1,U2

, upon receiving a Session-Key Reveal
query, and if it has accepted and holds some session key, will send this ses-
sion key back to A. This query is known as a Reveal(U1, U2, i) query in the
Bellare–Rogaway models.

Session-State Reveal: Oracle Πi
U1,U2

, upon receiving a Session-State Reveal
(U1, U2, i) query and if it has neither accepted nor held some session key,
will return all its internal state (including any ephemeral parameters but
not long-term secret parameters) to A.
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Table 2. Summary of adversarial powers

Oracle Queries BR93 BR95 BPR2000 CK2001
Send Yes Yes Yes Yes

Session-Key Reveal Yes Yes Yes Yes
Session-State Reveal No No No Yes

Corrupt Yes Yes No Yes
Test Yes Yes Yes Yes

Corrupt: The Corrupt(U1) query allows A to corrupt the principal U1 at will, and
thereby learn the complete internal state of the corrupted principal.

Test: The Test(U1, U2, i) query is the only oracle query that does not correspond
to any of A’s abilities. If Πi

U1,U2
has accepted with some session key and is

being asked a Test(U1, U2, i) query, then depending on a randomly chosen bit
b, A is given either the actual session key or a session key drawn randomly
from the session key distribution.

Table 2 provides a comparison of the types of queries allowed for the adversary
between the various BR93, BR95, BPR2000, and CK2001 models.

Definition of Freshness. The notion of freshness of the oracle to whom the
Test query is sent remains the same for the Bellare–Rogaway and Canetti–
Krawczyk models. Freshness is used to identify the session keys about which
A ought not to know anything because A has not revealed any oracles that
have accepted the key and has not corrupted any principals knowing the key.
Definition 1 describes freshness, which depends on the respective partnership
definitions.

Definition 1 (Definition of Freshness). Oracle Πi
A,B is fresh (or holds a

fresh session key) at the end of execution, if, and only if, (1) Πi
A,B has accepted

with or without a partner oracle Πj
B,A, (2) both Πi

A,B and Πj
B,A oracles have

not been sent a Reveal query (or Session-State Reveal in the CK2001 model), and
(3) A and B have not been sent a Corrupt query.

The basic notion of freshness (i.e., does not incorporate the notion of forward
secrecy) in the BPR2000 model requires that no one (including A and B in
requirement 3 of Definition 1) in the model has been sent a Corrupt query. This
effectively restricts A from asking any Corrupt query in the (BPR2000) model.

Definition of Security. Security in the Bellare–Rogaway and the Canetti–
Krawczyk models is defined using the game G, played between a malicious ad-
versary A and a collection of Πi

Ux,Uy
oracles for players Ux, Uy ∈ {U1, . . . , UNp}

and instances i ∈ {1, . . . ,Ns}. The adversary A runs the game G, whose setting
is explained in Table 3.

Success of A in G is quantified in terms of A’s advantage in distinguishing
whether A receives the real key or a random value. A wins if, after asking a
Test(U1, U2, i) query, where Πi

U1,U2
is fresh and has accepted, A’s guess bit b′
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Table 3. Setting of game G

Stage 1: A is able to send any oracle queries at will.
Stage 2: At some point during G, A will choose a fresh session on which to be tested

and send a Test query to the fresh oracle associated with the test session.
Depending on the randomly chosen bit b, A is given either the actual session
key or a session key drawn randomly from the session key distribution.

Stage 3: A continues making any oracle queries at will but cannot make Corrupt
and/or Session-Key Reveal and/or Session-State Reveal queries (depending
on the individual proof model) that trivially expose the test session key.

Stage 4: Eventually, A terminates the game simulation and outputs a bit b′, which
is its guess of the value of b.

equals the bit b selected during the Test(U1, U2, i) query. Let the advantage
function of A be denoted by AdvA(k), where AdvA(k) = 2× Pr[b = b′]− 1.

2.1 The Bellare-Rogaway Models

2.1.1 The BR93 Model
Partnership is defined using the notion of matching conversations, where a con-
versation is defined to be the sequence of messages sent and received by an
oracle. The sequence of messages exchanged (i.e., only the Send oracle queries)
are recorded in the transcript, T . At the end of a protocol run, T will contain
the record of the Send queries and the responses. Definition 2 describes security
for the BR93 model.

Definition 2 (BR93 Security). A protocol is secure in the BR93 model if
for all PPT adversaries A, (1) if uncorrupted oracles Πi

A,B and Πj
B,A complete

with matching conversations, then the probability that there exist i, j such that
Πi
A,B accepted and there is no Πj

B,A that had engaged in a matching session is
negligible, and (2) AdvA(k) is negligible. If both requirements are satisfied, then
Πi
A,B and Πj

B,A will also have the same session key.

Requirement 1 of Definition 2 implies entity authentication, whereby entity au-
thentication is said to be violated if some fresh oracle terminates with no partner.

2.1.2 The BR95 Model
Partnership in the BR95 model is defined using the notion of a partner function,
which uses the transcript (the record of all Send oracle queries) to determine the
partner of an oracle. However, no explicit definition of partnership was provided
in the original paper since there is no single partner function fixed for any proto-
col. Instead, security is defined predicated on the existence of a suitable partner
function. Definition 3 describes security for the BR95 model.

Definition 3 (BR95 Security). A protocol is secure in the BR95 model if
both the following requirements are satisfied (1) when the protocol is run between
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two oracles Πi
A,B and Πj

B,A in the absence of a malicious adversary, both Πi
A,B

and Πj
B,A accept and hold the same session key, (2) for all PPT adversaries A,

AdvA(k) is negligible.

2.1.3 The BPR2000 Model
Partnership in the BPR2000 model is defined based on the notion of session
identifiers (SIDs) where SIDs are suggested to be the concatenation of messages
exchanged during the protocol run. In this model, an oracle who has accepted will
hold the associated session key, a SID and a partner identifier (PID). Definition 4
describes partnership in the BPR2000 model.

Definition 4 (BPR2000 Partnership). Two oracles, Πi
A,B and Πj

B,A, are
partners if, and only if, both oracles have accepted the same session key with the
same SID, have agreed on the same set of principals (i.e. the initiator and the
responder of the protocol), and no other oracles besides Πi

A,B and Πj
B,A have

accepted with the same SID.

In the BPR2000 model, security is described in Definition 5. The notion of secu-
rity for entity authentication is said to be violated if some fresh oracle terminates
with no partner.

Definition 5 (BPR2000 Security). A protocol is secure in the BPR2000
model under the notion of

– key establishment if for all PPT adversaries A, AdvA(k) is negligible.
– mutual authentication if for all PPT adversaries A, the advantage that A

has in violating entity authentication is negligible.

2.2 The Canetti-Krawczyk Model

In the CK2001 model, there are two adversarial models, namely the
unathenticated-links adversarial / real world model (UM) and the authenticated-
links adversarial / ideal world model (AM). Let AUM denote the (active) ad-
versary in the UM, and AAM denote the (passive) adversary in the AM. The
difference between AAM and AUM lies in their powers, namely AAM is restricted
to only delay, delete, and relay messages but not to fabricate any messages or
send a message more than once. Prior to explaining how a provably secure proto-
col in the AM is translated to a provably secure protocol in the UM with the use
of an authenticator, we require definitions of an emulator and an authenticator,
as given in Definitions 6 and 7.

Definition 6 (Definition of an Emulator [4]). Let π and π′ be two protocols
for n parties where π is a protocol in the AM and π′ is a protocol in the UM . π′ is
said to emulate π if for any UM -adversary AUM there exists an AM -adversary
AAM , such that for all inputs, no polyomial time adversary can distinguish the
cumulative outputs of all parties and the adversary between the AM and the UM
with more than negligible probability.
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Definition 7 (Definition of an Authenticator [12]). An authenticator is
defined to be a mapping transforming a protocol πAM in the AM to a protocol
πUM in the UM such that πUM emulates πAM.

In other words, the security proof of the UM protocol in the CK2001 depends on
the security proofs of the MT-authenticator used and that of the AM protocol.
If any of these proofs break down, then the proof of the UM protocol is invalid.

Definitions 8 and 9 describe partnership and security for the CK2001 model.

Definition 8 (Matching Sessions). Two sessions are said to be matching if
they have the same session identifiers (SIDs) and corresponding partner identi-
fiers (PIDs).

Definition 9 (CK2001 Security). A protocol is secure in the CK2001 model
if for all PPT adversaries A, (1) if two uncorrupted oracles Πi

A,B and Πj
B,A

complete matching sessions, then both Πi
A,B and Πj

B,A must hold the same ses-
sion key, and (2) AdvA(k) is negligible.

3 Relating the Notions of Security

In our proofs for each of the implication relations shown in Figure 1, we construct
a primary adversary, PA, against the key establishment protocol in PA’s model
using a secondary adversary SA against the same key establishment protocol
in SA’s model. PA simulates the view of SA by asking all queries of SA to
the respective Send, Session-Key Reveal, Session-State Reveal, Corrupt, and Test
oracles (to which PA has access), and forwards the answers received from the
oracles to SA. The specification of the simulation is given in Figure 3.
Note that Shoup [18–Remark 26] pointed out that an adversaryA in the Bellare–
Rogaway model wins the game if A is able to make two partner oracles accept
different session keys without making any Reveal and Test queries. His findings
are applicable to only the BR93 and CK2001 models where the definitions of
security requires two partner oracles to accept with the same session key, as
described in Definitions 2 and 9 respectively. However, this is not the case for
the BR95 and BPR2000 models.

The notation in this section is as follows: {·}Kenc
U1U2

denotes the encryption
of some message under the encryption key Kenc

U1U2
, the notation [·]KMAC

U1U2
denotes

the computation of MAC digest of some message under the MAC key KMAC
U1U2

,
and SigdU (·) denotes the signature of some message under the signature key dU ,
H denote some secure hash function, || denote concatentation of messages, and
pwd denote some secret password shared between two users.

3.1 Proving Implication Relation: BR93 (EA+KE) → BPR2000
(EA+KE)

Recall that the Corrupt query is not allowed in the BPR2000 model but is allowed
in the BR93 model as shown in Table 2. Intuitively, the model with a greater
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Queries Actions
Send PA is able to answer this query pertaining to any instance of a server or player

by asking its Send oracle.
Session-
Key
Reveal

PA is restricted from asking a Session-Key Reveal query to the target test oracle
or its partner in its own game. Similarly, SA faces the same restrictionR . Hence,
PA is able to answer this query by asking its Reveal oracle and is able to simulate
the Session-Key Reveal query perfectly.

Corrupt SA is disallowed from asking a Corrupt query to the principal of the target test
session or whom the target test session thinks it is communicating with in its
own game. Similarly, the PA faces the same restriction. Hence, PA is able to
answer this query by asking its Corrupt oracle and simulates the Corrupt query
perfectly.

Test If the following conditions are satisfied (under the assumption that both PA
and SA choose the same Test session), then PA queries its Test oracle. The
Test oracle randomly chooses a bit, bTest , and depending on b00, the Test oracle
either returns the actual session key or a random key. PA then answers SA
with the answer received from its Test oracle. Let bSA be the final output of SA
and PA will output bSA as its own answer. PA succeeds and wins the game if
SA does.

– The Test sessions in both PA’s and SA’s simulations have accepted, and
must be fresh.
• Since PA is able to answer all Send, Session-Key Reveal, and Corrupt

queries asked by SA as shown above, if the Test session in SA’s simu-
lation has accepted, so does the same Test session in PA’s simulation.

• Since PA faces the same restriction as SA of not able to reveal or
corrupt an oracle or principal associated with the Test session, if the
Test session in SA’s simulation is fresh, so is the same Test session in
PA’s simulation.

R: subject to the following requirements:

1. non-partners in the simulation of SA are also non-partners in the simulation of
PA so that whatever we can reveal in the simulation of SA, we can also reveal in
the simulation of PA. Alternatively, we require that partners in the simulation of
PA are also partners in the simulation of SA so that whatever we cannot reveal
in the simulation of PA, we also cannot reveal in the simulation of SA.

2. a fresh oracle in the simulation of SA is also a fresh oracle the simulation of PA
so that whatever we cannot reveal in the simulation of SA, we also cannot reveal
in the simulation of PA.

Fig. 3. Specification of simulation between the primary adversary and the secondary
adversary

adversarial power, especially one that allows the adversary access to the entire
internal state of a player (i.e., via the Corrupt query), has a tighter definition of
security than the model with a weaker adversarial power.
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A B

Choose some message mA
m−−−−−−−→ . . .

m′
A−−−−−−−→ Receive some message m′

A

Receive some message m′
B

m′
B←−−−−−−− . . . mB←−−−−−−− Choose some message mB

Fig. 4. An example protocol execution

3.1.1 Proof for the Key Establishment Goal
Let the advantage of some PPT adversary, A00, in the BPR2000 (EA+KE)
model be AdvA00 , and the advantage of some PPT adversary, A93, in the BR93
(EA+KE) model be AdvA93 .

Lemma 1. For any key establishment protocol, for any A00, there exists an A93,
such that AdvA00 = AdvA93 .

Proof (Lemma 1). An adversary A93 against the key establishment protocol in
the BR93 (EA+KE) model is constructed using an adversary A00 against the
same key establishment protocol in the BPR2000 (EA+KE) model, as shown
in Figure 3. In other words, let A93 be the primary adversary and A00 be the
secondary adversary where A93 simulates the view of A00. A93 asks all queries
by A00 to the respective Send oracles, Session-Key Reveal oracles, and Test oracle
(to which A93 has access), and forwards the answers received from the oracles
to A00. Eventually, A00 outputs a guess bit b00 and A93 will output b00 as its
own answer. A93 succeeds and wins the game if A00 does.

In order to demonstrate that the primary adversary, A93, is able to answer
the queries asked by the secondary adversary, A00, we need to satisfy require-
ments 1 and 2 described in Figure 3. Using the example protocol execution shown
in Figure 4, B is said to have a matching conversation with A if, and only if,
message m′A received is the same message mA (i.e., m′A = mA) sent by A, and A
is said to have matching conversation (in the BR93 model) with B if, and only
if, message m′B received is the same message mB (i.e., m′B = mB) sent by B. In
the context of Figure 4, sidA = mA||m′B and sidB = m′A||mA (in the BPR2000
model), and sidA = sidB if message m′A received by B is the same message mA

(i.e., m′A = mA) sent by A, and message m′B received by A is the same message
mB (i.e., m′B = mB) sent by B. Hence, if both A and B have matching conver-
sations, then sidA = mA||m′B = m′A||mA = sidB. If A and B are BR93-secure
protocols, then A and B will also accept with the same session key.

Recall that the BPR2000 definition of partnership requires two oracles to
accept with the same SID, corresponding PID, and the same key, in order to
be considered partners. Now, if A and B do not have matching conversations,
then A and B are not BR93 partners. This also implies that A and B are not
BPR2000 partners since sidA �= sidB. Since non-partners in the simulation of
the secondary adversary, A00, are also non-partners in the simulation of the pri-
mary adversary, A93, requirement 1 (described in Figure 3) is satisfied.

An oracle is considered fresh in the BPR2000 model if it (or its associated
partner, if such a partner exists) has not been asked a Reveal query and an ora-
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cle is considered fresh in the BR93 model if it (or its associated partner, if such
a partner exists) has not been asked either a Reveal or a Corrupt query. Hence,
it follows easily that a fresh oracle in the BPR2000 model is also fresh in the
BR93 model. Hence, both requirements 1 and 2 (described in Figure 3) are sat-
isfied.

To analyse AdvA93 , we first consider the case in which the Test oracle as-
sociated with A93 returns a random key. The probability of A00 guessing the
correct b00 bit is 1

2 since it cannot gain any information about the hidden b93
bit. We then consider the case where the Test oracle associated with A93 returns
the actual session key. In this case, the proof simulation (of A00) is perfect and
A93 runs A00 exactly in the game defining the security of A00. Therefore, if A00

has a non-negligible advantage, so does A93 (i.e., AdvA93 = AdvA00). This is in
violation of our assumption and Lemma 1 follows. �

3.1.2 Proof for the Entity Authentication Goal
By inspection of Definitions 2 and 5, the definitions for entity authentication
in both the BR93 and BPR2000 models are equivalent, whereby entity authen-
tication is said to be violated if some fresh oracle terminates with no partner.
Following from our earlier proofs in Section 3.1.1, we define A93 to simulate
the view of A00. In other words, A93 does anything that A00 does. Since non-
partners in the simulation of A00 are also non-partners in the simulation of A93,
therefore if A00 has a non-negligible probability in violating mutual authentica-
tion, so does A93. This is in violation of our assumption and the proof for entity
authentication follows.

3.2 Proving Implication Relation: CK2001 → BPR2000 (KE)

Recall that one of the key differences between the BPR2000 and the CK2001
models is that the Canetti–Krawczyk adversary is allowed to ask the additional
Session-State Reveal and Corrupt queries, as shown in Table 2. Intuitively, the
model with a greater adversarial power has a tighter definition of security than
the model with a weaker adversarial power. To support our observation, let the
advantage of some PPT adversary in the BPR2000 (KE) model be AdvA00KE ,
and the advantage of some PPT adversary in the CK2001 model be AdvA01 .

Lemma 2. For any key establishment protocol and for any A00KE, there exists
an A01, such that AdvA00KE = AdvA01 .

Proof. An adversary A01 against the security of a key establishment protocol in
the CK2001 (UM) model is constructed using an adversary A01 against the se-
curity of the same key establishment protocol in the BPR2000 (EA+KE) model.
The primary adversary, A01, runs the secondary adversary, A00KE , and has ac-
cess to its Send oracles, Session-State Reveal oracles, Session-Key Reveal oracles,
Corrupt oracles, and Test oracle.

Recall that we assume in Figure 1 that this relation holds if, and only if,
SIDs for both the BPR2000 (KE) and CK2001 model are constructed in the
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same manner. If A and B are BPR2000 partners, then sidA = sidB and A and
B will also be partners in the CK2001 model, since sidA = sidB implies that
both A and B will have matching sessions. Hence, we can say that all CK2001
partners are also BPR2000 partners (under the assumption that SIDs for both
the BPR2000 (KE) and CK2001 model are constructed in the same manner)
and all partners of CK2001-secure protocols are also BPR2000 partners (recall
that in CK2001 security, two partners within a secure protocol must accept the
same session key). This implies requirement 1.

An oracle is considered fresh in the BPR2000 model if it (or its associated
partner, if such a partner exists) has not been asked a Reveal query and an oracle
is considered fresh in the CK2001 model if it (or its associated partner, if such
a partner exists) has not been asked either a Reveal or a Corrupt query. Hence,
it follows easily that a fresh oracle in the BPR2000 model is also fresh in the
CK2001 model. Hence, both requirements 1 and 2 (described in Figure 3) are
satisfied.

To analyse AdvA01 , we first consider the case in which the Test oracle asso-
ciated with A01 returns a random key. The probability of A00KE guessing the
correct b01 bit is 1

2 since it cannot gain any information about the hidden b01 bit.
We then consider the case where the Test oracle associated with A01 returns the
actual session key. In this case, the proof simulation (of A00KE) is perfect and
A01 runs A00KE exactly in the game defining the security of A00KE . Therefore,
if A00KE has a non-negligible advantage, so does A01 (i.e., AdvA00KE = AdvA01

is also non negligible). In other words, if such an adversary, A00KE , exists, so
does A01. This is in violation of our assumption and Lemma 2 follows. �

3.3 Proving Implication Relation: CK2001 → BR93 (KE)

This proof follows on from Section 3.2. Let the advantage of some PPT adversary
in the BR93 (KE) model, A93KE , be AdvA93KE .

Lemma 3. For any key establishment protocol and for any A93KE, there exists
an A01, such that AdvA93KE = AdvA01 .

Proof. We construct an adversaryA01 against the security of a key establishment
protocol in the CK2001 model using an adversary A93KE against the security
of the same key establishment protocol in the BR93 model. Since we assume
that SIDs in the CK2001 model are defined to be the concatenation of messages
exchanged during the protocol run (similar to how SIDs are defined in the proof
that appears in Section 3.1), the discussion on the notion of partnership between
the BPR2000 and BR93 models apply in the discussion on the notion of partner-
ship between the CK2001 and BR93 models. Hence, we can say that all BR93
partners are also CK2001 partners and all CK2001 partners are also BR93 part-
ners (under the assumption that SIDs in the CK2001 model are defined to be
the concatenation of messages sent and received during the protocol execution).
Therefore, A01 is able to simulate the view of A93KE . Note that since A93KE is
not allowed to ask any Session-State Reveal in the BR93 model, A93KE will not
be asking any such queries in the simulation.
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To analyse AdvA01 , we first consider the case in which the Test oracle asso-
ciated with A01 returns a random key. The probability of A93KE guessing the
correct b01 bit is 1

2 since it cannot gain any information about the hidden b01
bit. We then consider the case where the Test oracle associated with A01 returns
the actual session key. In this case, the proof simulation (of A93) is perfect and
A01 runs A93KE exactly in the game defining the security of A93KE . Therefore,
if A93KE has a non-negligible advantage, so does A01 (i.e., AdvA01 = AdvA93KE

is also negligible), in violation of our assumption. Lemma 3 follows. �

3.4 Proving Non-implication Relation: BR93 (KE) / CK2001 �
BPR2000 (KE)

As a counter-example, we revisit and use the improved (Bellare–Rogaway) three-
party key distribution (3PKD) protocol due to Choo et al. [15] which has a proof
of security in the BPR2000 (KE) model. We then demonstrate that this protocol
fails to satisfy the functional requirement. Consequently, the protocol is insecure
in the BR93 (KE) and CK2001 models. Figure 5 desribes the CBHM-3PKD
protocol, which was proven secure in the BPR2000 model. In the protocol, there
are three entities, namely: a trusted server S and two principals A and B who
wish to establish communication.

Figure 6 depicts an example execution of the CBHM-3PKD protocol in the
presence of a malicious adversary. At the end of the protocol execution, both
uncorrupted prinicpals A and B have matching sessions according to Definition 8.
However, they have accepted different session keys (i.e., A accepts session key
SKAB and B accepts session key SKAB,2). This violates Definitions 2 and 9,
which implies that the 3PKD protocol is not secure under the BR93 (KE) and
the CK2001 models. However, according to Definition 4, both A and B are not
BPR2000 partners since they do not agree on the same session key and hence,
the protocol does not violate the BPR2000 security (i.e., Definition 5).

3.5 Proving Non-implication Relation: BR93 (KE) � CK2001

Canetti & Krawczyk prove the basic Diffie–Hellman protocol secure in the
UM [12]. In order to prove BR93 (KE) � CK2001, we modified the (Canetti–
Krawczyk) Diffie–Hellman protocol to include a redundant nonce NBA, as shown
in Figure 7. The modified Diffie–Hellman protocol does not authenticate the re-
dundant nonce NBA. Although NBA is not authenticated, addition of NBA does
not affect the security of the protocol.

1. A −→ B : RA

2. B −→ S : RA, RB

3a. S −→ A : {SKAB}Kenc
AS

, [A, B, RA, RB , {SKAB}Kenc
AS

]KMAC
AS

, RB

3b. S −→ B : {SKAB}Kenc
BS

, [A, B, RA, RB , {SKAB}Kenc
BS

]KMAC
BS

Fig. 5. Choo, Boyd, Hitchcock, & Maitland provably secure 3PKD protocol
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1. A −→ B : RA

2. B −→ S : RA, RB

3a. S −→ A : {SKAB}Kenc
AS

, [A, B, RA, RB , {SKAB}Kenc
AS

]KMAC
AS

, RB

3b. S −→ B : {SKAB}Kenc
BS

, [A, B, RA, RB , {SKAB}Kenc
BS

]KMAC
BS

A intercepts and deletes {SKAB}Kenc
BS

, [A, B, RB, {SKAB}Kenc
BS

]KMAC
BS

.
2. AB −→ S : RA, RB

3a. S −→ A : {SKAB,2}Kenc
AS

, [A, B, RA, RB, {SKAB,2}Kenc
AS

]KMAC
AS

, RB

A intercepts and deletes {SKAB,2}Kenc
AS

, [A, B, RA, {SKAB,2}Kenc
AS

]KMAC
AS

.
3b. S −→ B : {SKAB,2}Kenc

BS
, [A, B, RA, RB, {SKAB,2}Kenc

BS
]KMAC

BS

Fig. 6. Execution of CBHM-3PKD protocol in the presence of a malicious adversary

A B

x ∈ Zq
A, sid, gx

−−−−−−−→ y ∈ Zq

Verify Signature
B, sid, gy, SigdB (B, sid, gy, gx, A), NBA←−−−−−−− y, NBA ∈ Zq

SKAB = gxy A, sid, gy, SigdA(A, sid, gy, gx, B), NBA−−−−−−−→ SKAB = gxy

Fig. 7. A modified (Canetti–Krawczyk) Diffie–Hellman protocol

A A A

A, sid, gx

−−−−−−−→ A, sid, gx

−−−−−−−→
B, sid, gy, SigdB (B, sid, gy, gx, A), NA←−−−−−−− AA

B, sid, gy, SigdB (B, sid, gy, gx, A),NBA←−−−−−−−
A, sid, gy, SigdA(A, sid, gy, gx, B), NA−−−−−−−→ AB

A, sid, gy, SigdA (A, sid, gy, gx, B), NBA−−−−−−−→

Fig. 8. Execution of the modified (Canetti–Krawczyk) Diffie–Hellman protocol in the
presence of a malicious adversary

Figure 8 depicts an example execution of the (Canetti–Krawczyk) Diffie–
Hellman protocol in the presence of a malicious adversary. Recall that we assume
that the non-implication relation: BR93 (KE) � CK2001 holds if, and only if,
SIDs in the CK2001 model are not defined to be concatenation of messages
exchanged during the protocol run, as shown in Figure 1. Let AU denote A
intercepting message and sending fabricating message impersonating U .

At the end of the protocol execution, both A and B are partners according
to Definition 8, since they have matching SIDs and corresponding PIDs (i.e.,
P IDA = B and P IDB = A). In addition, both uncorrupted A and B accept the
same session key, SKAB = gxy = SKBA. The CK2001 definition of security is
not violated (in the sense of Definition 9). However, both A and B did not receive
all of each other’s messages (recall that messages in message round 2 and 3 are
fabricated by A) and neither A’s nor B’s replies were all in response to genuine
messages by B and A respectively. Hence, both A and B are not BR93 partners.
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A (pwdA) S (pwdA, pwdB) B (pwdB)

x ∈R Zp, X = gx r ∈R Zp y ∈R Zp, Y = gy

pwA,1 = G1(pwdA) R ∈R {0, 1}lR pwB,1 = G1(pwdB)
X∗ = X · pwA,1 pwA,1 = G1(pwdA) Y ∗ = Y · pwB,1

A, B, X∗
−−−−−−−→ B, A, Y ∗

←−−−−−−−
pwB,1 = G1(pwdB)

X = X∗/pwA,1, Y = Y ∗/pwB,1

X = Xr, Y = Y r

pwA,2 = G2(R, pwdA, X∗)
pwB,2 = G2(R, pwdB, Y ∗)

S, B, R, Y ∗, Y
∗

←−−−−−−− X
∗

= X · pwB,2, Y
∗

= Y · pwA,2
S, A, R, X∗, X

∗
−−−−−−−→

pwA,2 = G2(R, pwdA, X∗) pwB,2 = G2(R, pwdB, Y ∗)
Y = Y

∗
/pwA,2, K = Y

x
= gxry X = X

∗
/pwB,2, K = Y

x
= gxry

T = (R,X∗, Y ∗, X
∗
, Y

∗
) T = (R, X∗, Y ∗, X

∗
, Y

∗
)

SKA = H(A, B, S, T, K) SKB = H(A, B, S, T, K)

Fig. 9. Abdalla–Pointcheval 3PAKE

Hence, A can obtain a fresh session key of either A or B by revealing non-partner
instances of B or A respectively, in violation of BR93 security (Definition 2).

3.6 Discussion on Non-implication Relation: BPR2000 (KE) �
BR95

Recall that security in the models depend on the notion of partnership. However,
no explicit definition of partnership was provided in the BR95 model and there is
no single partner function fixed for any protocol in the BR95 model. The flawed
partner function for the 3PKD protocol described in the original BR95 paper
was fixed by Choo et al. [15]. However, as Choo et al. has pointed out, there is
no way to securely define a SID for the 3PKD protocol that will preserve the
proof of security. Hence, protocols that are secure in the BR95 model may not
necessarily be able to be proven secure in the BPR2000 (KE) model.

4 A Drawback in the Original Formulation of the
BPR2000 Model

4.1 Case Study: Abdalla–Pointcheval 3PAKE

We revisit the protocol 3PAKE due to Abdalla & Pointcheval [1], which carries
a proof of security in the BPR2000 model, as shown in Figure 9. Let A and B
be two clients who wish to establish a shared session key, SK, S be a trusted
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A (pwdA) A S (pwdA, pwdB, pwdC) A B (pwdB)

A corrupt C and obtain all internal states of C, including pwdC

A, B, X∗
−−−−−−−→ Intercept Intercept B,A, Y ∗

←−−−−−−−
e ∈R Zp, E = ge s.t. underlying value E �= 1

E∗ = E · G1(pwdC)
A, C, X∗
−−−−−−−→ C, A, E∗

←−−−−−−−
pwA,1 = G1(pwdA)
pwC,1 = G1(pwdC)

X = X∗/pwA,1, E = E∗/pwC,1

X = Xr, E = Er

pwA,2 = G2(R, pwdA, X∗)
pwC,2 = G2(R, pwdC , E∗)

X
∗

= X · pwC,2, E
∗

= E · pwA,2

Intercept S, C, R,E∗, E
∗

←−−−−−−−
S, B, R, E∗, E

∗
←−−−−−−− S, A, R, X∗, X

∗
−−−−−−−→

pwA,2 = G2(R, pwdA, X∗) pwC,2 = G2(R, pwdC , E∗)
E = E

∗
/pwA,2, K = E

x
= gxre X = X

∗
/pwC,2, K = E

x
= gxre

T = (R,X∗, E∗, X
∗
, E

∗
) T = (R, X∗, E∗, X

∗
, E

∗
)

SKA = H(A, B, S, T, K) SKC = H(A, B, S, T, K)

Fig. 10. Execution of 3PAKE in the presence of a malicious adversary

server, pwdA (and pwdB) denote the password shared between A and S (B and S
respectively), G1,G2, and H denote random oracles, and lr and lk denote security
parameters.

4.2 New Attack on Abdalla–Pointcheval 3PAKE

Figure 10 describes an execution of 3PAKE in the presence of a malicious ad-
versary, A. Let C be another client who has a shared password, pwdC , with the
server, S. Prior to the start of the communication initiated by A, A corrupts a
non-related player, C (i.e., static corruption), thereby learning all internal states
of C (including the shared password with S, pwdC).

In the attack outlined in Figure 10, A intercepts the first message from
A and changes the identity field in the message from A,B to A,C. A im-
personates A and sends the fabricated message A,C,X∗ to S. A imperson-
ates C and sends another fabricated message C,A, E∗ to S. S, upon receiving
both messages, will respond as per protocol specification. At the end of the
protocol execution, A believes that the session key, SKA = H(A,B, S,T ,K),
is being shared with B. However, B is still waiting for S’s reply, which will
never arrive, since A has intercepted and deleted the message from the net-
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work. However, A is able to compute the fresh session key of A, since A is
able to decrypt and obtain K = gxre and SKA = H(A,B, S,T ,K), since
parameters A,B, S, and T (T is the transcript of the protocol execution) are
public.

Consequently, protocol 3PAKE is insecure. However, this attack1 cannot be
detected in the existing BPR2000 model since Corrupt query is not allowed.
Protocols proven secure in a proof model that allows the “Corrupt” query (in
the proof simulation) ought to be secure against the unknown key share attack,
since if a key is to be shared between some parties, U1 and U2, the corruption
of some other (non-related) player in the protocol, say U3, should not expose
the session key shared between U1 and U2. In other words, protocol 3PAKE
will be insecure in the BR93, BR95, and CK2001 models, since A is able to
trivially expose a fresh session key (i.e., AdvA(k)is non-negligible) by corrupting
a non-partner player.

5 Conclusion and Future Work

We examined the Bellare–Rogaway and Canetti–Krawczyk proof models. We
analysed some non-intuitive gaps in the relations and the relative strengths
of security between both models and their variants. We then provided a de-
tailed comparison of the relative strengths of the notions of security between
the Bellare–Rogaway and Canetti–Krawczyk proof models. We also revealed a
drawback with the BPR2000 model and a previously unpublished flaw in the
Abdalla–Pointcheval protocol 3PAKE [1]. However, such an attack would not
be captured in the model due to the omission of Corrupt queries. Our studies
concluded that (1) if the session identifier (SID) in the CK2001 model is de-
fined to be the concatenation of messages exchanged during the protocol run,
then CK2001 model offers the strongest definition of security compared to the
Bellare–Rogaway model and its variants, and (2) the BPR2000 model is the
weakest model.

As a result of this work, we hope to have contributed towards a better un-
derstanding of the different flavours of proof models for key establishment pro-
tocols (whether protocols proven secure in one model are also secure in another
model). While our studies focus only on the Bellare–Rogaway and Canetti–
Krawczyk models, it would be interesting to extend our work to other compu-
tational complexity proof models (e.g., the proof model due to Shoup [18]) or
other simulation-based proof models (e.g., the universal composability approach
and the black-box simulatability approach due to Canetti et al. [11] and Backes
et al. [3] respectively).

1 Informally, it appears that this attack can be avoided by including the identities of
both A and B when computing pwA,2 and pwB,2.
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Abstract. We introduce the server-aided verification (SAV) concept,
which consists in speeding up the verification step of an authentica-
tion/signature scheme, by delegating a substantial part of computations
to a powerful (but possibly untrusted) server. After giving some moti-
vations for designing SAV protocols, we provide a simple but realistic
model, which captures most situations one can meet in practice (note
that this model is much more general than the one recently proposed
by Hohenberger and Lysyanskaya, who require the server to be made of
two softwares which do not communicate with each other [14]). Then,
we analyze and prove in this model the security of two existing SAV
protocols, namely the Lim-Lee [15] modification of Schnorr scheme [28]
and the Girault-Quisquater variant [10] of GPS scheme [7,24]. Finally, we
propose a generic method for designing SAV versions of schemes based
on bilinear maps, which can be applied to the Boneh-Boyen signature
schemes [3], the Zhang-Safavi-Naini-Susilo [32] signature scheme and the
Shao-Lu-Cao identification scheme [30].

Keywords: identification protocol, digital signature, interactive proof,
zero-knowledge, discrete logarithm, non-repudiation, bilinear map,
pairing.

1 Introduction

Designing efficient signature and identification (or authentication) schemes is one
of the main challenges of public key cryptography. Indeed, with the development
of smart cards and RFID tags, or more generally low cost chips with small
computation capabilities, it becomes crucial to propose schemes suited to such
devices.

Until now, research has essentially focused on speeding up the prover/signer
computations. In particular, zero-knowledge (ZK) paradigm [11] has led to very
efficient schemes, including Fiat-Shamir [6], Guillou-Quisquater [13], Schnorr
[28] and GPS [7,24] protocols. Another research direction was to speed-up RSA
[26] private operation by sharing the computation task with a powerful but un-
trusted computer [16]. The latter approach, usually named ”server-aided RSA”,
is delicate and many proposals have been broken (see e.g. [19,20,22]).

On the other hand, speeding up the verification task has been relatively few
scrutinized. One reason may be that RSA is very efficient from this point of view.

B. Roy (Ed.): ASIACRYPT 2005, LNCS 3788, pp. 605–623, 2005.
c© International Association for Cryptologic Research 2005



606 M. Girault and D. Lefranc

Indeed, the use of a small public exponent leads to a few modular multiplications
to perform, and even only one in the variant from Rabin [25]. Furthermore, the
task of doing a modular reduction can be reduced to a still lighter operation by
using various tricks (e.g. [31]). Finally, batch verification allows a server to verify
many RSA signatures in an optimized manner ([1]).

Nevertheless, RSA leaves open the problem of designing an identification
scheme which is efficient at both ends. A first valuable solution may be ZK
factorization-based schemes, as they generally involve a moderate and well-
balanced computational task at each end. However, in many environments, this
task still remains too heavy. For instance, if the prover’s device is a low cost
smart card and/or if the transaction must take place in very few milliseconds,
then significantly faster computations are required.

Discrete-logarithm-based schemes, when used in their ”coupon mode” ([18]),
allow the signer to compute the signature in a particularly fast manner. A coupon
is essentially a precomputed exponential, leaving the signer with an ultra-light
task (typically a modular multiplication with a small modulus or even less) at
the time of signing. The verifier has a price to pay, since he must compute the
exponential of a rather large number. As a consequence, speeding up verification
step in a discrete-logarithm-based scheme is a very significant challenge, both
from theoretical and practical points of view.

In a client-server environment, this challenge can be solved by using pre-
computation techniques, which allow to decrease the average time of verifica-
tion by a factor close to five [4]. A more general approach would consist in
sharing the computations with a powerful but untrusted server. Since it is the
analogue of ”server-aided RSA” at the verifier’s side, we call it ”server-aided
verification”. The main difference between these two notions is that the ver-
ification does not involve private keys, so that there is no concern with con-
fidentiality. On the other hand, there is a major concern with integrity: the
output of verification step must be trusted by the verifier -or it has no value at
all.

In real world there are many situations in which a secure but not powerful
chip is connected to a powerful but not secure powerful device. For example,
in a GSM mobile telephone, the more sensitive cryptographic operations are
performed in the so-called SIM (Subscriber Identification Module), which is al-
ready aided by the handset chip, mainly to decipher the over-the-air enciphered
conversation. In a payment transaction, a so-called SAM (Secure Access Mod-
ule) is embedded in a terminal already containing a more powerful chip. We
can also mention the example of a smart card plugged into a personal com-
puter, seeing that many PCs will be equipped with smart card readers in a near
future.

This paper is about server-aided verification in general, applied to discrete-
logarithm-based schemes in particular. While not using this name, nor providing
formal definitions and proofs, a few authors have already addressed this problem.
In the late 80’s, at Cardis 2000 conference, Quisquater and De Soete proposed
tricks to speed up RSA verification with a small exponent [31]. At Eurocrypt’95
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conference, Lim and Lee gave a generic method, based on the ”randomization”
of the verification equation [15]. This equation is only known to the verifier, so
that a cheater can solve it only if he guess it: security is unconditional. The
counterpart of this nice method is that the verifier must perform a heavy pre-
computation before carrying out the transaction.

A completely different approach has been proposed by Girault and Quisquater
[10] and described in European NESSIE project final proceedings [9]. While no
precomputation nor randomization is required, the security remains computa-
tional, based on the hardness of a sub-problem (namely factorization) of the
initial underlying problem (namely composite discrete logarithm).

Recently, at TCC’05, Hohenberger and Lysyanskaya addressed the situation
in which the server is made of two untrusted softwares, which are assumed not
to communicate with each other [14]. While this assumption is very particu-
lar and much stronger than ours (since, in essence, we assume that the verifier
does not trust anybody nor anything except himself), it allows a very light
public computation task (typically one modular multiplication in the Schnorr
scheme).

Starting from this background, the motivation of this paper was two-fold:
first, clarify the properties that server-aided verification must satisfy and classify
the different approaches to achieve them; second, extend the class of protocols
for which verification can be server-aided. The result is as follows: in section 2
we define our model and identify three possible approaches to achieve the main
property. In section 3 we prove in this model the security of the two state-of-
the art protocols mentioned above. In section 4 we propose a generic method
applicable to signatures schemes based on bilinear maps (in particular Boneh-
Boyen [3] and Zhang-Safavi-Naini-Susilo [32]), and prove them secure in our
model. Finally, we provide a conclusion.

2 Model

2.1 An Illustrative Example

Let us illustrate the notion of server-aided verification with RSA signature
scheme. In this scheme, the signer computes a signature σ of the message m
by extracting an eth root modulo n of f(m), where f is specific to the exact
scheme which is used (typically f is a combination of some hash-function(s) and
some redundancy function(s)). The verifier checks that σe mod n = f(m). If the
equality holds, σ is accepted; otherwise, it is rejected.

If the verifier has only a small computation capability, he may want to be
aided when checking the equality. So let us suppose that he has access to a more
powerful, but untrusted server or, equivalently, to a trusted server via a non
authenticated communication link. (If the server and the communication link
were both trusted, then the verifier would just ask the server for the verification
of σe mod n = f(m) and the server would reply with OK or NOK). For instance,
the verifier may think of the two following possibilities:
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– Ask the server to compute the value Y = σ
e−1
2 mod n. Then, the server

returns the value Y and the verifier finally checks if f(m) = Y 2σ mod n.
– If the value e = e1×e2, with e1 < e2, then ask the server for the computation

of Y = σe2 mod n so that the verifier only has to check if f(m) = Y e1 mod n.

For each of these protocols, even if it deviates from its assigned part, the
server cannot fool the verifier as long as it does not collude with the (legitimate
or not) prover. Indeed, given n,m and σ, finding Y such that the final verification
equation is satisfied requires the ability to extract (square or eth1 ) roots mod n.

Now, what about a possible collusion between a cheating prover and the
server? In the first protocol, an illegitimate prover and the server can easily
collaborate in order to let the verifier accept a fake signature: the cheater can
choose randomly 0 < Ỹ < n and computes σ̃ = f(m)Ỹ −2 mod n. The cheater
first provides the value σ̃, and then asks the server to answer with the value Ỹ .
Obviously, σ̃ and Ỹ fulfill Ỹ 2σ̃ = f(m) mod n and, as a consequence, the signa-
ture is accepted. Since the solution to be chosen must at least resist a collusion
between the server and an illegitimate prover (which in practice, may be repre-
sented by the same entity), this implies that this first protocol cannot be used.

Fortunately, this attack does not apply to the second protocol. Indeed, it
remains secure against a coalition between a cheating prover and the server
since finding the right value of Y given n and m requires to be able to extract
an eth1 root modulo n.

Nevertheless, a more subtle attack remains possible if the legitimate prover
and the server collaborate. Instead of providing the verifier with the right signa-
ture σ, the legitimate prover may send a value σ̃, correlated to σ in a way known
by the server (e.g. by adding it to a random value). Later, when the verifier wants
to check the signature, he sends a request to the server. The latter reconstructs
σ from n, m and σ̃, which allows him to reply with the right value Y . The veri-
fier is satisfied and stores the pair (m,σ̃). Unfortunately, the stored signature is
wrong and the legitimate prover can easily repudiate it. Here, the point is that
the verifier does not check in any way the consistency between σ̃ and Y .

This leads us to distinguish, in the model that we propose, two kinds of
deviating provers: on one hand the cheaters (who do not know the signature
private key); on the other hand the legitimate provers (who misbehave in order
to make some kind of repudiation possible).

Note however that the latter attack may be of very little significance in
the case of an authentication protocol or more generally when non-repudiation
property is not required.

2.2 Definitions

In this subsection, we formalize the server-aided verification concept. We delib-
erately restrict our model to the situation in which the modification of the basic
protocol does not impact prover’s view of the initial protocol. Indeed, the prover
should not matter whether verification is server-aided or not. Of course, such
an assumption does not prevent the prover from playing himself the role of the
server if both parties find convenient to do so.
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We also assume for simplicity that verification in the initial protocol consists
in checking a predicate at the end of the protocol. Most of the protocols we are
aware work that way, or can be replaced by equivalent protocols which work
that way. First, we precisely define the different types of provers we consider.

Definition 1 (Legitimate/Misbehaving/Cheating). Let π be an interac-
tive proof of knowledge between a (so-called) prover P and a (so-called) verifier
V. As usual, we denote by P̃ a prover which deviates from the protocol. The
(non-deviating) prover P is said legitimate, while P̃ is:

cheating if he does not hold the knowledge he claims to hold (and we denote
him P̃1);

misbehaving if he holds this knowledge (and we denote him P̃2).

We model the prover P , the verifier V and the server S with polynomial
probabilistic Turing machines (PPTM) with respective random tapes ωP , ωV
and ωS . We also consider that the verifier owns an additional tape denoted ω′V
on which precomputed values can be written. The computational cost of the
verifier is defined as the number of steps performed by the Turing machine V .
In practical examples, our computation unit is the n-bit modular multiplication,
which is a O(n2) operation if using a standard algorithm to make it.

We now give the definition of a SAV protocol taking into account an optional
property.

Definition 2 (SAV protocol). Let π be an interactive proof of knowledge be-
tween a prover P and a verifier V, with a common input I of size |I|, and which
halts by verifying a predicate Eπ (we denote Eπ = 1 if the predicate is satisfied,
Eπ = 0 if not). Let π-cost denote the computational cost of V during the execu-
tion of π.

Let π∗ be an interactive protocol between the prover P, the verifier V and a server
S, equal to the composition of two protocols π− and π′ such that:

– the protocol π− is equal to the protocol π without the verification of Eπ;
– the protocol π′ is an interactive protocol between V and S;
– V finally accepts (π∗-accepts) or rejects (π∗-rejects) I by verifying a final

predicate Eπ∗ (we denote Eπ∗ = 1 if the predicate is satisfied, Eπ∗ = 0 if not).

Let π∗-cost denote the computational cost of V during the execution of π∗.
The protocol π∗ is said to be a server-aided verification (SAV) protocol
for π if:

1. (auxiliary completeness)
– ∀I, Pr

ωS ,ωV
(V π∗-accepts I | Eπ = 0) is negligible in |I|.

– ∀I, Pr
ωS ,ωV

(V π∗-rejects I | Eπ = 1) is negligible in |I|.
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2. (auxiliary soundness) ∀I, ∀P̃1, ∀S̃, Pr
ωP̃1

,ωV ,ωS̃
(V π∗-accepts I | Eπ = 0) is

negligible in |I|.

3. (computational gain) The computational cost π∗-cost is strictly less than π-
cost.

If non-repudiation is required, π∗ must also verify:

(auxiliary non-repudiation) ∀I, ∀P̃2, ∀S̃, Pr
ωP̃1

,ωV ,ωS̃
(V π∗-accepts I | Eπ = 0) is

negligible in |I|.

Remark 1. From the definition, proving the auxiliary non-repudiation also
proves the auxiliary soundness which also proves the first condition of the aux-
iliary completeness.

2.3 Achieving the Auxiliary Soundness

We currently distinguish two ways to achieve the auxiliary soundness.

Final Predicate Hard to Know. The final predicate Eπ∗ is constructed from
the predicate Eπ by (secretly) randomizing it, so that only the verifier knows
it. As a consequence, if the prover is a cheater P̃1 (and the predicate Eπ is
false), there is no way for the server S̃ to fool the verifier, even if colluding
with P̃1. The better strategy consists in guessing the randomizing parameter(s),
the probability of which can be easily controlled by choosing the adequate size.
Moreover, this case can be subdivided into two sub-cases:

– Unconditionally unknown predicate: even with unlimited resources, an en-
emy has no better strategy to retrieve the final predicate than guessing it.

– Computationally unknown predicate: it is computationally hard for the en-
emy to retrieve the final predicate.

Final Predicate Hard to Solve. The final predicate Eπ∗ is constructed from
Eπ such that the final predicate is computationally hard to solve. As a conse-
quence, if the prover is a cheater P̃1 (and the predicate Eπ is false), there is no
feasible way for the server S̃ to fool the verifier, even if colluding with P̃1. Note
that the hard problem used in Eπ∗ is necessarily easier than (i.e. can be reduced
to) the one used in Eπ, since auxiliary completeness implies that a solution for
the initial predicate can be turned into a solution for the final one.

2.4 Achieving the Auxiliary Non-repudiation.

A SAV protocol based on an unconditionally unknown predicate verifies the
auxiliary non-repudiation since the security is unconditional (even w.r.t. P̃2).
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In the case of a SAV protocol π∗ based on a hard-to-solve predicate, if the
hard-computational problem used for π∗ can be broken using the private key
involved in the basic protocol π, then a misbehaving prover can obviously break
the SAV protocol so that the auxiliary non-repudiation is not verified.

2.5 Security Model in the Case of Signature Scheme

To prove that the auxiliary soundness (respectively the auxiliary non-repudiation)
of a protocol π∗, we assume that S̃ communicates with P̃1 (respectively P̃2). In
the case of signature schemes, to make a message m and an invalid signature
σ̃ be π∗-accepted, as in classical proofs [12] of signature scheme, we distinguish
different type of attacks. Thus, we assume that P̃1 (respectively P̃2):

(No message attack) has no access to valid signatures.
(Known message attack) obtains a set of valid signatures associated to a

given set of messages.
(Generic message attack) obtains a set of valid signatures associated to a

set of messages of his choice, before knowing the public key.
(Directed chosen message attack) obtains the set of valid signatures asso-

ciated to a set of messages of his choice, before knowing the public key.
(Adaptive chosen message attack) obtains valid signatures for messages of

his choice, after knowing the public key.

In all these attacks, the message m, on which P̃ sends an invalid signature
σ̃, does not belong to the set of messages for which a valid signature is known.

3 SAV Protocols for Identification Schemes

In this section we apply our model to two formerly suggested methods to delegate
computations during the verification step. The first one is a generic method
proposed by Lim and Lee [15] and applicable to many discrete-logarithm-based
schemes. The second one is a modification by Girault and Quisquater [10] of the
GPS scheme, which is particularly interesting in the so-called RSA-like version
of GPS, as proposed by Girault and Paillès [8]. We prove that these two solutions
are both SAV protocols in the sense of section 2.2.

3.1 An Unconditionally-Unknown-Predicate-Based SAV Protocol

At Eurocrypt’95, Lim and Lee suggested a general method to delegate computa-
tions during the verification step of discrete-logarithm-based schemes (signature
and identification) [15]. In this paper, the computations are not delegated to any
server, but to the prover himself. Our approach is more general but their results
can be easily adapted to it. To validate (or not) their generic method, we analyze
it when applied to the Schnorr identification scheme; the results presented below
remain valid for the Schnorr signature scheme.
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Prover Verifier Server

k ∈ [[0, 2t[[, k−1 mod q
K ∈ [[0, q[[, Z = g−K mod p

r ∈ [[0, q[[
W = gr mod p

W−−−−−→
c←−−−− c ∈ [[0, 2t[[

y = r + sc mod q
y−−−−→

check y ∈ [[0, q[[
do not check gyvc = W mod p

u = k−1(y + K) mod q
g,u,p−−−−−−−→

Y←−−−−− Y = gu mod p

check Y kZvc = W mod p

Fig. 1. The Lim-Lee modification of the Schnorr identification scheme

The Lim-Lee Protocol. In the Schnorr identification scheme, a prover owns a
private key s and a public key (g, p, q, v) such that g is of prime order q modulo
a prime integer p and v = g−s mod p (generally, g, p and q are system parame-
ters). The Lim-Lee protocol is described in Fig. 1. In particular, it requires the
precomputations of two values Z and k−1 mod q.

Theorem 1. Let I be a public key (g, p, q, v) and t the security parameter for
the Schnorr scheme. The Lim-Lee protocol is a SAV protocol for the Schnorr
Scheme if |q| > t and log2 |I| = o(t).

Proof. Let Eπ and Eπ∗ denote respectively the verification of
(
y ∈ [[0, q[[ and

gyvc = W mod p
)

and
(
y ∈ [[0, q[[ and Y kZvc = W mod p

)
.

Auxiliary completeness. In the Lim-Lee method, (Eπ = 1) ⇐⇒ (Eπ∗ = 1)
stands so that Pr

ωS ,ωV
(V π∗-accepts I | Eπ = 0)= 0 and Pr

ωS ,ωV
(V π∗-rejects I |

Eπ = 1)= 0.

Auxiliary soundness. We assume Eπ = 0. From the given values u and y such
that u = k−1(y + K) mod q, with k ∈ [[0, 2t[[ and K ∈ [[0, q[[, the entropy over
k, in the sense of the Shannon theory, is then exactly equal to t so that k is
unconditionally unknown. Since only one value k satisfies the final equation Eπ∗ ,
the probability that V π∗-accepts is equal to to 2−t (the probability of guessing
the right k). This probability is negligible if log2 |I| = o(t).

Computational gain. In section 2.2, we assumed that the Turing machine
associated to the verifier owns an additional tape to store precomputed values so
that, when considering the computational cost of the verifier, these precomputed
values are not taken into account.
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Remark 2. As described in [28], by using an extension of the square and multiply
algorithm with the precomputed value gv, the computation of gyvc mod p, with
|y| = l, |c| = t requires on average 1.5l+ 0.25t modular multiplications.

In the Schnorr scheme, since |y| = |q| and |c| = |k| = t, π-cost is equal to
1.5|q|+0.25t modular multiplications. In the Lim-Lee protocol, computing Y kvc

requires 1.75t modular multiplications and multiplying by Z requires one more,
i.e π∗-cost is equal to 1.75t+1 modular multiplications. If we omit the negligible
cost of the modular multiplication k−1(y + K) mod q, the difference of compu-
tational costs, given by 1.5(|q| − t)− 1, is greater than 0 if |q| > t.

Auxiliary non-repudiation. As the security of the SAV relies on the perfect
privacy of k, i.e the unconditional security of the transformation over y, even the
misbehaving prover has no advantage over a cheater to determine this value k. �

Example 1. Typically, q is a 160-bit number and t is equal to 32. Thus, the Lim-
Lee protocol decreases by around 75% the computational cost of the verifier.

Remark 3. If, for one reason or another, the size of q is significantly larger than
160 bits, we can also design a SAV protocol based on a computationally unknown
predicate. The verifier precomputes h = gK mod p with K typically a 160-bit
number; the server computes Y = hy mod p and the verifier finally checks if
Y = (Wv−c)K mod p. This SAV protocol does not verify the auxiliary non-
repudiation.

3.2 A Hard-to-Solve-Predicate-Based SAV Protocol

The Protocol. The RSA-like GPS identification scheme was presented by Gi-
rault and Paillès at WCC’03 [8]. It is a variant of the GPS identification scheme
[7,24], based on the intractability of the RSA problem. In this scheme, a prover
P owns a public key (n,g,f ,e) and a private key s such that e is a prime integer
and es = 1 mod φ(n), f = g−s mod n and, as a consequence, g = f−e mod n.

In the same paper [8], Girault and Paillès suggest a method to delegate to a
server some computations of the verification step. This protocol, called server-
aided RSA-like GPS identification scheme, is described in Fig. 2. This method is
essentially the same as the one proposed by Girault and Quisquater at Eurocrypt
2002 rump session and applied to the basic GPS identification scheme; it can be
found in [9].

In the following, we denote π the RSA-like GPS identification scheme and
π∗ the server-aided RSA-like GPS identification scheme.

Theorem 2. Let I be a public key (n,g,f ,e) for π. Under the intractability of
the RSA problem, π∗ is a SAV protocol for π if log2 |I| = o(log2 e).

Proof. We denote Eπ and Eπ∗ the respective verification of equations of
(
y ∈

[[0, 2R + en[[ and gyf c = W mod n
)

and
(
y ∈ [[0, 2R + en[[ and Y ∈]]0, n[[ and

Y ef c = W mod n
)
.



614 M. Girault and D. Lefranc

Prover Verifier Server

r ∈ [[0, 2R[[
W = gr mod n

W−−−−−→
c←−−−− c ∈ [[0, e[[

y = r + sc
y−−−−→

Check y ∈ [[0, 2R + en[[

do not check gyfc = W mod n
f,y,n−−−−−−−→

Y←−−−−− Y = f−y mod n
check Y ∈]]0, n[[
check Y efc = W mod n

Fig. 2. The server-aided RSA-like GPS identification scheme

Auxiliary completeness. (Eπ = 1) ⇐⇒ (Eπ∗ = 1) stands so that, using the
same argument as in the proof of the Lim-Lee protocol, the auxiliary complete-
ness is verified.

Auxiliary soundness. We assume Eπ = 0. The proof relies on the following
lemma.

Lemma 1. Assuming Eπ = 0, if I is π∗-accepted with a probability greater than
ε′ = 1

e + ε, then, an eth root of the public key f can be computed in time less
than 4τ/ε′, with a probability greater than ε2

6(ε′)2 , τ denoting the average running
time of π∗.

Proof. Assuming Eπ = 0, with a classical consideration (see e.g [13]), the prob-
ability of success in π∗ is at least 1/e. This probability is negligible in |I| if
log2 |I| = o(log2 e). Let us assume that

Pr
ωP̃1

,ωV ,ωS̃
(V π∗-accepts I | Eπ = 0) ≥ 1/e + ε = ε′.

In appendix A, we describe an algorithm which returns, in time less than 4τ/ε′

and with a probability greater than ε2

6ε′2 , two triplets (W ,c1,Y1) and (W ,c2,Y2)
with c1 �= c2, Y1 �= 0 and Y2 �= 0.

These two triplets verify Y e
1 f

c1 = Y e
2 f

c2 mod n. Without loss of generality,
we assume that c2 > c1 so that 0 < c2 − c1 < e. Since e is a prime integer,
gcd(e, c2−c1) = 1, so that there exist two integers a and b such that a×e+b×(c2−
c1) = 1. Then, we obtain f =

(
fa(Y1/Y2)b

)e mod n so that fa(Y1/Y2)b mod n
is an eth root of the public key f . �

Computational gain. Let l denote the binary size of y; using Remark 2, the
computation cost of the verifier in π∗ is equal to 1.75|e| whereas in π, it is equal
to 1.5l+ 0.25|e|. Due to the absence of modular reduction in y, the difference of
computational costs, given by 1.5(l− |e|), is greater than 0.
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Auxiliary non-repudiation. A misbehaving prover P̃2 involved in π∗ knows
the inverse s of e modulo φ(n). Thus, for this prover, solving the RSA problem
is easy, and the auxiliary non-repudiation cannot be verified. �

Example 2. Typically, n is a 1024-bit number, e is a 32-bit number and s is a
1024-bit number. No modular reduction is required so that y is around a 1050-bit
number. Using the server-aided RSA-like GPS scheme, the computational cost
of the verifier is decreased by around 95%.

Remark 4. Two other SAV protocols for GPS family can be considered; the first
one verifies the auxiliary non-repudiation and is in the Lim-Lee article [15]; the
second one is the same as in Remark 3.

4 First SAV Protocols for Pairing-Based Schemes

In this part, we present a generic SAV protocol applicable to several signature
schemes based on bilinear maps (or pairings): in particular, the ZSNS signature
scheme from Zhang, Safavi-Naini and Susilo [32] and the Boneh-Boyen signature
schemes [3] (it also applies on the identification scheme from Shao, Lu and
Cao [30] which is constructed from one of the Boneh-Boyen signature schemes).

4.1 The Generic SAV Protocol

We assume the existence of a bilinear map e : G ×G→ G1. The groups G and
G1 are cyclic groups of prime order p and e(g, g) �= 1.

The method applies on schemes in which the verifier checks if e
(
σ, f(I,m, r)

)
=

e(g, g), such that f is a public function specific to the scheme, I the public pa-
rameters including the public key, (r,sigma) defines the signature of a message.
Depending of the scheme, r exists or not.

The basic idea of our generic SAV protocol is to delegate the (expensive)
pairing execution to the server, the verifier being left with two (relatively much
faster) exponentiations, one of them being precomputable. On the whole, it
consists in first executing the signature scheme and, instead of verifying the
equation e

(
σ, f(I,m, r)

)
= e(g, g), in running the following protocol with a

server.

1. The verifier randomly picks an integer t ∈ [[0, p[[, and precomputes e(g, g)t.
2. After receiving a message and its signature, the verifier computes the value
α =

(
f(I,m, r)

)t and sends it with σ to the server.
3. The server computes the value β = e(σ, α) and sends it back to the verifier.
4. The verifier finally checks if β = e(g, g)t.

Auxiliary completeness. The equivalence e
(
σ, f(I,m, r)

)
= e(g, g)⇐⇒e(σ, α)=

e(g, g)t stands and using the same argument as in the proof of the Lim-Lee
protocol, the auxiliary completeness is verified.
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Auxiliary non-repudiation. Our SAV construction allows the misbehaving
prover P̃2 to send any value σ̃. Then, during the computation of β, P̃2 transmit
the right value σ to S̃ so that I is finally π∗-accepted. The hard computational
problem involved in the SAV protocol can be easily solved using the private key
of the basic protocol. The auxiliary non-repudiation cannot be verified.

4.2 Application to the ZSNS Signature Scheme

In the ZSNS scheme [32], the signer owns public parameters
(
g,p,e(g, g)

)
, a

public key U and a private key x such that U = gx. To sign a message m, the
signer computes the signature σ = 1

H(m)+x , with H a hash function from {0, 1}∗

into [[0, p[[. The verifier accepts the signature if e(σ, gH(m)U) = e(g, g) (in the
generic description, f(I,m, r) corresponds to gH(m)U). This scheme is secure
against an adaptive chosen message attack in the random oracle model, under
the intractability of the k-CAA problem introduced by Mitsunari et al. [17]:

given g, gx, h0, h1 . . . , hk (hi all different), g
1

h1+x ,. . . , g
1

hk+x , output g
1

h0+x .

We define the k-Bilinear CAA problem (k-BCAA) as follows:

given g, gx, h0,. . . , hk (hi all different), g
1

h1+x ,. . . , g
1

hk+x , output e(g, g)
1

h0+x .

In appendix B, we prove this problem is harder than the (k+1)-Bilinear Diffie
Hellman Inversion problem

(
(k + 1)-BDHI

)
introduced by Boneh and Boyen in

[2].
Let π denote the ZSNS signature scheme, π∗ the generic protocol presented in

section 4.1 applied to π, Eπ the verification of the equation e(σ, gH(m)U) = e(g, g)
and Eπ∗ the verification of equation β = e(g, g)t.

Theorem 3. The protocol π∗ is a SAV protocol for π, secure against adaptive
chosen message attacks in the random oracle model under the intractability of
the k-BCAA problem.

Proof. The auxiliary completeness is already proved in section 4.1.
Auxiliary soundness. Using the model of security of section 2.5, it relies on
the following lemma.

Lemma 2. (With the above notations) Assuming Eπ = 0, if the server S̃, com-
municating with a cheater P̃1 which asks qH queries to the hash oracle and qS
(< qH) queries to the signing oracle, makes I be π∗-accepted with a probability
greater than ε, then the q-BCAA problem, q ≥ qH + qS − 1, can be solved with
a probability of success greater than (1−ε′)ε

qH
and in time O(τ); with τ denoting

the average running time of π∗ and ε′ the probability of success of a qS adaptive
chosen message attack against the ZSNS signature scheme.

Let us consider the following random instance of the q-BCAA problem: given
g, gx, h0, h1,. . . , hq (hi all different), g

1
h1+x ,. . . , g

1
hq+x , output e(g, g)

1
h0+x .
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We now construct an algorithm A which interacts with P̃1 and S̃, and which
solves the above instance of the q-BCAA problem. We assume that P̃1 never
repeats two same queries to each oracle but can ask a same query to both
oracles.

S1 A prepares a set of answers for the hash oracle: H = {w0,w1, . . . ,wqH−1} ⊂{
h0, h1, . . . hq

}
such that h0 ∈ H. A also establishes a list lH , initially empty,

of queries with the corresponding answered hash value.
S2 When P̃1 makes a hash query mi, for 0 ≤ i ≤ (qH − 1), A answers wi and

adds the couple (mi,wi) in lH . We denote by m̃ the hash query for which
the answer is h0. If mi has already been queried to the signing oracle, there
exists a couple (mi,wi) in lH and A answers wi.

S3 A also establishes a set SH , initially empty. When P̃1 makes a signing query
mi, two cases are possible: if mi has already been queried to the hash oracle,
there exists a unique couple (mi,wi) in lH ; if mi = m̃, then A fails, otherwise
A answers g

1
wi+x . If mi has not been queried to the hash oracle, then A

randomly chooses hi ∈
{
h0, h1, . . . , hq

}
\
(
H∪SH

)
, answers g

1
hi+x , adds the

couple (mi,hi) in lH and adds hi in SH .
S4 After making all the queries to the oracles, P̃1 outputs a couple (m∗,σ∗). If

the message m∗ is not equal to m̃ and if (m∗,σ∗) is such that Eπ = 0, then
A sends to S̃ the value α = gt = g(h0+x)× t

h0+x for a random value t ∈ [[0, p[[;
otherwise, A fails and then stops.

S5 Finally, S̃ answers a value β. A π∗-accepts the couple (m∗,σ∗) if β =
e(g, g)

t
h0+x .

Let nH denote the number of queries first asked to the random oracle and
then asked to the signing oracle. Assuming the hash function behaves like a
random oracle, the cheater P̃1 cannot distinguish the algorithm A from a real
attack scenario. Moreover the server S̃ cannot distinguish the value gt from a
value gt

′(h0+x) since t is randomly picked in ∈ [[0, p[[. Finally, A ends if :

1. in step S3, the messages queried to the signing oracle are all different from
m̃ which occurs with a probability equal to qH−nH

qH
,

2. in step S4, the message m∗ is equal to m̃ and (m∗,σ∗) is such that Eπ = 0
which occurs with probability greater than (1− ε′)/(qH − nH),

3. in step S5, S̃ answers a value β such that βt
−1

= e(g, g)
1

h0+x , which happens
with a probability greater than ε.

As a consequence, the probability of success of the algorithm is greater than
(1−ε′)ε
qH

.

Computational gain. The hash value H(m) is assumed to be of size |p| so
that, using the Remark 2, computing (UgH(m))t requires 1.75|p| modular multi-
plications which corresponds to the verifier cost (since e(g, g)t is precomputed).
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Remark 5. It is often complained that a pairing evaluation is too computational
expensive to be used in practice. If we consider that such an evaluation is equiv-
alent to the computation of around 4 group exponentiations, then it requires in
average 6|p| group multiplications.

Using the above remark, and considering that the computation of Ugh(m)

requires 1.5|p|+1 modular multiplications, we obtain a final cost for the verifier
equal to 7.5|p|+1 modular multiplications for the basic ZSNS signature scheme.
The computation cost in π∗ is obviously less than in π such that the computa-
tional cost of the verifier is decreased by around 70%. �

5 Conclusion

We have first formalized the concept of a server-aided verification (SAV) proto-
col, and introduced three properties for such a protocol. Two of them, called aux-
iliary completeness and auxiliary soundness, are mandatory, while the third one,
called auxiliary non-repudiation, must be satisfied only when non-repudiation is
required.

In a second time, we have analyzed in this new model two already existing
SAV protocols, which both happen to reach the mandatory properties. The first
one, proposed by Lim and Lee [15], verifies the auxiliary non-repudiation at
the price of requiring the verifier to precompute some values. The second one,
initially suggested by Girault and Quisquater [10], is easy to plug into protocols
of GPS family, but do not achieve the optional property.

Finally, we have presented a generic SAV protocol for pairing-based schemes,
applicable in particular to the Zhang et al. [32] and the Boneh-Boyen [3] signature
schemes. Our new method consists in making the server perform the heaviest
computation, namely the pairing evaluation, so that the scheme becomes al-
most as efficient as a ”classical” discrete-logarithm-based signature scheme. But
since only the mandatory properties are satisfied, it remains an open problem
to find SAV protocols for pairing-based schemes which verify the auxiliary non-
repudiation. The Fig. 3 compares the two main characteristics of the different
protocols considered in this article.

SAV protocol Auxiliary non-repudiation Computational gain
The Lim-Lee method yes 85%

Server-aided RSA-like GPS scheme no 95%
Our generic SAV protocol no 70%

Fig. 3. The different SAV protocols of this article
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A Algorithm from Lemma 1

Let us consider the following algorithm, constructed from [29].

To analyze this algorithm, we first recall a well-known probabilistic lemma
(see [23] for the proof).
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i := 0
do i = i+ 1

Choose a random tape ωP̃1
and compute W

Send P̃1 a random c1 in [[0, e[[
Obtain from P̃1 the answer y1 and check Eπ

Ask the server S̃ the computation of Y1

until
(
(Eπ = 0) and (Y e

1 v
c1 = W )

)
j := 0
do j = j + 1

Send P̃1 a random c2 �= c1 in [[0, e[[
Obtain from P̃1 the answer y2 and check Eπ

Ask the server S̃ the computation of Y2

until
((

(Eπ = 0) and (Y e
2 v

c2 = W )
)

or (i == j)
)

if
(
(Eπ = 0) and (Y e

2 v
c2 = W )

)
then return (W ,c1,Y1) and (W ,c2,Y2)
else return FAIL.

Lemma 3. Let A be an event defined on X ×Y such that Pr
x,y

(
A(x, y)

)
≥ ε and

let Ω =
{
a ∈ X; Pr

x,y

(
A(x, y)

)
≥ ε − α

}
, then: Pr

x
(x ∈ Ω) ≥ α and Pr

x

(
x ∈

Ω|A(x, y)
)
≥ α/ε.

We assume Pr
ωP̃1

,ωV ,ωS̃
(V π∗-accepts I | Eπ = 0) ≥ 1/e + ε = ε′. Let Ω be the set

of random tapes ωP̃1
such that Pr

ωV ,ωS̃
(V π∗-accepts I | Eπ = 0) = 1/e + ε/2.

Let us now consider the probability of success of this algorithm. Since the GPS
RSA-like identification scheme is sound, the probability of success (i.e Eπ = 1)
of a cheater P̃1 is less of equal to 1/e so that the probability that (Eπ = 0) is
great or equal than (1− 1/e).

The probability of success of the first loop is, by definition of S̃ and P̃1, greater
than (1− 1/e)ε′; and for any integer N , i is equal to N with a probability equal
to ε′(1 − 1/e)× (1− ε′(1 − 1/e))N−1.

The probability that the first loop succeeds with a random tape ωP̃1
lies in

Ω is greater than ε/(2× ε′) (using lemma 3).
If ωP̃1

in Ω, the second loop ends with (Eπ = 0) and (Y e
2 v

c2 = W ) with
a probability greater than ε/2(1 − 1/e); otherwise, Pr

ωP̃1
,ωV ,ωS̃

(V π∗-accepts I |

Eπ = 0) ≤ ε′. Thus, finding this second value c2 before j = N occurs with a
probability greater than 1 −

(
1 − ε/2(1 − 1/e)

)N . Then, the full probability of
success of the algorithm is:

+∞∑
i=1

ε′(1− 1
e
)
(
1− ε′(1 − 1

e
)
)i−1

× ε

2ε′
×
(

1−
(
1− ε

2
(1− 1

e
)
)i)
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which can be rewritten as :

ε

2
(1−1

e
)

(
+∞∑
i=0

(
1−ε′(1−1

e
)
)i
−(1− ε

2
(1−1

e
))

+∞∑
i=0

(
(1−ε′(1−1

e
))(1− ε

2
(1−1

e
))
)i)

Using the equality
∑+∞
i=0 x

i = 1
1−x , we obtain

ε

2
(1− 1

e
)

(
1

ε′(1− 1
e )
−

(
1− ε

2 (1− 1
e )
)

ε′(1− 1
e )
(
(1 + ε

2ε′ )− ε
2 (1− 1

e )
))

=
ε2

4ε′2
(
(1 + ε

2ε′ )− ε
2 (1− 1

e )
)

Since ε′ > ε, we obtain (1 + ε
2ε′ ) − ε

2 (1 − 1
e ) ≤ 1 + ε

2ε′ ≤ (1 + 1
2 ) ≤ 3/2, so

that the algorithm succeeds with a probability greater than ε2

6ε′2 . The running
time of the algorithm is 2τ

(1−1/e)ε′ ≤ 4τ
ε′ with τ the average running time of the

SAV protocol.

B k-BCAA is a Stronger Problem Than (k + 1)-BDHI

We recall that the k-BCAA problem is defined by:

given g, gx, h0, h1,. . . , hk (hi all different), g
1

h1+x ,. . . , g
1

hk+x , output e(g, g)
1

h0+x .

The (k + 1)-BDHI problem from [2] is defined by:

given f , fy, fy2
,. . . , fyk+1

; output e(f, f)
1
y .

We assume there exists an algorithm which solves the k-BCAA problem and
we consider the following given input for the (k + 1)-BDHI problem: f , fy,
fy2

,. . . , fyk+1
for a non zero y.

First, we need to construct a valid input for the k-BCAA problem. Let Ai

denote fyi ∀i ∈ [[0, k + 1]] and let Bi denote e(f, f)yi ∀i ∈ [[0, 2k − 1]].

Construction of the input of the k-BCAA problem. The method used
here is inspired by Mitsunari et al. [17]. Let h0, h1,. . . , hk be k+1 distinct random
values in [[0, q[[ and let P (Y ) be the polynomial given by

∏k
i=1(Y −h0 +hi). This

polynomial is of degree k in Y and can be expanded into P (Y ) =
∑k

i=0 αiY
i.

Let g be the value fP (y) which is obtained by computing
∏k
i=0(Ai)αi and let

PK be the value g−h0
∏k
i=0(Ai+1)αi which is also equal to gy−h0 .

Moreover, ∀j ∈ [[1, k]], let Pj(Y ) be the polynomial given by
∏k
i=1;i�=j(Y −

h0 + hi), so that (Y − h0 + hj)Pj(Y ) = P (Y ); each Pj(Y ) can be expanded into∑k−1
i=0 β

j
i Y

i. Then, ∀j ∈ [[1, k]], we denote by Sj the value
∏k−1
i=0 (Ai)β

j
i which is

equal to fPj(y) = fP (y)/(y−h0+hj) = g1/(y−h0+hj).
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If we finally denote x = y − h0, we then obtain h0, h1,. . . , hk, g, PK =
gx, S1 = g1/(x+h1),. . . , Sk = g1/(x+hk) so that we have constructed a valid
input for the algorithm solving the k-BCAA problem: we obtain the solution
e(g, g)1/(x+h0) for the current instance of the k-BCAA problem.

Recovering the solution of the (k + 1)-BDHI. The output value of the
k-BCAA problem e(g, g)1/(x+h0) is equal, by definition, to e(g, g)1/y and more
precisely, to e(f, f)P

2(y)/y (we have assumed y is a non zero value).
Let P ′(Y ) be the rational fraction P 2(Y )/Y which can be written as γ−1

Y +∑2k−1
i=0 γiY

i; γ−1 is a non zero value equal to
∏k
i=1(hi − h0). Thus,

e(g, g)1/(x+h0) = e(f, f)P
2(y)/y = e(f, f)

γ−1
y + 2k−1

i=0 γiy
i

= e(f, f)
γ−1

y
∏2k−1
i=0 Bγi

i .

As a consequence, we obtain:

e(f, f)
1
y =

(
e(g, g)1/(x+h0)

∏2k−1
i=0 B−γi

i

)γ −1
−1
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Abstract. Proofs are invaluable tools in assuring protocol implementers
about the security properties of protocols. However, several instances of
undetected flaws in the proofs of protocols (resulting in flawed protocols)
undermine the credibility of provably-secure protocols. In this work, we
examine several protocols with claimed proofs of security by Boyd &
González Nieto (2003), Jakobsson & Pointcheval (2001), and Wong &
Chan (2001), and an authenticator by Bellare, Canetti, & Krawczyk
(1998). Using these protocols as case studies, we reveal previously un-
published flaws in these protocols and their proofs. We hope our analysis
will enable similar mistakes to be avoided in the future.

1 Introduction

Despite cryptographic protocols being fundamental to many diverse secure elec-
tronic commerce applications, and the enormous amount of research effort ex-
pended in design and analysis of such protocols, the design of secure crypto-
graphic protocols is still notoriously hard. The difficulty of obtaining a high
level of assurance in the security of almost any new or even existing protocols is
well illustrated with examples of errors found in many such protocols years after
they were published. The many flaws discovered in published protocols for key
establishment and authentication over many years, have promoted the use of for-
mal models and rigorous security proofs, namely the computational complexity
approach and the computer security approach.

Computer Security Approach: Emphasis in the computer security approach is
placed on automated machine specification and analysis. The Dolev & Yao [13]
adversarial model is the de-facto model used in formal specifications, where
cryptographic operations are often used in a “black box” fashion ignoring some of
the cryptographic properties, resulting in possible loss of partial information. The
main obstacles in this automated approach are undecidability and intractability,
since the adversary can have a large set of possible actions which results in a
state explosion. Protocols proven secure in such a manner could possibly be
flawed – giving a false positive result.

B. Roy (Ed.): ASIACRYPT 2005, LNCS 3788, pp. 624–643, 2005.
c© International Association for Cryptologic Research 2005
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ComputationalComplexityApproach: On the other hand, the computational com-
plexity approach adopts a deductive reasoning process whereby the emphasis is
placed on a proven reduction from the problem of breaking the protocol to an-
other problem believed to be hard. The first treatment of computational complex-
ity analysis for cryptography began in the 1980s [14] but it was made popular for
key establishment protocols by Bellare & Rogaway. In fact, Bellare & Rogaway [4]
provided the first formal definition for a model of adversary capabilities with an
associated definition of security. These human-generated proofs provide a strong
assurance that the security properties of the protocols are satisfied. However, it
is often difficult to obtain correct proofs of security and the number of protocols
that possess a rigorous proof of security remains relatively small. Furthermore,
such proofs usually entail lengthy and complicated mathematical proofs, which
are daunting to most readers [20]. The breaking of provably-secure protocols after
they were published is evidence of the difficulty of obtaining correct computational
proofs of protocol security. Despite these setbacks, proofs are invaluable for argu-
ing about security and certainly are one very important tool in getting protocols
right.
Importance of Specifications and Details: Rogaway [24] pointed out the im-
portance of robust and detailed definitions in concrete security. In fact, specifi-
cations adopted in the computer security approach are expected to be precise
(without ambiguity) and detailed, as such specifications are subjected to auto-
mated checking using formal tools. Boyd & Mathuria [7] also pointed out that it
is the responsibility of the protocol designers and not the protocol implementers
to define the details of protocol specifications. Protocol implementers (usually
non-specialists and/or industrial practitioners) will usually plug-and-use existing
provably-secure protocols without reading the formal proofs of the protocols [20].
Bleichenbacher [6] also pointed out that important details are often overlooked
in implementations of cryptographic protocols until specific attacks have been
demonstrated. Flaws in security proofs or specifications themselves certainly will
have a damaging effect on the trustworthiness and the credibility of provably-
secure protocols in the real world.

In this work, we advocate the importance of proofs of protocol security, and
by identifying some situations where errors in proofs arise, we hope that similar
structural mistakes can be avoided in future proofs. We use several protocols
with claimed proofs in the Bellare–Rogaway model as case studies, namely the
conference key agreement protocol due to Boyd & González Nieto [8], the mutual
authentication and key establishment protocols (JP-MAKEP) due to Jakobsson
& Pointcheval [18] and WC-MAKEP due to Wong & Chan [26]. We also examine
an encryption-based MT authenticator due to Bellare, Canetti, & Krawczyk [2].

In the setting of the reductionist proof approach for protocols, the security
model comprises protocol participants and a powerful probabilistic, polynomial-
time (PPT) adversary A, where the latter is in control of all communication
between all parties in the model. The original BR93 proof model was defined only
for two-party protocols. In subsequent work, the model is extended to analyse
three-party server-based protocols [5] and multi-party protocols [9].
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Boyd–González Nieto Protocol: An inappropriate proof model environment is
one of the likely areas where protocol proofs might go wrong. In the existing
proof of the Boyd–González Nieto conference key agreement protocol [8], we
observe that the proof model environment has the same number of parties in
the model as in the protocol, which effectively rules out a multi-user setting
in which to analyse the signature and encryption schemes. Consequently, this
shortcoming fails to include the case where A is able to corrupt a player that
does not participate in the particular key agreement protocol session, and obtains
a fresh key of any initiator principal by causing disagreement amongst parties
about who is participating in the key exchange.

The attack we reveal on Boyd–González Nieto conference key agreement
protocol is also known as an unknown key share attack, first described by Diffie,
van Oorschot, & Wiener in 1992 [12]. As discussed by Boyd & Mathuria [7–
Chapter 5.1.2], A need not obtain the session key to profit from this attack.
Consider the scenario whereby A will deliver some information of value (such
as e-cash) to B. Since B believes the session key is shared with A, A can claim
this credit deposit as his. Also, a malicious adversary, A, can exploit such an
attack in a number of ways if the established session key is subsequently used to
provide encryption (e.g., in AES) or integrity [19].

In the attack on Boyd–Gonzalez-Nieto protocol, A is able to reveal the key
of a non-partner oracle whose key is the same as the initiator principal, thus
violating the key establishment goal. The existence of this attack means that
the proof of Boyd–González Nieto’s protocol is invalid, since the proof model
allows Corrupt queries. Protocols proven secure in a proof model that allows
the “Corrupt” query (in the proof simulation) ought to be secure against the
unknown key share attack, since if a key is to be shared between some parties,
U1, U2, and U3, the corruption of some other (non-related) player in the protocol,
say U4, should not expose the session key shared between U1, U2, and U3. In
the proof simulations of the protocols on which we perform an unknown key
share attack, A does not corrupt the owner or the perceived partners of the
target Test session, but instead corrupts some other (non-related) player in the
protocol that is not associated with the target Test session or a member of the
“attacked” protocol session.

JP-MAKEP: We also describe an unknown key share attack on the JP-MAKEP
which breaks the reduction of the proof from JP-MAKEP to the discrete loga-
rithm problem. Similarly to the Boyd–González Nieto protocol, the proof model
allows Corrupt queries for clients, and hence secure protocols ought to be immune
to unknown key share attacks.

WC-MAKEP: An attack against WC-MAKEP is described where an adversary
A is able to obtain a fresh key of an initiator oracle by revealing a non-partner
server oracle sharing the same session key. The proof was sketchy and failed to
provide any simulation.

Encryption-Based Authenticator: In the Bellare–Canetti–Krawczyk encryption-
based authenticator, we demonstrate that an adversaryA is able to use a Session-
State Reveal query to find the one-time MAC key and use it to authenticate a
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fraudulent message. We identify the problem (in its proof) to be due to an incom-
plete proof specification (Session-State Reveal queries not adequately considered),
which results in the failure of the proof simulation where the adversary has a
non-negligible advantage, but the MAC forger, F , does not have a non-negligible
probability of forging a MAC digest (since it fails). This violates the underlying
assumption in the proof. We also demonstrate how the flaw in this MT authen-
ticator invalidates the proof of protocols that use the MT-authenticator using
protocol 2DHPE [16] as a case study.

Organization of Paper: Section 2 briefly explains the Bellare-Rogaway and the
Canetti–Krawczyk models. Section 3 revisits the Boyd–González Nieto confer-
ence key agreement protocol, the JP-MAKEP, and the WC-MAKEP. Previously
unpublished attacks on these protocols are demonstrated and flaws in the ex-
isting proofs are revealed. We conclude this section by proposing fixes to the
protocols. Fixed protocols are not proven secure, and are presented mainly to
provide a better insight into the proof failures. Section 4 revisits the encryption-
based MT-authenticator proposed by Bellare, Canetti, & Krawczyk [2]. Finally,
Section 5 presents the conclusions.

2 Informal Overview of the Bellare-Rogaway and
Canetti–Krawczyk Models

Throughout this paper, the Bellare & Rogaway 1993 model, 1995 model [4,5],
the Bellare, Pointcheval, & Rogaway 2000 model [3], and the Canetti & Kraw-
czyk 2001 model [2,10] model will be referred to as the BR93, BR95 BPR2000,
and CK2001 models respectively. Collectively, the BR93, BR95, and BPR2000
models are known as the Bellare-Rogaway model.

2.1 Bellare-Rogaway Models

In the Bellare-Rogaway model, the adversary, A, is defined to be a probabilistic
machine that is in control of all communications between parties and is allowed
to intercept, delete, delay, and/or fabricate any messages at will. A interacts
with a set of Πi

Uu,Uv
oracles (i.e., Πi

Uu,Uv
is defined to be the ith instantiation of

a principal Uu in a specific protocol run and Uv is the principal with whom Uu
wishes to establish a secret key). Let n denote the number of players allowed in
the model, where n is polynomial in the security parameter k. The predefined
oracle queries are shown in Table 1.

The definition of security depends on the notions of partnership of oracles
and indistinguishability. The definition of partnership is used in the definition of
security to restrict the adversary’s Reveal and Corrupt queries to oracles that are
not partners of the oracle whose key the adversary is trying to guess. An impor-
tant difference between the three Bellare–Rogaway models is in the way partner
oracles are defined (i.e. the definition of partnership). The BR93 model defines
partnership using the notion of matching conversations, where a conversation
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Table 1. Informal description of the oracle queries

A Send(Uu, Uv, i, m) query to oracle Πi
Uu,Uv

computes a response according to the
protocol specification and decision on whether to accept or reject yet, and returns
them to the adversary A. If the client oracle, Πi

Uu,Uv
, has either accepted with some

session key or terminated, this will be made known to A.
The Reveal(Uu, Uv, i) query captures the notion of known key security. Any client
oracle, Πi

Uu,Uv
, upon receiving such a query and if it has accepted and holds some

session key, will send this session key back to A.
The Corrupt(Uu, KE) query captures unknown key share attacks and insider
attacks. This query allows A to corrupt the principal Uu at will, and thereby learn
the complete internal state of the corrupted principal. Notice that a Corrupt query
does not result in the release of the session keys since A already has the ability to
obtain session keys through Reveal queries. In the BR95 model, this query also gives
A the ability to overwrite the long-lived key of the corrupted principal with any value
of her choice (i.e. KE).
The Test(Uu, Uv , i) query is the only oracle query that does not correspond to any
of A’s abilities. If Πi

Uu,Uv
has accepted with some session key and is being asked a

Test(Uu, Uv , i) query, then depending on a randomly chosen bit b, A is given either the
actual session key or a session key drawn randomly from the session key distribution.

is defined to be the sequence of messages sent and received by an oracle. The
sequence of messages exchanged (i.e., only the Send oracle queries) are recorded
in the transcript, T . At the end of a protocol run, T will contain the record of
the Send queries and the responses. Definition 1 gives a simplified definition of
matching conversations.

Definition 1 (BR93 Matching Conversations). Let nS be the maximum
number of sessions between any two parties in the protocol run. Πi

A,B and Πj
B,A

are said to be partners if they both have matching conversations, where

CA = (τ0,′ start′, α1), (τ2, β1, α2)
CB = (τ1, α1, β1), (τ3, α2, ∗), for τ0 < τ1 < . . .

Partnership in the BR95 model is defined using the notion of a partner function,
which uses the transcript (the record of all SendClient and SendServer oracle
queries) to determine the partner of an oracle. However, no explicit definition of
partnership was provided in the original paper since there is no single partner
function fixed for any protocol. Instead, security is defined predicated on the
existence of a suitable partner function. Two oracles are BR95 partners if, and
only if, the specific partner function in use says they are.

BPR2000 partnership is defined based on the notion of session identifiers
(SIDs) where SIDs are suggested to be the concatenation of messages exchanged
during the protocol run. In this model, an oracle who has accepted will hold
the associated session key, a SID and a partner identifier (PID). Note that any
oracle that has accepted will have at most one partner, if any at all. Definition 2
describes the definition of partnership in the BPR2000 model.
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Definition 2 (BPR2000 Partnership). Two oracles, Πi
A,B and Πj

B,A, are
partners if, and only if, both oracles have accepted the same session key with the
same SID, have agreed on the same set of principals (i.e. the initiator and the
responder of the protocol), and no other oracles besides Πi

A,B and Πj
B,A have

accepted with the same SID.

2.2 Canetti-Krawczyk Model

In the CK2001 model, there are two adversarial models, namely the
unathenticated-links adversarial model (UM) and the authenticated-links ad-
versarial model (AM). Let AUM denote the adversary in the UM, and AAM

denote the adversary in the AM . The difference between AAM and AUM lies
in their powers. Table 2 provides an informal description of the oracle queries
allowed for both AAM and AUM. Let n denote the number of players allowed in
the model, where n is polynomial in the security parameter k.

Table 2. Informal description of the oracle queries allowed for AAM and AUM

Oracle Πi
Uu,Uv

, upon receiving a Session-State Reveal(Uu, Uv , i) query and if it has
neither accepted nor held some session key, will return all its internal state (including
any ephemeral parameters but not long-term secret parameters) to the adversary.
Session − Key Reveal, Corrupt, and Test are equivalent to the Reveal, Corrupt, and Test
queries in Table 1 respectively.
Send(Uu, Uv , i, m) is equivalent to the Send query in Table 1. However, AAM is re-
stricted to only delay, delete, and relay messages but not to fabricate any messages
or send a message more than once.

A protocol that is proven to be secure in the AM can be translated to a
provably secure protocol in the UM with the use of an authenticator. Definition 3
provides the definition of an autheticator.

Definition 3 (Definition of an Authenticator). An authenticator is defined
to be a mapping transforming a protocol πAM in the AM to a protocol πUM in
the UM such that πUM emulates πAM.

In other words, the security proof of a UM protocol depends on the security
proofs of the MT-authenticators used and that of the associated AM protocol.
If any of these proofs break down, then the proof of the UM protocol is invalid.
CK2001 partnership can be defined using the notion of matching sessions, as
described in Definition 4.

Definition 4 (Matching Sessions). Two sessions are said to be matching if
they have the same session identifier (SIDs) and corresponding partner identifier
(PIDs).
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2.3 Definition of Freshness

Freshness is used to identify the session keys about which A ought not to know
anything because A has not revealed any oracles that have accepted the key
and has not corrupted any principals knowing the key. Definition 5 describes
freshness, which depends on the respective notion of partnership. The following
definition of freshness does not incorporate the notion of forward secrecy, or the
notions of session expiry and exposure in the Canetti–Krawczyk model since
these notions are not necessary to explain our attacks.

Definition 5 (Definition of Freshness). Oracle Πi
A,B is fresh (or holds a

fresh session key) at the end of execution, if, and only if, (1) Πi
A,B has accepted

with or without a partner oracle Πj
B,A, (2) both Πi

A,B and Πj
B,A oracles have

not been sent a Reveal query (or Session-State Reveal in the CK2001 model), and
(3) A and B have not been sent a Corrupt query.

2.4 Definition of Security

Security in the models is defined using the game G, played between a malicious
adversaryA and a collection ofΠi

Ux,Uy
oracles for players Ux, Uy ∈ {U1, . . . , UNp}

and instances i ∈ {1, . . . ,Ns}. The adversary A runs the game G, whose setting
is explained below:

Stage 1: A is able to send any oracle queries at will.
Stage 2: At some point during G, A will choose a fresh session on which to

be tested and send a Test query to the fresh oracle associated with the
test session. Depending on the randomly chosen bit b, A is given either the
actual session key or a session key drawn randomly from the session key
distribution.

Stage 3: A continues making any oracle queries at will but cannot make Corrupt
or Session-State/Key Reveal queries that trivially expose the test session key.

Stage 4: Eventually, A terminates the game simulation and outputs a bit b′,
which is its guess of the value of b.

Success of A in G is measured in terms of A’s advantage in distinguishing
whether A receives the real key or a random value. A wins if, after asking a
Test(U1, U2, i) query, where Πi

U1,U2
is fresh and has accepted, A’s guess bit b′

equals the bit b selected during the Test(U1, U2, i) query. Let the advantage
function of A be denoted by AdvA(k), where AdvA(k) = 2× Pr[b = b′]− 1.

The notions of security for entity authentication are client-to-server authenti-
cation, server-to-client authentication, and mutual authentication. An adversary
is said to violate client-to-server authentication if some fresh server oracle termi-
nates with no partner. Similarly, an adversary is said to violate server-to-client
authentication if some fresh client oracle terminates with no partner. An adver-
sary is said to violate mutual authentication if some fresh oracle terminates with
no partner.

Definitions 6, 7, and 8 describes the definition of security for the BR95 model,
the BPR2000 model, and both the BR93 and CK2001 models respectively.
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Definition 6 (BR95 Definition of Security). A protocol is secure in the
BR95 model if both the following requirements are satisfied: (1) When the pro-
tocol is run between two oracles Πi

A,B and Πj
B,A in the absence of a malicious

adversary, both Πi
A,B and Πj

B,A accept and hold the same session key. (2) For
all probabilistic, polynomial-time (PPT) adversaries A, AdvA(k) is negligible.

Definition 7 (BPR2000 Definition of Security). A protocol is secure in the
BPR2000 model if both the following requirements are satisfied: (1) When the
protocol is run between two oracles Πi

A,B and Πj
B,A in the absence of a malicious

adversary, both Πi
A,B and Πj

B,A accept and hold the same session key. (2) For
all probabilistic, polynomial-time (PPT) adversaries A, the advantage that A has
in violating entity authentication is negligible, and AdvA(k) is negligible.

Definition 8 (BR93 and CK2001 Definitions of Security). A protocol is
secure in the BR93 and CK2001 models if both the following requirements are
satisfied: (1) When the protocol is run between two oracles Πi

A,B and Πj
B,A in

the absence of a malicious adversary, both Πi
A,B and Πj

B,A accept and hold the
same session key, and (2) For all PPT adversaries A, (a) If uncorrupted oracles
Πi
A,B and Πj

B,A complete matching sessions, then both Πi
A,B and Πj

B,A must
hold the same session key, and (b) AdvA(k) is negligible.

3 Flawed Proofs in the Bellare–Rogaway Model

3.1 Boyd–González Nieto Conference Key Agreement Protocol

The conference key agreement protocol [8] shown in Figure 1 carries a claimed
proof of security in the BR93 model, but uses a different definition of partnership
than that given in the original model description. Although this protocol was
proposed fairly recently, it has been widely cited and used as a benchmark. In
the protocol, the notation (eU , dU ) denotes the encryption and signature keys of
principal U respectively, {·}eU denotes the encryption of some message under key
eU , σdU (·) denotes the signature of some message under the signature key dU , NU

denotes the random nonce chosen by principal U , H denotes some secure one-
way collision-resistant hash function, and SKU denotes the session key accepted
by U . The protocol involves a set of p users, U = {U1, U2, . . . , Up}.

The initiator, U1, randomly selects a k-bit challenge N1, encrypts N1 under
the public keys of the other participants in the protocol, signs the encrypted
nonces {N1}eU2

, . . . , {N1}eUp
and broadcasts these messages in protocol flows 1

and 2 as shown in Figure 1. The other principals, upon receiving the broadcasted
messages, will respond with their identity and a random nonce. All principals
are then able to compute the shared session key SKUi = H(N1||N2|| . . . ||Np).
The session identifier (SID) in the protocol is defined to be the concatenation
of messages received and sent. Note that the adversary, A, is allowed to capture
and suppress any broadcasted messages in the network.
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1. U1 → ∗ : U = {U1, U2, . . . , Up}, σdU1
(U , {N1}eU2

, . . . , {N1}eUp
)

2. U1 → ∗ : {N1}eUi
for 1 < i ≤ p

3. Ui → ∗ : Ui, Ni

The session key is SKUi = H(N1||N2|| . . . ||Np).

Fig. 1. Boyd–González Nieto conference key agreement protocol

U1 U2 A U3

U , σdU1
(U , {N1}eU2

, {N1}eU3
)

{N1}eU2
, {N1}eU3

UA, σdA(UA, {N1}eU2
, {N1}eU3

) UA, σdA(UA, {N1}eU2
, {N1}eU3

)
{N1}eU2

, {N1}eU3
{N1}eU2

, {N1}eU3

U2, N2 U3, N3

U2, N2, U3, N3 U2, N2

Fig. 2. Unknown key share attack

3.1.1 Unknown Key Share Attack
Figure 2 shows the execution of the Boyd–González Nieto conference key agree-
ment protocol in the presence of a malicious adversary, A. For simplicity, let
U = {U1, U2, U3} and UA = {A, U2, U3}, which denote two different sessions.
In Figure 2, the actions of the entities are as follows:
1. The initiator, U1, encrypts N1 under the public keys of the other participants

in the protocol (i.e., U \ U1), signs the encrypted nonces {N1}eU2
, {N1}eU3

together with U , and broadcasts these messages in protocol flows 1 and 2.
2. A malicious adversary,A, intercepts the broadcasted messages sent by U1. In

other words, the broadcasted messages sent by U1 never reach the intended
recipients, U2 & U3.

– A then signs the intercepted encrypted nonces {N1}eU2
, {N1}eU3

to-
gether with UA (instead of U) under A’s signing key

– A now acts as the initiator in a different session and broadcasts these
messages in protocol flows 1 and 2.

3. U2 & U3 upon receiving the broadcasted messages, will reply to A with their
identity and a random nonce.

4. A impersonates U2 & U3 and forwards the messages from U2 & U3 to U1.
5. U1, U2 & U3 are then able to compute the shared session key SKUi =
H(N1||N2|, | . . . ||Nn).

Table 3 describes the internal states of players U1, U2 & U3 at the end of the
protocol execution shown in Figure 2. We observe that U1 is not partnered with
either U2 or U3 according to Definition 2, since U1 does not have matching SIDs
or agreeing PIDs (Krawczyk termed such an attack a key-replication attack [22]
whereby A succeeds in forcing the establishment of a session, S1, other than the
Test session or its matching session that has the same key as the Test session. In
this case, A can distinguish whether the Test-session key is real or random by
asking a Reveal query to the oracle associated with S1.).
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Table 3. Internal states of players U1, U2, and U3

U sidU pidU

U1 U , σdU1
(U , {N1}eU2

, {N1}KU3
), {N1}eU2

, {N1}eU3
, U2, N2, U3, N3 {U2, U3}

U2 UA, σdA(UA, {N1}eU2
, {N1}eU3

), {N1}eU2
, {N1}eU3

, U2, N2, U3, N3 {A, U3}
U3 UA, σdA(UA, {N1}eU2

, {N1}eU3
), {N1}eU2

, {N1}eU3
, U2, N2, U3, N3 {A, U2}

U1 believes that the session key SKU1 is being shared with U2 and U3, but
U2 (and U3 respectively) believes the key SKU2 = H(N1||N2||N3) = SKU3 =
SKU1 is being shared with A and U3 (and U2 respectively), when in fact,
the key is being shared among U1, U2, and U3. However, SKU1 = SKU2 =
SKU3 = H(N1||N2||N3). Although the adversary A does not know the value
of the session key (since A does not know the value of N1), A is able to
send a Reveal query to the session associated with either U2 or U3 and ob-
tain SKU2 = H(N1||N2||N3) = SKU3 , which has the same value as SKU1 .
Hence, the Boyd–González Nieto conference key agreement protocol shown in
Figure 1 is not secure in the BR93 model since the adversary A is able to
obtain the fresh session key of the initiator U1 by revealing non-partner or-
acles of U1 (i.e., U2 or U3), in violation of the security definition given in
Definition 8.

3.1.2 An Improved Conference Key Agreement Protocol
It would appear that by changing the order of the application of the signature
and encryption schemes, the attack shown in Figure 2 can be avoided. How-
ever, at a first glance, this may appear to contradict the result of An, Dodis,
& Rabin [1] that no matter what order signature and encryption schemes are
applied, the result can still be secure. A closer inspection reveals that our ob-
servation actually supports the findings of An et al., since the protocol operates
in a multi-user setting. Although An et al. found that signature and encryp-
tion schemes can be applied in either order in the two user setting, they found
some further restrictions in the multi-user setting. These restrictions are that
the sender’s identity must be included in every encryption and the recipient’s
identity must be included in every signature. In this case, swapping the order
of the encryption and signature schemes happens to cause the protocol to fulfil
these requirements.

An alternative way to prevent the attack is to include the sender’s iden-
tity in each encryption and also the session identifier, sid, in the key deriva-
tion function. We use the same construct for sid (i.e., the concatentation of
all messages received) as used by Boyd & González Nieto. In the improved
protocol, the adversary A will not be able to “claim” ownership of the en-
crypted message {N1, U1}eUi

since the identity of the initiator is included in
the encryption. Since the construct of the session key in the improved protocol
comprises the associated sid, a different sid will imply a different session key.
Hence, the attack shown in Figure 2 will no longer be valid against this improved
protocol.
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U1 U2, U3 AU4

Insiders

Outsider
In the proof simulation of the protocol execution shown in Fig-
ure 2, A corrupts U4, an outsider in the target session, and
assumes U4’s identity.

Fig. 3. Insiders vs outsider

3.1.3 Limitations of Existing Proof
In the existing proof, the security of the protocol is proved by finding a reduction
to the security of the encryption and signature schemes used. The number of
protocol participants in the proof simulation, p, is assumed to be equal to the
number of players allowed in the model, n, where n is polynomial in the security
parameter k. In its reductionist approach, the proof assumes that there exists an
adversaryA who can gain a non-negligible advantage, AdvA(k), in distinguishing
the test key from a random one. An attacker is then constructed that uses A to
break either the underlying encryption scheme or the signature scheme.

In the context of the attack shown in Figure 2, assume that the number of
protocol participants in the proof simulation is three. The proof then assumes
that the number of parties in the model is also three. However, in order to carry
out the attack, we have to corrupt a 4th player (i.e., U4, an outsider as shown in
Figure 3) to obtain the signature key of U4.

Since U4 does not exist in the model assumed by the proof, the attacker
against the encryption and signature schemes cannot simulate the Corrupt(U4)
query for A and the proof fails since although A succeeds, it cannot be used to
break either the encryption or signature schemes. Our observation is consistent
with the above results of An et al., which highlight the underlying cause of the
proof breakdown – the proof environment effectively did not allow a multi-user
setting in which to analyse the signature and encryption schemes.

3.2 Jakobsson–Pointcheval MAKEP

Figure 4 describes the published version of JP-MAKEP [18], which was designed
for low power computing devices1. JP-MAKEP carries a claimed proof of security
in the BR93 model but uses the notion of SIDs in the definition of partnership.
There are two communicating principals in MAKEP, namely the server B and
the client of limited computing resources, A. The security goals of the protocol
are mutual authentication and key establishment between the two communicat-
ing principals. A and B are each assumed to know the public key of the other
party (i.e., gxB and gxA respectively).
1 The original version appeared in the unpublished pre-proceedings of Financial Crypto

2001 with a claimed proof of security in the BR93 model. Nevertheless, a flaw in the
protocol was discovered by Wong & Chan [26]. In this published version, the flaw
found by Wong & Chan in the original version has been fixed.
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Client A (xA, gxA) Server B (xB, gxB)
a, t ∈R Zq, c = ga, T = gt, K = (gxB)a

r = H1(T, gxB , c, K), A′ = H2(gxB , c, K)
IDB , c, r−−−−−−−→ K = cxB , A = H2(gxB , c, K)

A′ ?= A
A, e←−−−−−−− 0 ≤ e < 2k

d = t − exA mod q
IDA, d−−−−−−−→ r

?= H1(gd(gxA)e, gxB , c, K)
sid = (IDB, c, r,A, e, IDA, d) sid = (IDB , c, r, A, e, IDA, d)

sk = H0(gxB , c, K) sk = H0(gxB , c, K)

Fig. 4. Jakobsson–Pointcheval MAKEP

A (xA, gxA) A (xA, gxA) B (xB, gxB )
IDB, c, r−−−−−−−→ IDB, c, r−−−−−−−→
A, e′ = 0←−−−−−−− Fabricate

A, e←−−−−−−−
IDA, d = t−−−−−−−→ Fabricate

IDA, d − exA mod q−−−−−−−→
r

?= H1(gd−exA(gxA)e, gxB , c, K)
sidBA = (IDB, c, r,A, e, IDA, d − exA mod q)

sidAB = (IDB, c, r, A, e′, IDA, d) �= sidBA
skAB = H0(gxB , c, K) skBA = H0(gxB , c, K)

Fig. 5. Unknown key attack on Jakobsson–Pointcheval MAKEP

3.2.1 Unknown Key Share Attack
Figure 5 depicts an example execution of JP-MAKEP in the presence of a ma-
licious adversary A. At the end of the attack, B believes he shares a session
key, skBA = H0(gxB , c,K), with the adversary A, when in fact the key is being
shared with A (i.e., unknown key share attack). A and B are not partners since
they have different SIDs, sidBA = (IDB, c, r,A, e, IDA, d−exA mod q) �= sidAB,
and different perceived partners (i.e., P IDA = A and P IDB = A).

From Figure 5, we observe that A has terminated the protocol without any
partners, in violation of the server-to-client authentication goal. On the other
hand, the server, B, has terminated the protocol with the adversary, A, as its
partner. Hence, the client-to-server authentication is not violated. Consequently,
JP-MAKEP is not secure since the adversary is able to obtain a fresh session
key of A by revealing a non-partner oracle of A (i.e., an oracle of B), in violation
of the security definition given in Definition 8. A fix for JP-MAKEP is to change
0 ≤ e < 2k in the protocol specification to 0 < e < 2k.

3.2.2 Flaws in Existing Proof
In the proof simulation of the protocol, let P be another client where P �= A,B.
P is clearly the “outsider” in the target session of Figure 5 that A is attacking.
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A then corrupts P , the outsider, and assumes P ’s identity. This is allowed in
the existing proof [18–Lemma 3] for the server-to-client authentication, since it
is claimed that the JP-MAKEP provides partial forward-secrecy whereby cor-
ruption of the client may not help to recover the session keys.

The proof assumes that the probability of A violating the server-to-client
authentication is negligible. In the context of the attack shown in Figure 5,
A managed to violate the server-to-client authentication by corrupting a non-
partner player, P . By violating the server-to-client authentication, A is then able
to distinguish a real key or a random key by asking a Reveal query to a non-
partner server oracle of A, and hence violate the server-to-client authentication
with non-negligible probability. The discrete logarithm breaker ADL (which is
constructed using A) is unable to obtain a non-negligible probability of breaking
the discrete logarithm problem, contradicting the underlying assumption in the
proof. Consequently, the proof simulation fails (the result of Reveal and Corrupt
queries were not adequately considered in the simulation).

3.3 Wong–Chan MAKEP

Figure 6 describes WC-MAKEP [26], which was proposed as an improvement
to the original unpublished version of JP-MAKEP. Note that Figure 6 describes
the corrected version of WC-MAKEP, where the computation of σ = (rA ⊕ rB)
by A is replaced by σ = (rA ⊕ rB)||IDB.

3.3.1 A New Attack
Figure 7 depicts an example execution of WC-MAKEP, where at the end of the
protocol execution, A and B accept with the same session key, SKAB = H(σ) =
SKBA.

However, according to Definition 1, both A and B are not partners as B’s
replies are not in response to genuine messages sent by A (i.e., both A and B will
not have matching conversations given in Definition 1). Since two non-partner
oracles, ΠA,B and ΠB,A, accept session keys with the same value, the adversary
A can reveal a fresh non-partner oracle, ΠB,A, and find the session key accepted
by ΠA,B, in violation of the security definition given in Definition 8. In addition,
both oracles of A and B have terminated the protocol without any partners, in

A (a, ga) B (SKB, PKB)
rA ∈R {0, 1}k, x = {rA}PKB

b ∈R Zq \ {0}, β = gb CertA, β, x−−−−−−−→ Decrypt x

σ = (rA ⊕ rB)||IDB

y = aH(σ) + b mod q
{rB , IDB}rA←−−−−−−− rB ∈ {0, 1}k

SKAB = H(σ)
y−−−−−−−→ gy ?= (ga)H(σ)β, SKBA = H(σ)

Fig. 6. Wong–Chan MAKEP
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A A B

CertA, β, x−−−−−−−→ Fabricate message
CertA, β · ge, x−−−−−−−→

{rB, IDB}rA←−−−−−−−
{rB, IDB}rA←−−−−−−−

y−−−−−−−→ y′ = y + e mod q gy′ ?= (ga)H(σ)(β · ge)

SKAB = H(σ)
y′

−−−−−−−→ SKBA = H(σ)

Fig. 7. Attack on Wong–Chan MAKEP

violation of the mutual authentication goal. Hence, WC-MAKEP is insecure in
the BR93 model since the attack outlined in Figure 7 shows that both the key
establishment and mutual authentication goals are violated.

3.3.2 Preventing the Attack
A possible fix to WC-MAKEP is to change the construction of the session key to
SK = H(A,B, β, x, y, σ). The inclusion of the sender’s and responder’s identities
and messages (β, x, y) in the key derivation function effectively binds the session
key to all messages sent and received by both A and B [11]. If the adversary
changes any of the messages in the transmission, the session key will also be
different. Intuitively, the attack shown in Figure 7 will no longer be valid against
WC-MAKEP.

3.3.3 Flaws in Existing Proof
The existing (sketchy) proof fails to provide a proof simulation. In the absence
of a game simulation in the existing proof, we may only speculate that the proof
fails to adequately consider the simulation of Send and Reveal queries (in the
same sense as outlined in Section 3.2.2).

In the flaws in the AMP protocol [23] and EPA protocol [17] revealed by Wan
& Wang [25], both proofs fail to provide any proof simulations. These examples
highlight the importance of detailed proof simulations, as the omission of such
simulations could potentially result in protocols claimed to be secure being, in
fact, insecure.

4 Flaw in the Proof of an Encryption-Based
MT-Authenticator

In this section, we reveal an inadequacy in the specification of the encryption
based MT-authenticator proposed by Bellare, Canetti, & Krawczyk [2] and iden-
tify a flaw in its proof simulation. We then demonstrate with example protocol
(the protocol 2DHPE [16]) how the flaw in the proof of the encryption-based
MT-authenticator results in the violation of the key establishment goal in the
protocol 2DHPE where a malicious adversary is able to learn a fresh session key.
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In fact, the attack we reveal on the protocol 2DHPE also applies to protocol
14 that appears in the full version of [15]. Surprisingly, the inadequancy in the
specification was not spotted in the proof simulation of the MT-authenticator,
and has not previously been spotted in other protocols [15,16] using this MT-
authenticator.

We may speculate that if protocol designers fail to spot this inadequancy in
the specification of their protocols, the protocol implementers are also highly
unlikely to spot this inadequancy until specific attacks have been demonstrated,
as suggested by Bleichenbacher [6].

Having identified the flaw in the proof of the MT-authenticator, we provide a
fix to the MT-authenticator specification. As a result of this fix, protocols using
the revised encryption based MT-authenticator will no longer be flawed due to
their use of this MT-authenticator. The notation used throughout this section is
as follows: the notation {·}KU denotes an encryption of some message m under
U ’s public key, KU , and MAC K(m) denotes the computation of MAC digest of
some message m under key K.

4.1 Bellare–Canetti–Krawczyk Encryption-Based MT-
Authenticator

Figure 8 describes the encryption based MT-authenticator, which is based on a
public-key encryption scheme indistinguishable under chosen-ciphertext attack
and the authentication technique used by Krawczyk [21]. Note that the specifi-
cation of the encryption-based MT-authenticator does not specify the deletion
of the received nonce vA (incidentally, vA is also the one-time MAC key) from
B’s internal state before sending out the last message.

4.2 Flaw in Existing Proof of MT-Authenticator

In the usual tradition of reductionist proofs, the existing MT-authenticator
proof [2] assumes that there exists an adversary A who can break the MT-
authenticator, and an encryption-aided MAC forger, F is constructed using such
an adversary A against the unforgability of the underlying MAC scheme. Subse-
quently, the encryption-aided MAC forger, F , can be used to break the encryp-
tion scheme. F who has access to a MAC oracle, is easily constructed as follows:

– guess at random an index i,

A B

Choose nonce vA
sid, m←−−−−−−− Choose message m

sid, m, {vA}KB−−−−−−−→ Decrypt {vA}KB

Verify MAC vA (m,A)
sid, m,MAC vA (m, A)

←−−−−−−− Compute MAC vA(m, A)

Fig. 8. Bellare–Canetti–Krawczyk encryption-based MT-authenticator
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A A B

Intercept
sidj , m←−−−−−−−

sidi, m
′

←−−−−−−− Fabricate
sidi, m

′, {vA}KB−−−−−−−→ Intercept

Fabricate
sidj , m, {vA}KB−−−−−−−→

sidj , m,MAC vA (m,A)
←−−−−−−−

Session−State Reveal(sidj)−−−−−−−→
sidi, m

′,MAC vA (m′, A)
←−−−−−−− Fabricate vA←−−−−−−−

Fig. 9. Execution of encryption-based MT-authenticator in the presence of a malicious
adversary, A

– for all but the i-th session, generate a key vk and answer queries as expected,
– if A calls a Session-State Reveal2 on any session other than the i-th session,

the response can easily be simulated,
– if A calls a Session-State Reveal on the i-th session, F aborts.

The assumption is that if A has a non-negligible advantage against the underly-
ing protocol, then F has a non-negligible probability of forging a MAC digest.

Consider the scenario shown in Figure 9. When A asks for the one-time MAC
key (i.e., vk) with a Session-State Reveal query, it is perfectly legitimate since
this session with SID of sidj is not the i-th session with SID of sidi. Recall that
sessions with non-matching SIDs (i.e., sidi �= sidj) are non-partners.

Clearly, F is unable to answer such a query since vA is a secret key (note
that the MAC oracle to which F has access is associated with vA, but F does
not know vA). Hence, the proof simulation is aborted and F fails. Consequently,
F does not have a non-negligible probability of forging a MAC digest (since
it fails) although A has a non-negligible advantage against the security of the
underlying protocol, in violation of the underlying assumption in the proof.

4.3 Proposed Fix to the Encryption-Based MT-Authenticator

In this section, we provide a fix to the encryption-based MT-authenticator by
requiring that the party concerned delete the received nonce from its internal
state before sending out the MAC digest computed using the received nonce.
With the fix, the adversary will not be able to obtain the value of vA using
a Session-State Reveal query. Hence, in the proof of the security of the MT-
authenticator, F will be able to answer such a query because F is no longer
required to return the value of vA. Therefore, the attack shown in Figure 9 will
2 Note that in the original paper of Bellare, Canetti, & Krawczyk [2], a Session-State

Reveal is known as a Session-Corruption query.
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A (πA,B) B (πA,B)

x ∈R Zq, vA ∈R {0, 1}k A, sid, gx, {vA}KB−−−−−−−→ y ∈R Zq

v′
A = DdB ({vA}KB ), NB ∈R {0, 1}k

SKA,B = (gy)x
B, sid, gy, NB ,MAC v′

A
(B, sid, gy, A)

←−−−−−−−
sid, {A, sid, gx, NB , πA,B}KB−−−−−−−−−−−−−−−−→ SKB,A = (gx)y

Fig. 10. Hitchcock, Tin, Boyd, González Nieto, & Montague (2003) protocol 2DHPE

no longer be valid, since A will no longer be able to obtain the value of vA and
fabricate a MAC digest.

4.4 An Example Protocol as a Case Study

Figure 10 describes a password-based protocol 2DHPE due to Hitchcock, Tin,
Boyd, Gonzalez-Nieto, & Montague [16]. Using the protocol 2DHPE as an exam-
ple, we demonstrate that as a result of the flaw in the proof of the encryption-
based MT-authenticator, the proof of protocol 2DHPE is also invalid. In the
example protocol, both A and B are assumed to share a secret password, πA,B,
and the public keys of both A and B (i.e., KA and KB respectively) are known
to all participants in the protocol. The protocol uses the encryption-based MT-
authenticator to authenticate the message B, sid, gy from B. Figure 11 describes
an example execution of protocol 2DHPE in the presence of a malicious adver-
sary A (in the UM). We assume that A has a shared password with B, πA,B. At
the end of the protocol execution shown in Figure 11, oracleΠsid

A,B has accepted a
shared session key SKA,B = gxz with Πsid

B,A. However, such an oracle (i.e., Πsid
B,A)

does not exist. By sending a Session-State Reveal query to oracle ΠsidA
B,A , A learns

the internal state of ΠsidA
B,A , which includes v′A. With v′A, A can fabricate and

send a MAC digest to A. Hence, the adversary is able to obtain a fresh session
key of Πsid

A,B (i.e., SKA,B = gxz) since A knows z (in fact, z is chosen by A).
However, if the encryption-based MT-authenticator requires B to delete the

received nonce v′A from B’s internal sate before sending out message 3, then A
will not be able to obtain the value of v′A with a Session-State Reveal query and
fabricate MAC v′A(B, sid, gy,A). Consequently, protocol 2DHPE will be secure.

5 Conclusion

Through a detailed study of several protocols and an authenticator with claimed
proofs of security, we have concluded that specifying correct computational com-
plexity proofs for protocols remains a hard problem. However, we have identified
three areas where protocol proofs are likely to fail, namely: an inappropriate
proof model environment, Send, Reveal and Corrupt queries not adequately con-
sidered in the proof simulations, and omission of proof simulations.
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A A B

A, sid, gx, {vA}KB−−−−−−−→ A, sidA, gx, {vA}KB−−−−−−−→ v′
A = DdB ({vA}KB )

B, sidA, gy, NB ,MAC v′
A

(B, sid, gy, A)
←−−−−−−−

Session − State Reveal(B, sidA)−−−−−−−→
B, sid, gz, NB ,MAC v′

A
(B, sid, gz, A)

←−−−−−−− v′
A←−−−−−−−

sid, {A, sid, gx, NB , πA,B}KB−−−−−−−→
SKA,B = gxz

Fig. 11. Execution of protocol 2DHPE in the presence of a malicious adversary

We also observe that certain constructions of session keys may contribute to
the security of the key establishment protocol. This observation supports the
findings of recent work of Choo, Boyd, & Hitchcock [11], who describe a way of
constructing session keys, as described below:

– the identities and roles of the participants to provide resilience against un-
known key share attacks and reflection attacks since the inclusion of the iden-
tities of both the participants and role asymmetry effectively ensures some
sense of direction. If the role of the participants or the identities of the (per-
ceived) partner participants change, the session keys will also be different.

– the unique SIDs to ensure that session keys will be fresh, and if SIDs are de-
fined as the concatenation of messages exchanged during the protocol execu-
tion, messages altered during the transmission will result in different session
keys (and prevents the key replicating attack [22] in the Bellare–Rogaway
and Canetti–Krawczyk models).
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Abstract. Proving knowledge of a signature has many interesting ap-
plications. As one of them, the Universal Designated Verifier Signature
(UDVS), introduced by Steinfeld et al. in Asiacrypt 2003 aims to protect
a signature holder’s privacy by allowing him to convince a verifier that
he holds a valid signature from the signer without revealing the signa-
ture itself. The essence of the UDVS is a transformation from a publicly
verifiable signature to a designated verifier signature, which is performed
by the signature holder who does not have access to the signer’s secret
key. However, one significant inconvenience of all the previous UDVS
schemes considered in the literature is that they require the designated
verifier to create a public key using the signer’s public key parameter and
have it certified to ensure the resulting public key is compatible with the
setting that the signer provided. This restriction is unrealistic in sev-
eral situations where the verifier is not willing to go through such setup
process. In this paper, we resolve this problem by introducing a new type
of UDVS. Different from previous approach to UDVS, our new UDVS
solution, which we call “Universal Designated Verifier Signature Proof
(UDVSP)”, employs an interactive protocol between the signature holder
and the verifier while maintaining high level of efficiency. We provide a
formal model and security notions for UDVSP and give two construc-
tions based on the bilinear pairings. We prove that the first construction
is secure in the random oracle model and so is the second one in the
standard model.

1 Introduction

1.1 Motivation

Consider a situation where Alice, who has graduated from the University ABC,
would like to apply for a job online. In this situation, Alice has to convince the
employer that she indeed holds the diploma that has been signed by the registrar
of the University ABC. However, she does not want to send her diploma away,
since she feels that anyone else might be able to use it for a different purpose.

B. Roy (Ed.): ASIACRYPT 2005, LNCS 3788, pp. 644–661, 2005.
c© International Association for Cryptologic Research 2005
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A normal digital signature cannot satisfy her requirement as anyone who has
obtained a message (in the above example, Alice’s diploma) and a signature on
it (the registrar’s signature on Alice’s diploma) can easily copy them. For this
reason, Alice seeks a new type of digital signature that can provide a property
that the signature on Alice’s diploma is non-transferable meaning that Alice
can convince Bob that she is in possession of a valid diploma awarded by the
University ABC but having talked to Alice, Bob cannot convince any other
parties about the truth of the statement.

At a glance, it seems that Alice’s need can be met by the Universal Des-
ignated Verifier Signature (UDVS), introduced By Steinfeld et al. in Asiacrypt
2003 [25]. In UDVS, a “designator (signature holder)” who has obtained a valid
signature from a “signer” can convince a “designated verifier” that he holds a
valid signature obtained from the signer but other parties including the desig-
nated verifier himself cannot convince other parties of the validity of the same
statement. In spite of their elegant structures, the difficulty of adopting the
UDVS schemes proposed so far including those from [25,26,28] to the Alice’s
diploma verification problem is that they require designated verifiers to create
private/public key pairs using the same public key parameter that has been set by
the signer and have them certified. (Indeed, the protocol for conducting such a
task, “Verifier Key-Registration”, is included as a sub-algorithm of UDVS [25]).
This is sometimes hard to be realized especially when proving knowledge of a sig-
nature obtained from the original signer is only a designator’s interest. – In the
above scenario, for example, the employer will be less likely to agree on creating
a private/public key pair according to the public parameter set by Alice’s uni-
versity just only to verify her diploma, as this key setup involving management
of Public Key Infrastructure (PKI) may incur significant cost. Hence, although
the UDVS seems to be a good candidate to solve Alice’s diploma verification
problem, the public key setup requirement for verifiers remains as a problem.

Motivated by the above problem of the UDVS schemes considered in the
previous literature, we would like to obtain a new type of UDVS that eliminates
the assumption of having the verifier generate a private/public key pair to verify
the signature holder’s claim. In order to achieve this, the natural methodology
one can envision is to adopt the interactive proof [15] style protocol. However,
interactive protocols sometimes significantly degrade the system efficiency. So
another important requirement of the new UDVS is high level of efficiency. Our
new UDVS proposed in this paper will satisfy both requirements.

1.2 Our Contributions

In this paper, we propose a new type of UDVS, which we call “Universal Desig-
nated Verifier Signature Proof (UDVSP)” and provide two highly efficient con-
structions based on the bilinear pairings [4,18]. Informally, our UDVSP system
has the following characteristics: 1) The signer signs a message and provides the
message/signature pair to the designator (signature holder); 2) the designator
transforms the signer’s signature and, using an interactive protocol that takes
this transformed signature as common input, convinces the designated verifier



646 J. Baek, R. Safavi-Naini, and W. Susilo

that he has indeed obtained the valid signature on the message from the signer;
and 3) the designated verifier does not have to setup a private/public key.

In terms of security, we formalize the security of UDVSP against imperson-
ation attack: The system should not allow the attackers including the designated
verifier to convince any other person that the designator indeed holds a valid
signature from the signer. Our two concrete constructions of UDVSP are proven
to be secure under the proposed security model relative to known computational
assumptions related to hardness of the discrete-logarithm problem. The security
proof for the first construction needs the random oracle model [2] while the
second one does not depend on this assumption.

Our two constructions of UDVSP are highly efficient. The signing algorithms
of them are the same as those of underlying signature schemes [5,7], which are
very efficient. The transformation algorithms just need one exponentiation and
the interactive verification protocols only require two bilinear pairing operations
on top of the Schnorr identification protocol [23]. (Note that the details of these
algorithms and protocol will be given in Section 3).

We remark that throughout this paper, the term “designated” has a literal
meaning that a specified verifier participates in the protocol run by the signature
holder. This does not mean that it provides explicit authentication of the veri-
fier’s identity, which is provided in the non-interactive designated signature [17]
where the verifiers are authenticated by checking the certificate of their public
keys. Note that as mentioned in [17], the advantage of the non-interactive des-
ignated verifier signature is that it can prevent somewhat strong attacks such
as mafia (a.k.a. man-in-the-middle) attacks [12] and blackmailing [16] as the
verifiers are explicitly authenticated by their public keys (which come with the
certificates issued by the trusted third party).

1.3 Related Work

The concept of UDVS was proposed by Steinfeld et al. [25], who constructed a
concrete scheme that realizes the concept using the bilinear pairings. They also
observed that Boneh et al.’s [6] ring signature [24] converted to two-signer ring
signature can be viewed as UDVS. The UDVS schemes based on the RSA and
Schnorr signatures were soon followed [26]. Very recently, the UDVS scheme
based on the bilinear pairings whose security can be analyzed without the
random oracle assumption was proposed by Zhang et al. [28]. Although these
schemes are elegant, as discussed earlier, the assumption of having designated
verifiers to generate their own private/public key pairs according to the signer’s
public key parameter setting is strong and even unrealistic in some situations.
We note that the reason why one needs such a key registration process for ver-
ifiers in the UDVS schemes is that non-transferability of a signature obtained
from the original signer is achieved via the technique of trapdoor commitment [8]
non-interactively as widely adopted in the various designated-verifier signature
schemes [17,19,27].

In contrast, undeniable signature proposed by Chaum and Antwerpen [9]
achieves non-transferability (of the original signer’s signature) via an interactive
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protocol although non-interactive version of the protocol is also be possible us-
ing the trapdoor commitment. (We note that the security analysis of Chaum’s
undeniable signature is given only recently by Ogata et al. [22]). However, as
discussed in [25], the crucial difference between the UDVS and the undeniable
signature (including other designated-verifier signatures) is that in the latter,
only the signer who possesses the secret signing key can designate a signature
while in the former, any legitimate user who possesses the signature from the
signer can perform designation.

Another related area of UDVS is anonymous credential system [20,9,10].
However, as mentioned in [25], this areas of research focuses more on user privacy
such as “selective disclosure” of attributes and “unlinkability” of user transac-
tion. Our work (and the work related to UDVS [25,26,28] in general) focuses more
on providing an efficient mechanism to convince designated verifiers about the
truth of the statement that a signature holder is in possession of a valid signature
from the original signer. Consequently, we can avoid heavy zero knowledge proof
protocols used in many credential systems such as [20,9,10]. Interestingly, our
first construction of UDVSP shows that if proving knowledge of a signature is
only concern, one can simply use Boneh, Lynn and Shacham (BLS)’s [5] pairing-
based signature scheme whose security against chosen message attack is relative
to the standard Computational Diffie-Hellman (CDH) problem, as opposed to
the one used in [20], whose security against chosen message attack is based on
the fairly complex and non-standard assumption called “LRSW assumption”.

Moreover, in order to precisely establish the end goal of security of our UD-
VSP systems, the security analysis given in this paper does not depend on the
auxiliary properties such as proof of knowledge [1], witness indistinguishability
[13] and honest verifier zero knowledge and so on.

Finally, we remark that Naor [21] also pointed out that it is not desirable
to assume that the verifier of the authentication is part of the system and has
established a public key. This is because it is often difficult to assure the inde-
pendence of keys in the PKI and there is no reason to assume that the verifier
has chosen his key properly.

2 Preliminaries

2.1 Symbols and Notations

We use the notation A(·, . . . , ·) to denote an algorithm, with input arguments
separated by commas. (Note that our underlying computational model is a prob-
abilistic Turing Machine). The notation AO(·)(·, . . . , ·) denotes that algorithm A
makes calls to an oracle O(·). We use a ← A(x1, . . . , xn) to denote the assign-
ment of a uniformly and independently distributed random element from the
output of A on input (x1, . . . , xn) to the variable a.

We use the notation Prot[P ( ·, . . . , ·︸ ︷︷ ︸
private input

) ↔ V ( ·, . . . , ·︸ ︷︷ ︸
private input

)]( ·, . . . , ·︸ ︷︷ ︸
common input

) to

denote an interactive protocol Prot between a prover P and a verifier V , both
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of which are modeled as probabilistic Turing Machines. Private inputs for P
and V are presented inside the parentheses immediately followed by the letters
“P” and “V ”. Common inputs for P and V are presented inside the parentheses
followed by the square brackets“[ ]”.

Given a set S, we denote by b
R← S the assignment of a uniformly and

independently distributed random element from the set S to the variable b.
We say a probability function f : N → R[0,1] is negligible in k if, for all c > 0,

there exists k0 ∈ N such that f(k) ≤ 1
kc whenever k ≥ k0. Here, R[0,1] = {x ∈

R|0 ≤ x ≤ 1}.

2.2 Computational Primitives

The bilinear pairing e that will be used throughout this paper is the admissible
bilinear pairing [4,18], which is defined over two groups of the same prime-
order q denoted by G1 and G2. (By G∗1 and ZZ∗q , we denote G1 \ {1} where 1
is the identity element of G1, and ZZq \ {0} respectively.) Suppose that G1 is
generated by g. Then, e : G1×G1 → G2 has the following properties: 1) Bilinear:
e(ga, gb) = e(g, g)ab, for all a, b ∈ ZZq and 2) Non-degenerate: e(g, g) �= 1.

For convenience, we define an atomic bilinear pairing parameter generation
algorithm that will be used in many parts of the paper.

– PramGena(k): This algorithm generates two groups G1 and G2 of order q >
2k and creates bilinear map e : G1 ×G1 → G2. It also chooses a generator g
of the group G1. It outputs a parameter (q, g, e,G1,G2).

We now review the definition of “One More Discrete-Logarithm (OMDL)”
problem used to analyze the security of the Schnorr identification protocol [23]
against impersonation under active attack in which an attacker can participate
in the execution of the protocol as a cheating verifier [3].

Definition 1 (OMDL). The corresponding experiment for this problem, de-
noted Expomdl(k), is defined as follows. Firstly, the atomic parameter generation
algorithm is run and parameter (q, g, e,G1,G2) is generated. A polynomial-time
attacker A now makes n queries to the challenge oracle C(·) and m queries to
the Discrete-Logarithm (DL) oracle DLq,g(·). Upon receiving a query (null in-
put), the challenge oracle C(·) returns a random point h ∈ G1. Upon receiving a
query z, DLq,g(·) returns s such that gs = z. However, a restriction here is that
m < n. Namely, the number of queries to the DL oracle should be strictly less
than the number of queries to the challenge oracle. A’s final goal is to output
all the discrete logarithms of the n challenges returned from C(·). Formally, we
describe Expomdl(k) as follows.

– Experiment: (q, g, e,G1,G2)← PramGena(k); (s1, . . . , sn)← AC(·),DLq,g(·)(q,
g, e,G1,G2)

– Output: If (gs1 = h1)∧· · · ∧ (gsn = hn), where h1, . . . , hn are random points
in G1 output by the challenge oracle C(·), and m < n, where m denotes the
number of queries to the DL oracle, then return 1. Otherwise, return 0.
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We define A’s advantage as Advomdl
A (k) = Pr[Expomdl(k)] = 1. We say that

OMDL problem is hard if Advomdl
A (k) is negligible in k.

Other computational problems that we use in this paper are the Compu-
tational Diffie-Hellman (CDH) and the Strong Diffie-Hellman (SDH) problems,
which are reviwed in Appendix A.

3 Universal Designated Verifier Signature Proof System

3.1 Model

As informally outlined in Section 1, there are three parties involved in Universal
Designated Verifier Signature Proof (UDVSP) system: a signer, a designator
(signature holder) and a designated verifier. After creating a secret (signing) key
and public (verification) key pair, the signer signs a message and transmits the
resulting signature together with the message to the designator. It is important
that transmission of the signature should be done in a secure manner, e.g. via
secure channel. (This is similar to the private key generation process in identity-
based cryptography in which a trusted party generates a private key associated
with user’s identifier information and sends the resulting key via secure channel).
Having obtained the valid signature from the signer, the designator creates a
transformed signature by generating a random mask and hiding the original
signature using it. The designator then convinces the designated verifier via an
interactive protocol that the transformed signature has been generated from
the valid signature obtained from the signer. Below, we formally define UDVSP
system.

Definition 2 (Universal Designated Verifier Signature Proof). A Uni-
versal Designated Verifier Signature Proof system consists of the following five
polynomial-time algorithms and a protocol:

– SigKeyGen: Taking a security parameter k ∈ IN as input, this algorithm
generates a signer’s public/secret (verification/signing) key pair (pk, sk). We
write (pk, sk)← SigKeyGen(k).

– Sign: Taking signer’s secret key sk and a message m as input, this algorithm
generates a signature σ on m. We write σ ← Sign(sk,m).

– Verify: Taking a signer’s public key pk, a signature σ and a message m as
input, this algorithm outputs 1 if σ is a valid signature on m and outputs 0
otherwise. We write d← Verify(pk, σ,m), where d ∈ {0, 1}.

– Transform: Taking a signer’s public key pk and a signature σ as input, this
algorithm picks a secret mask s̃k and generates a transformed signature σ̃
using s̃k. It outputs σ̃ and s̃k. We write (σ̃, s̃k) ← Transform(pk, σ).

– IVerify: This is an interactive verification protocol between a designator and
a designated verifier, denoted P and V respectively. Common inputs for P
and V are a signer’s public key pk, a transformed signature σ̃ and a message
m. P ’s private input is a secret mask s̃k used to create σ̃. V does not have
any private input. In this protocol, P tries to convince V that σ̃ has been
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generated from the valid signature σ obtained from the signer, with the
knowledge of s̃k. The output of this protocol is verification decision 1 or 0
depending on whether V accepts or rejects. We write d ← IVerify[P (s̃k) ↔
V ](pk, σ̃,m).

Notice that in the above definition, SigKeyGen and Sign are run by the signer;
Verify and Transform are run by the designator. We emphasize that Verify is not
publicly available in UDVSP system.

We require two consistency properties from UDVSP system. One property
is that the signature σ on the message m, produced by the signer should be
accepted as valid by the Verify algorithm. The other property is that the trans-
formed signature σ̃ produced by the designator using the valid signature σ from
the signer and his secret mask s̃k should be accepted as valid in the IVerify
protocol.

3.2 Security Notions

The first essential security requirement for UDVSP system is that a signature
created by the signer should be existentially unforgeable under (adaptive) chosen
message attack, which is a standard requirement for digital signature schemes.
Below, we review the formal definition of unforgeability of chosen message attack
[14].

Definition 3 (Unforgeability against Chosen Message Attack). Suppose
that SigKeyGen, Sign and Verify are as defined in Definition 2. Consider the
following experiment Expf−cma(k) in which a polynomial-time attacker A after
making queries to the signing oracle Sign(sk, ·), outputs a new message and valid
signature pair:

– Experiment: (pk, sk)← SigKeyGen(k) : (m,σ) ← ASign(sk,·)(pk)
– Output: If 1 ← Verify(pk,m, σ) and m has not been queried to Sign(sk, ·)

then return 1. Otherwise return 1.

We define A’s advantage in the above experiment as Advf−cma
A (k) =

Pr[Expf−cma(k) = 1]. We say that the underlying signature scheme of UDVSP
system is existentially unforgeable under chosen message attack if Advf−cma

A (k)
is negligible in k.

The second essential security requirement for UDVSP system is resistance
against impersonation attack. That is, UDVSP system should prevent an at-
tacker who does not hold a valid signature created by the signer from imperson-
ating the honest designator who holds a valid signature created by the signer.

We divide this impersonation attack further into two categories, “Type-1”
and “Type-2” attacks. In Type-1 attack, an attacker who has obtained a trans-
formed signature participates in the IVerify protocol as a cheating designated
verifier and interacts with an honest designator a number of times. The attacker
then tries to impersonate the honest designator to other honest designated ver-
ifier. Below, we give a formal definition for security against the Type-1 attack.
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Definition 4 (Security against Impersonation under Type-1 Attack).
Assume that SigKeyGen, Sign, Verify, Transform and IVerify are as defined in
Definition 2. Suppose that a polynomial-time attacker A consists of two sub-
algorithms V̂ and P̂ , which represent a cheating designated verifier and a cheat-
ing designator respectively. Let P denote an honest designator. Let ConvIVerify

be a function that outputs a conversation transcript T of the IVerify protocol
between P and V̂ . Note here that T is a random variable afreshed by P and V̂ ’s
random coins. We write T ← ConvIVerify[P (s̃k)↔ V̂ ](pk, σ̃,m).

Now consider an experiment Expim−type1(k). Firstly, in this experiment, a
signer’s public/secret key pair (pk, sk) is generated using a security parameter
k ∈ IN. pk is then given to the honest designator P and the attacker A = (V̂ , P̂ ).
Next, an arbitrary message m is chosen and a signature σ on m is generated.
Also, a designator’s secret mask s̃k is chosen based on pk and a transformed
signature σ̃ is created using s̃k. σ̃ is then given to A = (V̂ , P̂ ) while s̃k is given
only to P . V̂ now interacts with P in the IVerify protocol p(k) times, where p(·)
denotes a polynomial-time computable function. Having accessed to transcripts
of these interactions and V̂ ’s random coins used in them, which are denoted
Ti and rV̂i respectively for i = 1, . . . , p(k), P̂ tries to impersonate the honest
designator P to an honest designated verifier V in the IVerify protocol. Formally,
Expim−type1(k) can be described as follows.

– Experiment: (pk, sk)← SigKeyGen(k); m← {0, 1}∗;
σ ← Sign(sk,m); (σ̃, s̃k)← Transform(pk, σ);
Ti ← ConvIVerify[P (s̃k)↔ V̂ ](pk, σ̃,m) for i = 1, . . . , p(k):
d ← IVerify[P̂ ((T1, r

V̂
1 ), . . . , (Tp(k), rV̂p(k))) ↔ V ](pk, σ̃,m)

– Output: d

We define A’s advantage in the above experiment as Advim−type1A (k) =
Pr[Expim−type1(k) = 1]. We say that UDVSP system is secure against imper-
sonation under Type-1 attack if Advim−type1A (k) is negligible in k.

In Type-2 attack, the attacker simply ignores the transformed signature that
he has obtained before but tries to create a new transformed signature on his
own and use this to impersonate the honest designator to an honest designated
verifier in the IVerify protocol. In what follows, we formally define the security
against Type-2 attack.

Definition 5 (Security against Impersonation under Type-2 Attack).
Assume that SigKeyGen, Sign, Verify, Transform and IVerify are as defined in
Definition 2. Let A be a polynomial-time attacker. Consider an experiment
Expim−type2(k). Firstly, in this experiment, a signer’s public/secret key pair
(pk, sk) is generated using a security parameter k and pk is given to A. Then, an
arbitrary message m is chosen and is given to A. A then generates a designator’s
secret mask s̃k

′
and a transformed signature σ̃′ on its own and participates in the

IVerify protocol with an honest designated verifier V . Formally, Expim−type2(k)
can be described as follows.
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– Experiment: (pk, sk)← SigKeyGen(k); m← {0, 1}∗; (σ̃′, s̃k
′
) ← A(pk,m):

d ← IVerify[A(s̃k
′
) ↔ V ](pk, σ̃′,m)

– Output: d

We define A’s advantage in the above experiment as Advim−type2A (k) =
Pr[Expim−type2(k) = 1]. We say that UDVSP system is secure against imper-
sonation under Type-2 attack if Advim−type2A (k) is negligible in k.

4 Our Universal Designated Verifier Signature Proof
Systems

4.1 UDVSP System Based on BLS Signature

Our first UDVSP system is based on Boneh, Lynn and Shacham (BLS)’s [5] sig-
nature scheme. Each sub-algorithm and protocol of this system can be described
as follows.

– SigKeyGen(k): Compute (q, g, e,G1,G2) ← PramGena(k). Choose x R← ZZ∗q
and compute y = gx. Specify a hash function H : {0, 1}∗ → G1. Output
pk = (k, q, g, e,G1,G2, H, y) and sk = (k, q, g, e,G1,G2, H, x).

– Sign(sk,m), where m ∈ {0, 1}∗: Compute σ = H(m)x. Output σ.
– Verify(pk,m, σ): Check e(σ, g) ?= e(H(m), y). If the equality holds, output 1.

Otherwise, output 0.
– Transform(pk, σ): Choose z

R← ZZ∗q and compute σz(= H(m)xz). Output
σ̃ = σz and s̃k = z.

– IVerify[P (s̃k)↔ V ](pk, σ̃,m):
Both P and V compute v1 = e(σ̃, g), and v2 = e(H(m), y).

1. P chooses t R← ZZ∗q , computes w = vs2 and sends w to V .

2. V chooses c R← ZZ∗q and sends it to P .
3. P computes t = s+ cz mod q and sends t to V .
4. V checks vt2

?= wvc1. If the equality holds then output 1. Otherwise,
output 0 otherwise.

If the hash function H is assumed to be the random oracle [2], one can
prove that the Sign algorithm above is unforgeable under chosen message attack
assuming that the CDH problem (Definition 6) is hard [5] (in G1).

Notice that the above IVerify protocol is a protocol for proving knowledge
of z satisfying the relation e(σ̃, g) = e(H(m), y)z . From this, P can convince
the designated verifier that he possesses a valid BLS-signature H(m)x. More
precisely, if there exists a knowledge extractor [1] that extracts z, one can use this
extractor to construct another knowledge extractor that outputs σ̃1/z as a valid
signature. Indeed, this value is a valid BLS-signature as e(σ̃, g) = e(H(m), y)z

implies e(σ̃, g)1/z = e(H(m), y) and hence e(σ̃1/z , g) = e(H(m)x, g). However, as
mentioned earlier, we do not use this auxiliary property to analyze the security
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of the proposed system as the zero-knowledge or witness-indistinguishability
required to provide the security against impersonation under active attacks (i.e.
attacks other than eavesdropping attack) often compromises the efficiency of
protocol [4].

It is important to notice that in the IVerify protocol, the designated verifier
does not need to setup his private/public key pair, which is a crucial difference
compared to previous UDVS schemes.

4.2 UDVSP System Based on BB Signature

Our second UDVSP protocol is based on Boneh and Boyen (BB)’s [7] signature
scheme. Each sub-algorithm and protocol of this system can be described as
follows.

– SigKeyGen(k): Compute (q, g, e,G1,G2) ← PramGena(k). Choose x R← ZZ∗q

and y
R← ZZ∗q . Compute u1 = gx and u2 = gy. Output pk = (k, q, g, e, G1,

G2, u1, u2) and sk = (k, q, g, e,G1,G2, u1, u2, x, y).
– Sign(sk,m) where m ∈ ZZq: Choose l R← ZZ∗q and compute δ = g1/(x+m+yl).

(If x+m+ yl = 0, try different l). Output σ = (δ, l).
– Verify(pk,m, σ): Check e(σ, u1g

mul2)
?= e(g, g). If the equality holds, output

1. Otherwise, output 0.
– Transform(pk, σ): Choose z

R← ZZ∗q and compute δ̃ = δz(= gz/(x+m+yl)).
Output σ̃ = (σz , l) and s̃k = z.

– IVerify[P (s̃k)↔ V ](pk, σ̃,m):
• Both P and V compute v1 = e(δ̃, u1g

mul2), and v2 = e(g, g).
1. P chooses s R← ZZ∗q , computes w = vs2 and sends w to V .

2. V chooses c R← ZZ∗q and sends it to P .
3. P computes t = s+ cz mod q and sends t to V .
4. V checks vt2

?= wvc1. If the equality holds then output 1. Otherwise,
output 0.

The above UDVSP system is structurally similar to the previous one pre-
sented in Section 4.1. However, a nice feature of this second construction is that
it does not depend on random oracle due to the underlying signature scheme
can be proven unforgeable against chosen message attack without employing the
random oracle assumption [7].

Similarly to the previous construction, the IVerify protocol in the above UD-
VSP system can be viewed as a protocol for proving the knowledge of z satisfying
the relation e(σ̃, u1g

mul2) = e(g, g)z.

5 Security Analysis

As mentioned in the previous section, the unforgeability of the underlying sig-
nature schemes of our two UDVSP systems were proven under the assumption
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that the CDH and SDH problems are hard respectively [5,7]. Therefore, we only
analyze the security of the two UDVSP systems under impersonation attack.

The first theorem is concerned with the security of our UDVS system based
on the BLS signature against impersonation under Type-1 attack.

Theorem 1. The UDVSP system based on the BLS signature is secure against
impersonation under Type-1 attack in the random oracle model assuming that
the OMDL problem is hard in G1.

Proof. Let A = (V̂ , P̂ ) be an impersonator that tries to break the UDVSP system
based on the BLS signature under Type-1 attack. Let B be an OMDL attacker.
Suppose that B is given (q, g, e,G1,G2). First, B queries its challenge oracle
C(·) to obtain a challenge point h0. Suppose that h0 = gs0 for some random
s0 ∈ ZZ∗q . Now, B chooses an arbitrary string m ∈ {0, 1}∗. B also chooses

x
R← ZZ∗q and computes y = gx. B then outputs pk = (k, q, g, e,G1,G2, H, y)

as the signer’s public key, where a random oracle H : {0, 1}∗ → G1 can be
constructed as follows. B sets H(m) = gl ∈ G1. For m′ �= m, B chooses l′ R← ZZ∗q
and returns H(m′) = gl

′ ∈ G1. Finally, B computes σ̃ = hlx0 and gives this to A
as a transformed signature. B proceeds to simulate the n times of execution of
the IVerify protocol between V̂ and an honest designator P as follows. (Below,
i ∈ {1, . . . , n}).

– Make a query to C(·) and get the response hi. Compute wi = e(hlxi , g)
and send this to Ṽ . When V̂ sends ci, make query hih

ci
0 to DLq,g(·) to

get the response ti and send this back to V̂ . V̂ then checks e(H(m), g)ti ?=
wie(σ̃, g)ci .

Notice that the distribution of the transformed signature σ̃ constructed in
the simulation above is the same as that in the real attack: Since h0 = gs0 for
random s0 ∈ ZZ∗q , σ̃ = hlx0 = glxs0 = H(m)xs0 for random l, x ∈ ZZ∗q .

We now show that the simulation of IVerify is correct. Firstly, wi in the above
simulation and the one sent by P in Step 1 of the real protocol are identically
distributed: Since hi = gsi for some random si ∈ ZZ∗q , we have

wi = e(hlxi , g) = e(gsil, gx) = e(gl, gx)si = e(H(m), y)si .

Secondly, since ti is the discrete-logarithm of hihci
0 , we have ti = si+ cis0 mod q

and hence

e(H(m), y)ti = e(H(m), y)si+cis0 = e(H(m), y)sie(H(m), y)cis0

= e(gl, gx)sie(gl, gx)cis0 = e(gsilx, g)e(gs0lx, g)ci

= e(hlxi , g)
sie(hlx0 , g)

ci = wie(σ̃, g)ci .

After performing the above simulation n times, B now attempts to ex-
tract s0, the discrete-logarithm of h0. Using this value, B can compute the
discrete-logarithms of other points h1, . . . , hn. To do so, B runs P̂ to get w in
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Step 1 of IVerify, selects c R← ZZ∗q and runs P̂ to obtain its response t and checks

e(H(m), y)t ?= we(σ̃, g)c. If the equality holds, B runs P̂ again with the same
state as before but with different challenge c′ ∈ ZZ∗q , obtains its response t′ and

checks e(H(m), y)t
′ ?= we(σ̃, g)c

′
. If the equality holds, B computes t−t′

c′−c mod q.
(Note that this part is due to the “reset lemma” formulated in [3]). We show
that t−t′

c′−c mod q is the discrete-logarithm of h0. Observe that

e(glx(t−t
′)/(c−c′), g) = e(glx(t−t

′), g)1/(c−c
′) = (e(gl, gx)te(gl, gx)−t

′
)1/(c−c

′)

= (e(H(m), y)te(H(m), y)−t
′
)1/(c−c

′)

= (we(σ̃, g)c(we(σ̃, g)c
′
)−1)1/(c−c

′)

= e(σ̃, g)(c−c
′))1/(c−c

′) = e(hlx0 , g) = e(glxs0 , g).

From the above equation, we obtain t−t′
c′−c = s0 mod q. Since we have s0, we

can compute si = ti − ci(s0fi) for i = 1, . . . , n. Finally B outputs s0, s1, . . . , sn.

Now we prove the security of our first UDVS system against impersonation under
Type-2 attack.

Theorem 2. The UDVSP system based on the BLS signature is secure against
impersonation under Type-2 attack in the random oracle model assuming that
the CDH problem is hard in G1.

Proof. We present a reduction from the unforgeability of the original BLS sig-
nature scheme to the security of our UDVSP system under Type-2 attack. The
above theorem then follows since the BLS scheme is shown to be (existentially)
unforgeable under chosen message attack in the random oracle model assuming
that the CDH problem in G1 is hard [5].

Let A be an impersonator that tries to break the UDVSP system based on the
BLS signature under Type-2 attack. Let B be a forger that tries to break the BLS
signature scheme under chosen message attack. Suppose that B is given a public
key (q, g, e,G1,G2, y,H), where y = gx and H : {0, 1}∗ → G1 is a hash function
modeled as a random oracle [2]. Firstly, B outputs pk = (k, q, g, e,G1,G2, H, y)
as the signer’s public key. B then chooses an arbitrary string m ∈ {0, 1}∗.

B now runs A to get σ̃′. B continues to run A to get w in Step 1 of IVerify.
Upon receiving w, B picks c R← ZZ∗q , runs A to obtain its response t and checks

e(H(m), y)t ?= we(σ̃′, g)c. If the equality holds, B runs A again with the same
state as before but with difference challenge c′ ∈ ZZ∗q , obtains its response t′ and

checks e(H(m), y)t
′ ?= we(σ̃′, g)c

′
. If the equality holds, B outputs σ̃′

c−c′
t−t′ as a

forgery. (Similarly to the proof of the previous theorem , this part is due to the
“reset lemma” formulated in [3]).

In remains to show that σ̃′
c−c′
t−t′ is a valid signature on m. From the above two

equations, we get
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e(H(m), y)t/e(H(m), y)t
′
= we(σ̃′, g)c/we(σ̃′, g)c

′

e(H(m), y)t−t
′
= e(σ̃′, g)c−c

′

e(H(m), gx)t−t
′
= e(σ̃′, g)c−c

′

e(H(m)x, g) = e(σ̃′, g)
c−c′
t−t′

e(H(m)x, g) = e(σ̃′
c−c′
t−t′ , g).

Thus we have σ̃′
c−c′
t−t′ = H(m)x, which is a valid signature on m.

The following two theorems are concerned with the security of our second
UDVSP system against impersonation attack.

Theorem 3. The UDVSP system based on the BB signature is secure against
impersonation under Type-1 attack assuming that the OMDL problem in hard in
G1.

Proof. Let A = (P̂ , V̂ ) be an impersonator that tries to break the UDVSP
protocol based on the BB signature scheme under Type-1 attack. Let B be an
OMDL attacker. Suppose that B is given (q, g, e,G1,G2). First, B queries its
challenge oracle C(·) to obtain a challenge point h0. Suppose that h0 = gs0 for
some random s0 ∈ ZZ∗q . B then chooses an arbitrary string m ∈ {0, 1}∗. B also

chooses x R← ZZ∗q and y
R← ZZ∗q and computes u1 = gx and u2 = gy. B then

outputs pk = (k, q, e, g,G1,G1,G2, u1, u2) as the signer’s public key. Finally, B

computes σ̃ = h
1

x+m+yl

0 and publishes this as a transformed signature. B proceeds
to simulate the steps of IVerify as follows. (Below, i ∈ {1, . . . , n}).

– Make a query to C(·) and get the response hi. Compute wi = e(hi, g) and send
this to Ṽ . When V̂ sends ci, make query hihci

0 to DLq,g(·) to get the response

ti and send this back to V̂ . V̂ then checks e(g, g)ti ?= wie(δ̃, u1g
mul2)

ci .

Notice that the distribution of the transformed signature σ̃ constructed in the
simulation above is the same as that in the real attack as h0 = gs0 for random

s0 ∈ ZZ∗q and hence σ̃ = h
1

x+m+ly

0 = g
s0

x+m+ly for random x, y, l ∈ ZZ∗q .
We now show that the simulation of IVerify is correct. Firstly, wi in the above

simulation and the one sent by P in Step 1 of the real protocol are identically
distributed: Since hi = gsi for some random si ∈ ZZ∗q , we have wi = e(gsi , g) =
e(g, g)si . Secondly, since ti is the discrete-logarithm of hihci

0 , we have ti = si +
cis0 mod q. Hence,

e(g, g)ti = e(g, g)si+cis0 = e(g, g)sie(g, g)cis0 = wie(g
s0

x+m+yl , gx+m+yl)ci

= wie(h
1

x+m+yl

0 , u1g
mul2)

ci = wie(σ̃i, u1g
mul2)

ci .

After performing the above simulation n times, B now attempts to ex-
tract s0, the discrete-logarithm of h0. Using this value, B can compute the
discrete-logarithms of other points h1, . . . , hn. To do so, B runs P̂ to get w
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in Step 1 of IVerify, selects c
R← ZZ∗q and runs P̂ to obtain its response t

and checks e(g, g)t ?= we(σ̃, g)c. If the equality holds, B runs P̂ again with
the same state as before but with different challenge c′ ∈ ZZ∗q , obtains its re-

sponse t′ and checks e(g, g)t
′ ?= we(σ̃, g)c

′
. If the equality holds, B computes

t−t′
c′−c mod q. (Note that this part is due to the “reset lemma” formulated in
[3]). We now show that t−t′

c′−c mod q is the discrete-logarithm of h0. Observe
that

e(g
t−t′
c−c′ , g) = e(gt−t

′
, g)

1
(c−c′) = (e(g, g)te(g, g)−t

′
)

1
(c−c′)

=
(
we(σ̃, u1g

mul2)
c(we(σ̃, u1g

mul2)
c′)−1

) 1
(c−c′)

= e(σ̃, u1g
mul2)

c−c′
c−c′ = e(h

1
x+m+yl

0 , gx+m+yl) = e(gs0 , g).

From the above equation, we obtain t−t′
c′−c = s0 mod q. Since we have s0, we

can compute si = ti − cis0 for i = 1, . . . , n. Finally B outputs s0, s1, . . . , sn.

Theorem 4. The UDVSP system based on the BB signature is secure against
impersonation under Type-2 attack in the random oracle model assuming that
the SDH problem is hard in G1.

Proof. Similarly to the proof of Theorem 2, we present a reduction from the
security of the original BB signature scheme to the security of our UDVSP system
under Type-2 attack. The above theorem then follows since the BB scheme is
shown to be unforgeable under chosen message attack (in the standard model)
assuming that the SDH problem in group G1 is hard [7].

Let A be an impersonator that tries to break the UDVSP system based on
BB under Type-2 attack. Let B be a forger that tries to break the BB signature
scheme under chosen message attack. Suppose that B is given a public key
(q, g, e,G1,G2, u1, u2), where u1 = gx and u2 = gy for random x, y,ZZ∗q . Firstly,
B outputs pk = (q, g, e,G1,G2, u1, u2) as the signer’s public key. B chooses an
arbitrary string m ∈ {0, 1}∗.

B now runs A to get σ̃′ = (δ̃′, l). B continues to run A to get w in Step 1
of IVerify. Upon receiving w, B picks c R← ZZ∗q , runs A to obtain its response

t and checks e(g, g)t ?= we(δ̃′, u1g
′mul2)

c. If the equality holds, B runs A again
with the same state as before but with difference challenge c′ ∈ ZZ∗q , obtains

its response t′ and checks e(g, g)t
′ ?= we(δ̃′, u1g

mul2)
c′ . If the equality holds, B

outputs σ̃
t−t′
c−c′ as a forgery. (Note that this part is due to the “reset lemma”

formulated in [3]).

We now show that σ̃′
t−t′
c−c′ is a valid signature on the message m. From the

above two equations, we get
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e(g, g)t/e(g, g)t
′
= we(σ̃′, g)c/we(σ̃′, g)c

′

e(g, g)t−t
′
= e(δ̃′, u1g

mul2)
c−c′

e(g, g)t−t
′
= e(δ̃′, u1g

mul2)
c−c′

e(g, g) = e(σ̃′, gx+m+yl)
c−c′
t−t′

e(g, g) = e(σ̃′
c−c′
t−t′ (x+m+yl), g).

Thus we have σ̃′
t−t′
c−c′ = g

1
x+m+yl , which is a valid signature on m.

6 Concluding Remarks

In this paper, we proposed an alternate method to realize Universal Designated
Verifier Signature (UDVS) [25], called Universal Designated Verifier Signature
Proof (UDVSP). We constructed two efficient and provably-secure UDVSP sys-
tems based on the pairing-based signature schemes proposed in [5] and [7]. The
important feature of our two constructions compared to previous UDVS schemes
[25,26,28] is that the verifier is no longer required to generate his private/public
key pair for verifying that the signature holder is in possession of a right signature
from the original signer.

Additionally, we observe that when a designator and a signer are the same
entity, the UDVSP system becomes an undeniable signature scheme with a con-
firmation protocol only. As an example, using the UDVSP system based on BLS
signature, one can construct an undeniable signature scheme as follows.

– SigKeyGen(k): Compute (q, g, e,G1,G2) ← PramGena(k). Choose x R← ZZ∗q
and compute y = gx. Specify a hash function H : {0, 1}∗ → G1. Output
pk = (k, q, g, e,G1,G2, H, y) and sk = (k, q, g, e,G1,G2, H, x).

– Sign(sk,m), where m ∈ {0, 1}∗: Choose z R← ZZ∗q and compute σ̃ = H(m)xz.
Output σ̃.

– Confirmation[P (sk, z)↔ V ](pk, σ̃,m):
• Both P and V compute v1 = e(σ̃, g), and v2 = e(H(m), y).

1. P chooses t R← ZZ∗q , computes w = vs2 and sends w to V .

2. V chooses c R← ZZ∗q and sends it to P .
3. P computes t = s+ cz mod q and sends t to V .
4. V checks vt2

?= wvc1. If the equality holds then output 1. Otherwise,
output 0.

Notice that in the above scheme, anyone cannot verify the validity of a sig-
nature without the help of the signer, which is essentially a main requirement of
undeniable signature.

Designing a disavowal protocol for the above scheme and its formal analysis
under the new security model for undeniable signature proposed in [22] are our
future work.
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A Definitions of CDH and SDH

Definition 6 (CDH). Let A be a polynomial-time attacker. Consider the
following experiment Expcdh(k):

– Experiment: (q, g, e,G1,G2)← ParamGena(k); (a, b) R← ZZ∗q : κ← A(ga, gb)
– Output: If κ = gab then return 1. Otherwise, return 0.

We define A’s advantage as AdvcdhA (k) = Pr[Expcdh(k)] = 1. We say that CDH
problem is hard if AdvcdhA (k) is negligible in k.

It is believed that the above CDH problem in group G1 is hard (compu-
tationally intractable). On the contrary, the Decisional Diffe-Hellman (DDH)
problem in this group can be solved in polynomial time with the help of the
bilinear pairing. We note that the security of Boneh, Lynn and Shacham’s [5]
short signature scheme is relative to CDH.

We now review the definition of the Strong Diffie-Hellman (SDH) problem
in group G1 as follows.

Definition 7 (SDH). Let A be a polynomial-time attacker. Consider the fol-
lowing experiment Expsdh(k) (Below, n is polynomial in k).:
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– Experiment: (q, g, e,G1,G2)← PramGena(k); x
R← ZZ∗q :

κ← A(g, gx, gx
2
, . . . , gx

n

)
– Output: If κ = (c, g1/(x+c)) where c ∈ ZZq then return 1. Otherwise, return

0.

We define A’s advantage as AdvsdhA (k) = Pr[Expsdh(k)] = 1. We say that SDH
problem is hard if AdvsdhA (k) is negligible in k.

We note that the security of Boneh and Boyen’s [7] signature scheme is
relative to SDH.
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Abstract. Most prior designated confirmer signature schemes either
prove security in the random oracle model (ROM) or use general zero-
knowledge proofs for NP statements (making them impractical). By
slightly modifying the definition of designated confirmer signatures, Gold-
wasser and Waisbard presented an approach in which the Confirm and
ConfirmedSign protocols could be implemented without appealing to
general zero-knowledge proofs for NP statements (their Disavow protocol
still requires them). The Goldwasser-Waisbard approach could be instan-
tiated using Cramer-Shoup, GMR, or Gennaro-Halevi-Rabin signatures.

In this paper, we provide an alternate generic transformation to con-
vert any signature scheme into a designated confirmer signature scheme,
without adding random oracles. Our key technique involves the use of
a signature on a commitment and a separate encryption of the random
string used for commitment. By adding this “layer of indirection,” the
underlying protocols in our schemes admit efficient instantiations (i.e.,
we can avoid appealing to general zero-knowledge proofs for NP state-
ments) and furthermore the performance of these protocols is not tied
to the choice of underlying signature scheme. We illustrate this using
the Camenisch-Shoup variation on Paillier’s cryptosystem and Peder-
sen commitments. The confirm protocol in our resulting scheme requires
10 modular exponentiations (compared to 320 for Goldwasser-Waisbard)
and our disavow protocol requires 41 modular exponentiations (compared
to using a general zero-knowledge proof for Goldwasser-Waisbard). Pre-
vious schemes use the encryption of a signature paradigm, and thus run
into problems when trying to implement the confirm and disavow pro-
tocols efficiently.

1 Introduction

Digital signatures allow one party to sign a message and have the resulting
message-signature pair be verifiable by anyone. There are, however, situations
when the signer may want to limit signature recipient’s ability to present the
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signature to others. Chaum and van Antwerpen [9] introduced the notion of
Undeniable Signatures to help achieve this aim. Such signatures require the
involvement of the original signer each time they are verified. Of course, this
approach places excessive responsibility on the signer to be available and to
not act maliciously. As an alternate approach, Jakobsson et al. [18] introduced
Designated Verifier signatures which can only be validated by a specific user
(who the signer can designate). However, the recipient cannot convince another
party of the signature’s validity, which is a desirable feature in many situations.

Chaum [7] introduced the notion of a designated confirmer signature (DCS),
which overcomes both these limitations. Such signatures require the assistance
of a trusted third party called the confirmer. Given a signature σ that the signer
issues, the confirmer can execute a special Confirm protocol to prove that a
signature σ is a valid signature on a message m, or a Disavow protocol to show
that σ is not a valid signature on a message m. Without the confirmer, however,
no party can determine whether σ is a valid signature for m or not.

Applications of Designated Confirmer Signatures. Designated con-
firmer signatures have several cryptographic applications. For example, Asokan
et al. demonstrate their use for “optimistic” fair exchange, in which a trusted
third party need be involved only if cheating is suspected; the third party plays
the role of confirmer [1]. Chaum notes that they are useful for integrity-critical
content, such as virus updates, which is updated as part of a subscription ser-
vice. In this application, without the assistance of the confirmer (for a fee), the
content cannot be verified [7]. Therefore, efficient designated confirmer schemes
are of practical as well as theoretical interest.

Definitional Issues in DCS Schemes. Okamoto provided the first formal
definition of a designated confirmer signature [21]. His scheme is simple to de-
scribe: use an ordinary signature scheme to sign a message, then use an ordinary
public-key encryption scheme to encrypt the resulting signature with the desig-
nated confirmer’s public key. General zero-knowledge proofs for NP statements
can be used to provide the Confirm and Disavow protocols. Of course such proofs
involve a reduction step to an NP-complete language (e.g., the language repre-
senting graphs that are three colorable), and cannot really be used in practice.
Work on designated confirmer schemes continued, and it became clear that the
correct definition had numerous subtleties, involving issues including coercion of
the signer, handling multiple signers with the same confirmer, and others. We fo-
cus on two key issues in the definition of designated confirmer signature schemes
that will affect our construction. Firstly, we must consider whether to require
designated confirmer signatures to be simulatable. Michels and Stadler, following
Okamoto, adopt a definition that requires “invisibility” of designated confirmer
signatures [26,21]; i.e., there exists a simulator who can create a “valid-looking”
designated confirmer signature for any message m. Secondly, we must consider
whether the Confirm and Disavow protocols are required to be zero-knowledge
or instead may satisfy some weaker property. Previous definitions, such as those
of Michels and Stadler, have included both these requirements [26]. Subsequent
designated confirmer schemes were proposed by Camenisch and Michels [4], and
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by Camenisch and Shoup [6]. Other than the Okamoto scheme just mentioned,
the remaining schemes all have security proofs in the random oracle model [2].

Goldwasser and Waisbard were interested in coming up with schemes that
were provably secure without appealing to random oracles and without appealing
to generic zero-knowledge proofs [17]. They found a clever way to approach this
goal. They first argued that the previous definitions are too strong and do not
capture the motivating applications of designated confirmer signature schemes.
They modified Okamoto’s original definition to require only that an adversary
cannot verify signatures unless specifically assisted by the designated confirmer.
Following the definition, they then show constructions of designated confirmer
signatures for some specific signature schemes using strong witness hiding proofs
of knowledge as a tool.

While Goldwasser and Waisbard can completely circumvent the use of ran-
dom oracles, their Disavowal protocol still requires a generic zero-knowledge
proof. Also, their witness hiding proofs of knowledge have soundness error 1

2
and so are repeated λ times, where λ is the security parameter, to reduce the
error. The efficiency of their protocols depends on the specific signature scheme.
For example, with Cramer-Shoup as the underlying signature scheme each rep-
etition costs 2 exponentiations in the underlying group [17].

Confirmer Commitments Revisited. Our approach is to use a Paillier-based
instantiation of the confirmer commitment idea of Michels and Stadler [26]. A
confirmer commitment is a special type of commitment scheme with a public
key. Anyone can use the public key to create a commitment to a message m,
but only the holder of the corresponding secret key can prove or disprove the
resulting commitment is a commitment to the message m.

Michels and Stadler noted that signing a confirmer commitment would be
an “obvious” approach to building a designated confirmer signature scheme [26].
This is because the confirmer commitment can only be matched to a message
m by the confirmer, who holds the secret key. Unfortunately, their definition
required “invisibility” for confirmer signatures, namely that given any message,
there exists a simulator that can produces a “valid-looking” designated con-
firmer signature on that message. This ruled out the approach a priori, because
signatures from the underlying signature scheme cannot be simulated for an ex-
istentially unforgeable signature scheme; any such simulator would imply the
existence of a forger. As Goldwasser and Waisbard have argued, however, such
requirements are too strong when we only care that no adversary can convince
others that a signature is valid. We show in this paper that replacing the simu-
lation requirement with the more natural non-verifiability of signatures require-
ment allows us to prove that the “obvious” scheme is secure.

We stress that, by itself, this observation is not enough. A more serious
problem with the approach of confirmer commitments, as shown by Camenisch
and Michels [4], is that the construction of confirmer commitments proposed
by Michels and Stadler is actually not secure when multiple signers share the
same confirmer [26]. Therefore it is not trivial to create a secure designated con-
firmer signature scheme from confirmer commitments, even with the weakened
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definition. While Camenisch and Michels sketch a fix for the Michels and Stadler
construction, they do not give a full proof of security. Finally, while Camenisch
and Michels define a generic transformation and prove it secure, efficient instan-
tiation depends on the details of the underlying signature scheme; we analyze
their suggested instantiation, which uses RSA with Full Domain Hash, in Sec-
tion 5 [4]. We give a transformation in Section 4 that achieves security and
efficiency given any signature scheme existentially unforgeable against chosen
message attack. Instead of giving a new definition for confirmer commitments,
however, we simply prove directly in Section 4 that the resulting scheme is a
secure designated confirmer scheme.

Camenisch and Shoup’s Approach. Camenisch and Shoup introduced new
protocols for verifiable encryption and proving inequality of discrete
logarithms [6]. Goldwasser and Waisbard note that these protocols are of in-
terest in the designated confirmer setting [17]. Indeed, Camenisch and Shoup
sketch a construction of designated confirmer signatures as part of their work on
verifiable encryption. While we will use the protocols of Camenisch and Shoup
in our construction, the way in which we use them is different. We sign a com-
mitment and then encrypt information needed to open the commitment, while
Camenisch and Shoup perform a verifiable encryption of a signature directly.

Because the Camenisch-Shoup approach encrypts a signature directly, the
efficiency of Confirm and Disavow depends essentially on the underlying signature
scheme. Their sketch suggests the use of Schnorr signatures [24], together with
a trick for reducing the validity of a Schnorr signature to an equality of discrete
logarithms. Details of the resulting scheme are not given, but are due to appear
in a forthcoming paper. Since this paper is not yet available, in Section 5 we
flesh out what we suspect the details to be to allow for comparison between our
approach and theirs.

We highlight one such detail that affects our construction of DCS schemes:
the Camenisch-Shoup protocols as described satisfy only special honest-verifier
zero-knowledge. Special honest-verifier is not a strong enough property in the
context of an adversary for DCS schemes, because the DCS adversary may act
as a cheating verifier during Confirm and Disavow protocols. We show how to use
techniques of Cramer, Damgard, and MacKenzie to fix this problem [13].

Finally, we note that the Camenisch-Shoup sketch suggests the use of Schnorr
signatures, which require random oracles. Adapting their approach to a new sig-
nature scheme without random oracles is not trivial. We briefly outline difficulties
with several such schemes in Section 5. Our approach, in contrast, works for any
signature scheme without modification and easily yields a designated confirmer
signature that does not need random oracles.

Our contributions. We make three contributions. First, we show that adopt-
ing the Goldwasser-Waisbard definition [17] allows us to prove that the ap-
proach of signing a commitment yields a designated confirmer signature scheme
using any secure signature scheme as a building block. We specify a generic con-
struction (based on any signature scheme, encryption scheme, and commitment
scheme) and prove it secure without the use of random oracles. Second, we give
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Random Oracle Signature Confirm Disavow
GW [17] No Cramer-Shoup [10] 2λ exps generic ZKP
GW [17] No GMR [16] 2λ exps generic ZKP
GW [17] No GHR [14] 2λ exps generic ZKP
CS [6] Yes Schnorr [24] 10 exps 41 exps
CM [4] Yes RSA-FDH 24λ exps 60λ exps

Our scheme No Any 10 exps 41 exps

Fig. 1. Comparison of our approach to Goldwasser-Waisbard, Camenisch-Shoup, and
Camenisch-Michels. Here λ is a security parameter. We achieve efficient Confirm and
Disavow protocols without using random oracles. Section 5 explains these results in
detail.

an instantiation using Pedersen Commitments [23] together with Camenisch and
Shoup’s [6] variant of Paillier’s cryptosystem [22]. This approach achieves Con-
firm and Disavow protocols without appealing to generic zero-knowledge proofs
and without appealing to random oracles independent of the choice of signature
scheme. The resulting Confirm protocol requires 5 exponentiations (compared to
320 for Goldwasser-Waisbard) and our Disavow protocol requires 17,000 mod-
ular multiplications (whereas Goldwasser-Waisbard require a potentially very
expensive generic zero-knowledge proof). Of course, we base our security on the
security of Paillier’s cryptosystem and on the security of Pedersen commitments,
whereas Goldwasser and Waisbard require different assumptions than we do; we
elaborate on this, and other aspects of the comparison, in Section 5. Third,
we show that the resulting Confirm and Disavow protocols are zero-knowledge
(whereas Goldwasser-Waisbard provide strong witness hiding proofs of knowl-
edge), even against cheating verifiers, by combining the Camenisch-Shoup pro-
tocols with techniques of Cramer, Damgard and MacKenzie [13].

2 Preliminaries

Throughout λ is a positive integer denoting the security parameter. The security
parameter is an implicit input to the algorithms discussed throughout the paper
(and we omit it from the list of inputs when it might be otherwise clear from
context). Let negl(λ) denote a negligible function; i.e., one that grows smaller
than 1/λc for all c and all sufficiently large λ. For a positive integer a, we let
[a] denote the set {0, . . . , a− 1}. If Alg(·, ·, . . .) is a probabilistic algorithm, then
Alg(x1, x2, . . .) is a probability space over the random choices made by Alg. We let
x ←− Alg(x1, x2, . . .) denote the experiment of running Alg on inputs x1, x2, . . .,
where x is a discrete random variable denoting the outcome. Note that Alg
implicitly induces a distribution on the possible outputs. For a set S, we let |S|
denote the number of elements in S. If S is defined by a mathematical group,
then |S| is the group order. If S is equipped with a probability distribution
D, we let x D←− S denote the experiment of choosing x ∈ S according to D.
We typically let the underlying distribution be the uniform distribution R. In
our context an adversary (denoted by A, F , etc. depending on the situation)
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is a probabilistic polynomial time random access machine with oracle access to
some number κ of oracles, each of which is capable of computing some specified
function. If (f1, . . . , fκ) is a κ-tuple of (oracle implemented) functions, and A is
a κ-oracle adversary, then Af1,...,fκ denotes the adversary augmented with its
oracles. An adversary may also have oracle access to a protocol, in which case the
adversary provides protocol inputs from one side of the protocol (e.g., a verifier
in an interactive proof system) and has oracle access to the responses from the
other side of protocol (e.g., a prover in an interactive proof system). As above,
the adversary on a given set of inputs induces a probability space, and we can
associate a discrete random variable to the output of the experiment of running
the adversary on a given set of inputs equipped with a given set of oracles. We
now describe some of the tools required for our construction.

Proofs of Knowledge. Some of our protocols will be proofs of knowledge
(PoK), as defined by Bellare and Goldreich [3]. Informally, an interactive proof
(P, V ) for a relation R = {α, β} is a proof of knowledge if there exists a prob-
abilistic polynomial time knowledge extractor E who can extract a witness β
given oracle access to a (possibly cheating) prover. The knowledge extractor is
allowed to rewind the prover if necessary. The knowledge error of a ZKPoK
quantifies the success probability of the extractor in terms of the prover’s prob-
ability of convincing the verifier. Specifically, let P be a prover with respect to
α. We say that the proof of knowledge has knowledge error κ(α) if, when the
prover succeeds with probability ε(α) the knowledge extractor EP succeeds with
probability at least ε(α)− κ(α).
Zero-Knowledge Proofs. The well-known Chaum-Pedersen protocol
for proving equality of discrete logarithms and the Camenisch-Shoup proto-
cols (which we describe below), are special honest-verifier zero-knowledge Σ-
protocols [19] (SHVZK). This means that the protocols are public-coin and can
be simulated assuming an honest verifier (i.e., a verifier that picks challenges
uniformly at random). The special property means there is a simulator that,
given the challenge of a verifier, can create the prover’s messages.

The zero-knowledge proofs in our DCS scheme, however, must be zero-
knowledge even against arbitrarily cheating verifiers. Moreover, we must be care-
ful that our ZK proofs in our scheme not only reveal nothing about the witness,
but also that the transcripts of a “real-world” interaction between the prover
and a verifier in the ZK proof are indistinguishable from a transcript that a
probabilistic polynomial-time simulator can generate using rewindable black-
box access to the verifier. Such ZK proof protocols can be found in [15,13]. For
our efficient instantiation, we prefer the Cramer-Damgard-Mackenzie (CDM) ap-
proach, in which a prover P proves knowledge of a witness w for x to verifier V
using SHVZK Σ-protocols in both directions, roughly as follows:

– Part 1: V commits to a value e and proves knowledge of e;
– Part 2: P gives a witness-indistinguishable proof of knowledge of either the

verifier’s value e or the witness w.

When applied to SHVZK 3-round proofs of knowledge, this approach yields
a zero-knowledge proof of knowledge (ZKPoK) with negligible knowledge error,
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neglible soundness error, and which remains perfect zero-knowledge even against
malicious adversaries. Specifically, there exists a simulator SV

′
that, given ac-

cess to an arbitrary verifier V’, outputs a transcript identically distributed to the
transcript of interactions between the prover and V ′. We will use this simulator
extensively in the reduction algorithm of our DCS scheme’s proof of security.
Strictly speaking, the SHVZK 3-round proof of knowledge must satisfy an addi-
tional condition, namely that an associated “commitment relation” also have a
3-round proof of knowledge. Fortunately, as we will see, this is the case for our
efficient instantiation, because we can leverage an efficient discrete logarithm
protocol given by Cramer et al. [13]

Camenisch-ShoupVerifiableEncryption.Weuse anadaptationofCamenisch
and Shoups’s Paillier-based encryption scheme, which allows verifiable encryption
of discrete logarithms. The scheme relies on the decisional composite residuosity
assumption (DCRA). Let P,Q be Sophie-Germain primes – i.e., P = 2p + 1 and
Q = 2q+1 for primes p, q. Let N = PQ. The DCRA states, roughly, that it is hard
to distinguish random elements of Z∗N2 from random elements of the subgroup con-
sisting of allN -th powers of elements inZ∗N2. The originalDCRAintroducedby [22]
does not require the use of Sophie-Germain primes, though they are required by [6]
and by us for technical reasons. As pointed by [6], it is clear that as long as Sophie-
Germain primes are sufficiently dense in the set of primes (as is believed to be true),
then the DCRA without the Sophie-Germain restriction implies the DCRA with
the Sophie-Germain restriction.

We give a sketch of the encryption scheme; details can be found in [6].
The user creates a composite modulus N = PQ as above. The user’s pub-
lic key includes a collision-resistant hash function H , h = 1 + N , a random
g′ ∈ (Z/N2Z)∗, and values g = g′2N , y1 = gx1 , y2 = gx2 , and y3 = gx3 for
secrets x1, x2, x3 ∈ [N2/4].

To encrypt r with a “label” L ∈ {0, 1}∗, the sender chooses t ∈R [N/4] and
computes (u, e, v) with u = gt, e = yt1h

r, and v = abs((y2y
H(u,e,L)
3 )t), where

abs(a) = N2−a mod N2 if a > N2/2 else abs(a) = a mod N2. The ciphertext is
(u, e, v,L). A user with the private key can decrypt (u, e, v,L) as follows. First,
it checks that abs(v) = v and u2(x2+H(u,e,L)x3) = v2. If the check fails, the user
outputs ⊥ and halts. Otherwise, it computes r̂ = (e/ux1)2k for k = 2−1 mod N .
If r̂ is of the form hr for some r ∈ [N ], it outputs r; otherwise, it outputs ⊥.

To obtain a verifiable encryption scheme from the basic encryption scheme
above, one uses an additional composite modulus N2 = P2Q2, where P2 =
2p2 + 1 and Q2 = 2q2 + 1 are safe primes, along with elements g2, h2 ∈ Z∗N2

of
order p2q2. Optionally, one may use a third group – e.g., a group Γ of prime
order ρ with generators γ and δ for which the discrete logarithm problem is not
known to be vulnerable to subexponential attacks – to improve efficiency. We
view (N2, g2, h2,Γ, γ, δ) as a common reference string. We require N2 �= N and
|Γ | < N2−k−k

′−3 for security parameters k and k′ as described in [6].
Now, suppose that α = γr for r ∈ [ρ]; then, r can be verifiably encrypted

as follows. The sender computes (u, e, v) as before, generates s ∈R [N2/4], sets

 = gm2 h

s
2, and then provides the following ZKPoK:
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PK{(t, r, s) : u2 = g2t ∧ e2 = y2t
1 h

2r ∧ v2 = (y2y
H(u,e,L)
3 )2t (1)

∧ α = γr ∧ 
 = gm2 h
s
2 ∧ r ∈ [ρ]} . (2)

The verifiability aspect of the encryption scheme relies on the strong RSA as-
sumption – namely that, given N2 and z ∈ Z∗N2

, it is hard to find x ∈ Z∗N2
and

e ≥ 2 such that xe = z mod N2. One could alternatively avoid using the third
group Γ by setting requiring N2 < N2−k−k

′−3, setting a = gr2, and prove the
same equalities as above except those involving 
. Notice, however, that if we
do use the third group, then the last proof simply becomes a group membership
check.

3 Model and Definition of Designated Confirmer
Signatures

We describe designated confirmer signatures (DCS) following the exposition
of [17]. The model comprises three parties: a signer S, a verifier V , and a des-
ignated confirmer C. A designated confirmer signature scheme supports the fol-
lowing (probabilistic polynomial-time) algorithms:

– DCGen: takes as input 1λ, and outputs two pairs of keys (SGkS ,VFkS) and
(PkC , SkC). The first pair constitutes S’s signing and verification keys, and
the second consists of C’s public and private keys. For simplicity of exposition
we denote DCGen as a single algorithm; in an actual implementation, the
signer and confirmer would generate their key pairs separately, using distinct
algorithms SGen and CGen, so that C does not learn SGkS and S does not
learn SkC .

– Sign: takes as input a message m and SGkS . It outputs a signature σ such
that Verify(m,σ,VFkS) = Accept.

– Verify: takes as input m,σ,VFkS and outputs Accept if σ is an output of
Sign(m, SGkS).

Further, a DCS scheme must support the following protocols:

– ConfirmedSign(S,V): an interactive protocol between S and V with common
input (m,VFkS ,PkC). The output is a pair (b, σ′) where b ∈ {Accept,⊥}
and σ′ is S’s designated confirmer signature. For some V , the ConfirmedSign
protocol must be complete and sound. For completeness, we require that
there is some S such that for any (valid) signer and confirmer keys, and
for any message m, the ConfirmedSign protocol outputs a (Accept, σ′) where
Verify(m,Extract(m,σ′, SkC ,VFkS),VFkS) = Accept. For soundness, we re-
quire that for all signers S′, if the result of running ConfirmedSign results in
an Accept, then

Pr[Verify(m,Extract(m,σ′, SkC ,VFkS),VFkS) = ⊥] < negl(λ).

In other words, S′ cannot convince V that an “un-extractable” designated
verifier signature is valid.
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– ReconfirmedSign(S,V): an interactive protocol between S and V with common
input (m,VFkS ,PkC , σ

′) for designated confirmer signature σ′. The output is
b ∈ {Accept,⊥}. The completeness and soundness requirements are similar
to those of ConfirmC,V below. In our scheme, the ReconfirmedSign protocol is
identical to ConfirmedSign (except that ReconfirmedSign takes σ′ as input)
and to the Confirm protocol (except that a signer takes the place of the
confirmer); so, we omit further discussion of ReconfirmedSign.

– Extract: takes as input m,σ′, SkC ,VFkS and returns a string σ such that
Verify(m,σ,VFkS) outputs Accept if σ is an output of Sign(m, SGkS), and
outputs ⊥ otherwise.

– Confirm(C,V): an interactive protocol between C and V with common input
(m,σ′,VFkS ,PkC). The output is b ∈ {Accept,⊥}. The protocol must be both
complete and sound. For completeness, we require that there is some C such
that if Verify(m,Extract(m,σ′, SkC ,VFkS),VFkS) = Accept then b = Accept.
For soundness, we require that for all confirmers C′ if

Verify(m,Extract(m,σ′, SkC ,VFkS),VFkS) = ⊥,

then Pr[Confirm(C′,V)(m,σ′,VFkS ,PkC) = Accept] < negl(λ).
– Disavowal(C,V): an interactive protocol between confirmer C and verifier V

with common input (m,σ′,VFkS ,PkC). The output is b ∈ {Accept,⊥}. The
protocol must be complete and sound. For completeness, we require that
there is a confirmer C such that if Verify(m,Extract(m,σ′, SkC ,VFkS),VFkS) =
⊥ then Disavowal(C,V) = Accept. For soundness, we require that for all
confirmers C′, if Verify(m,Extract(m,σ′, SkC ,VFkS),VFkS) = Accept, then
Pr[Disavowal(C′,V)(m,σ′,VFkS ,PkC) = Accept] < negl(λ).

For the purposes of the security model, we also define OutputDCS(S,V), a two-
move stunted version of ConfirmedSign(S,V) in which V queries m and S outputs
a DCS σ′ on m (without “confirming” its correctness).

We now state the security requirements of a DCS scheme in detail.

Definition 1. Below, we assume that the adversary has access to a collec-
tion O = {ConfirmedSign(S,A),ReconfirmedSign(S,A),Confirm(C,A), Disavow(C,A),
Extract(C,A)} of five oracles for: 1) receiving a confirmed signature on an mes-
sage of its choice (via the ConfirmedSign(S,A) oracle); 2) executing the prover’s
role in the ReconfirmedSign(S,A) interactive protocol; 3) executing the prover’s
role in the Confirm(C,A) interactive protocol; 4) executing the prover’s role in the
Disavow(C,A) interactive protocol; and 5) extracting an ordinary signature from
a designated confirmer signature.

1. Security for verifiers. Security for verifiers follows from the soundness
requirement above – informally, that an adversary must not be able, even if
the adversary compromises the private keys of S and C, to create a (m,σ′)
that will be confirmed (either in ConfirmedSign or Confirm) even though
Verify(m,Extract(m,σ′, SkC ,VFkS),VFkS) = ⊥ (“Case 1”), or that will be
disawowed even though Verify(m,Extract(m,σ′, SkC ,VFkS),VFkS) = Accept
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(“Case 2”). Formally, we define the advantage of the adversary AdvfoolV(A):=
Pr[bfoolV1 = 1 ∨ bfoolV2 = 1 ∨ bfoolV3 = 1], where (bfoolV1, bfoolV2, bfoolV3) are
defined by the experiment in Figure 2. For compactness, use “Case 1” and
“Case 2” to refer to the verification condition that the adversary’s output
(m,σ′) must satisfy. We say a scheme is secure for verifiers if AdvfoolV(A) <
negl(λ) for all probabilistic polynomial time algorithms A.

2. Security for signers. Informally, an adversary should be able to create a
DCS (m,σ′0) that is extractable or confirmable (either in ConfirmedSign or
Confirm) only if σ′0 is somehow “equivalent” to a DCS (m,σ′1) that it received
in response to a ConfirmedSign query on m. We say (m,σ′0) and (m,σ′1) are
equivalent if R(m,σ′0, σ

′
1) = 1 for some specified efficiently computable rela-

tion R. For example, if DCS signatures are strongly existentially unforgeable,
it may be appropriate to say R(m,σ′0, σ

′
1) = 1 only when σ′0 = σ′1. However, R

need not be that restrictive; it depends on the DCS scheme. In the experiment
in Figure 2, Lsig is a list that is viewed as containing the (m,σ′1) associated
to the ConfirmedSign output, as well as all (m,σ′) for which R(m,σ′, σ′1) = 1.
In the figure, for compactness, we say (e.g.) σ′ /∈ Lsig rather than the more
accurate (m,σ′) /∈ Lsig, since m will be clear from the context. Formally, we
define A’s advantage AdvimpS(A) to be the probability that the experiment
returns 1. We say a scheme is secure for signers if AdvimpS(A) < negl(λ) for
all probabilistic polynomial time algorithms A.

3. Transcript Simulatability. The confirmation or disavowal of a designated
confirmer signature σ′ should not be transferable – e.g., the transcript of a
proof of knowledge in ConfirmC,V1(m,σ′,VFkS ,PkC) should not convince V2

( �= V1) that σ′ signs m. To ensure that V1’s transcript is unconvincing, we
require that transcripts be simulatable. To model this in the experiment in
Figure 2, first A0 outputs two messages m0 and m1 and some state s, next
a DCS σ′ on one of the messages is output, and then A1, A′1 and A2 play
a game in which A′1 tries to make its output (when the DCS signs m1) look
indistinguishable from A1’s output (when the DCS signs m0); A2 attempts
to distinguish whether its input τ came from A1 or A′1. In the game, A1

gets almost complete access to the oracles O; the only restriction is that
(m,σ′) /∈ Lext, where Lext is a list that is viewed as containing each (mi, σ

′
i)

that has been queried by A1 to the Extract oracle, as well all (m′i, σ
′
i
′) for

which R(m,σ′i, σ
′
i
′) = 1; otherwise A1 could trivially give A2 indisputable

proof that m0 was signed – the extraction of σ′. On the other hand, we give
A′1 very limited access to O; it can make only q OutputDCS queries, where
A1 makes at most q ConfirmedSign queries. We give A2 access to a limited
set of oracles Olim – specifically, A2 cannot make any O query on (m0, σ

′′)
if R(m0, σ

′, σ′
′) = 1 or on (m1, σ

′′) if R(m1, σ
′, σ′

′) = 1; otherwise, its dis-
tinguishing task becomes trivial. If A2 has negligible advantage, this suggests
that A1’s potentially authentic transcript that m0 was signed is no more con-
vincing or informative than A′1’s simulated transcript that (falsely) “proves”
that m0 was signed. In the security proof, A′1 will use A1 as a subroutine,
and will simulate correct responses to A1’s O queries on σ′ and equivalent
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Exp-NoFoolVerifier:
1. (SGkS , VFkS , SkC, PkC) ← DCGen(1λ)
2. (m,σ′

1, τ1, τ2, τ3) ← AO
0 (π, SGkS , SkC)

3. (bfoolV1, σ
′
0) ← ConfirmedSign(A1(τ1),V)(π, m) in Case 1

4. bfoolV2 ← Confirm(A2(τ2),V)(π, m, σ′
1) in Case 1

5. bfoolV3 ← Disavowal(A3(τ3),V)(π, m, σ′
1) in Case 2

6. Return bfoolV1 ∨ bfoolV2 ∨ bfoolV3.

Exp-NoImpSigner:
1. (SGkS , VFkS , SkC, PkC) ← DCGen(1λ)
2. (m,σ′) ← AO(π, SkC)
3. bimpS ← Verify(m,σ, VFkS)

for σ = Extract(m,σ′, SkC , VFkS)
4. Return (bimpS ∧ (σ′ /∈ Lsig)).

Exp-TranscriptSimulatability:
1. (SGkS , VFkS , SkC, PkC) ← DCGen(1λ)
2. (m0, m1, s) ← AO

0 (π, SGkS)
3. b

R←− {0, 1}
4. (b, σ′) ← ConfirmedSign(S,V)(π, mb)
5. If b = 0, τ ← AO

1 (b,m0, m1, s, σ
′);

else, τ ← A′
1
OutputDCS(b, m0, m1, s, σ

′)
6. Return 1 iff b = AOlim

2 (m0, m1, τ, σ′)
and σ′ /∈ Lext.

Fig. 2. Experiments for definition of DCS security. Above, π is shorthand for
(1λ, VFkS , PkC).

DCS’s. Formally, we define the advantage of the adversary Advtrans(A) to be
max{0,Pr[experiment returns 1]− 1/2}.

In our model, we allow that σ′ may convince verifier V2 above that the signer
indeed signed some message m. In this sense, the transcript is not perfectly sim-
ulatable; only the ZK proofs are. Accordingly, in the security model, A′1 needs
access to ConfirmedSign; without some DCS’s generated by S, A′1 has no hope
in our scheme of making its output indistinguishable from A1 (which has almost
unrestricted access to O). Thus, our model is weaker than that in [21]. However,
we believe that our model, especially given our very efficient instantiation, is
suitable for real-world settings, where it would be easy (e.g.) for the confirmer
to publish a few “dummy” signatures by the signer during each time period to
camouflage the presence or absence of a “real” (meaningful) signature. Again, we
are inspired here by the discussion of Goldwasser and Waisbard [17], which em-
phasizes capturing only the “non-verifiability” of a DCS, although our definition
differs from theirs.

How the Model Prevents Confirmer Impersonation. Of course, for a
DCS scheme to be secure, it should be infeasible for an adversary A (even if
it has SGkS) to impersonate the confirmer by performing an Extract, Confirm,
Disavowal, or ConfirmedSign associated to a pair (m,σ′) contained in Lsig \
Lext. Interestingly, this requirement is already covered by a combination of our
Exp-NoFoolVerifier and Exp-TranscriptSimulatability experiments. For exam-
ple, suppose that there is an adversary (B0,B1,B2) that “breaks” Confirm in that
(m′0, s′) ← BO0 (π, SGkS), (σ′′, τ ′) ← BO1 (π, s′), Confirm(B2(τ ′),V)(π,m′0, σ′′) =
Accept for (m′0, σ

′′) ∈ Lsig \ Lext with non-negligible probability, where (s′, τ ′)
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is state information that is forwarded, and where B1 makes only a polyno-
mial number q of O queries. Then, (A0,A1,A2) can use (B0,B1,B2) to break
Exp-TranscriptSimulatability with non-negligible probability, as follows.A0 runs
B0, relays B0’s O queries and the responses, sets m0 = m′0 and outputs (m0,m1).
If b = 0 in Exp-TranscriptSimulatability, A1 runs B1 and relays B1’s O queries
and the responses, except that it responds to one of B1’s ConfirmedSign queries
on m0 by using a ReconfirmedSign query on (m0, σ

′). B1 outputs (σ′′, τ ′) and
A1 sets τ = τ ′; σ′′ is equivalent to σ′ with probability at least 1/q. Finally,
if σ′′ is equivalent to σ′, A2 runs Confirm(B2(τ),V)(π,m0, σ

′′). If the output is
Accept, A2 outputs ‘0’; otherwise, it outputs a random bit. Since the output is
Accept with non-negligible probability, and since an output of Accept implies
Verify(m′,Extract(m′, σ′, SkC ,VFkS),VFkS) = Accept with overwhelming proba-
bility assuming AdvfoolV(A) < negl(λ), A2’s advantage is non-negligible.

Using the approach above, one can show that, for any (m′0,m
′
1) adaptively

chosen by B0, B1 has a negligible probability of outputing a DCS σ′′ on m′0
that B2 can disavow on m′1. However, for the special case of Disavowal, one may
want to require something stronger: that for any m′0 adaptively chosen by B0,
B1 has a negligible probability of outputing an m′1 and a DCS σ′′ on m′0 that
B2 can disavow on m′1. Our scheme satisfies this requirement, but it may not be
necessary in general. If the message space is super-polynomial, and if a verifier
V could merely check that m′1 was generate randomly and independently of
(m′0, σ′′), it would already believe that the probability that σ′′ is a DCS on m′1
is negligible. Thus, it does not seem unreasonable to allow that (B1,B2) may be
able to disavow some message with respect to a DCS σ′′ in Lsig \Lext on m′0. It
is an open question whether a more efficient DCS exists that meets the weaker
requirement.

4 Our Transformation

The Generic Construction. We first describe a generic scheme that trans-
forms any traditional signature scheme into a DCS scheme; the transforma-
tion also requires an IND-CCA2 secure encryption scheme and a statistically-
hiding computationally-binding commitment scheme C. The scheme also uses
zero knowledge proofs secure against cheating verifiers, as discussed in Section
2. After describing our scheme generically, we provide an efficient instantiation.

– DCGen: S uses a secure digital signature scheme DSS = (SGen, Sign,Verify),
and creates a key pair (VFkS , SGkS) ← SGen(1λ). C uses an IND-CCA-2 en-
cryption scheme PKE = (CGen,Enc,Dec), and creates key pair (PkC , SkC) ←
Gen(1λ). Note that C need not participate in any setup other than creating
and publishing a key pair.

– Sign: To sign a message m with auxiliary information c, S creates a statis-
tically hiding and computationally binding commitment ψ = C(m, r) to the
message m using randomness r and creates σ∗ = Sign((ψ, c,VFkS), SGkS).
The basic signature is σ = (σ∗, c, r). S’s verification key VFkS is signed
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together with the commitment to prevent a signature issued by one signer
from being fed to the Confirm oracle with a different signer’s public key.

– ConfirmedSign: In addition to the above steps in the Sign procedure, S also
computes the ciphertext c = Enc(PkC , r). The designated confirmer signature
is σ′ = (σ∗,ψ, c) for σ∗ = Sign((ψ, c,VFkS), SGkS). The signer also performs
a ZK proof of knowledge of a value r such that ψ = C(m, r) and c =
Enc(PkC , r).

– Confirm: C first checks that (ψ, c,VFkS) has been signed with SGkS using the
provided VFkS , and aborts if the check fails. Then, C performs a ZK proof
of knowledge of a value r such ψ = C(m, r).

– Disavow: To disavow a purported signature σ′ = (σ∗,ψ, c) on message m, C
does the following. C first checks if c is a valid encryption of some r. If not,
it performs a ZK proof of knowledge that the string is not a well-formed
encryption. Otherwise, C computes r′ = Dec(SkC , c). If ψ �= C(m, r′), then C
provides a ZKPoK of a value ρ such that ψ �= C(m, ρ) and ρ = Dec(SkC , c).

– Extract: On input σ′ = (σ∗,ψ, c) and m, C computes r′ = Dec(SkC , c) and
confirms that ψ = C(m, r′) and σ∗ = Sign((ψ, c,VFkS), SGkS). If so, it
outputs r′; else, it outputs ⊥.

Notice that all the statements involving zero-knowledge proofs can be expressed
as NP statements (and have a short witness). Therefore, we can, in theory,
instantiate the above scheme in polynomial time for any suitably secure encryp-
tion scheme, commitment scheme, and signature scheme. Of course using generic
zero-knowledge proofs for NP-statements is not very practical. Therefore, we now
describe how to instantiate the encryption and commitment schemes so that the
resulting zero-knowledge proofs of knowledge are simple and efficient.

Efficient Instantiation for Any Signature Scheme. We show how to
efficiently instantiate the above scheme. The underlying encryption scheme PKE
is the scheme by Camenisch and Shoup discussed in Section 2. The commit-
ment scheme C(m, r) will be a Pedersen-type commitment scheme over group
Γ of prime order ρ, with generators γ and δ, as described in Section 2. We can
use any secure signature scheme. Then, our confirm and disavow protocols use
the CDM ZK proofs as described in Section 2. With these choices, the under-
lying zero-knowledge proofs are efficient (using the CDM techniques for prov-
ing equality and inequality of discrete logarithms together with the Camenisch-
Shoup verifiable encryption of the randomness used for the Pedersen commit-
ment). Moreover, we can plug in any secure signature scheme and the com-
plexity of the Confirm, Disavow, and Extract are essentially independent of this
choice.
Security Analysis. We now state a theorem that our generic transformation
yields a secure designated confirmer signature scheme. We require that the sig-
nature schemes be existentially unforgeable under chosen message attack, that
our commitment schemes be hiding and binding, and the encryption scheme be
secure against chosen ciphertext attack. The security for our efficient Paillier-
based instantiation follows.
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Theorem 1. Let DSS = (SGen, Sign,Verify) be any signature scheme existen-
tially unforgeable against chosen message attack, and let PKE = (Gen,Enc,Dec)
be any IND-CCA2 secure encryption scheme and C(M, r) be any statistically-
hiding computationally-binding commitment scheme with perfect zero-knowledge
proofs of knowledge for committed values secure against cheating verifiers. Then
the DCS scheme obtained by our generic conversion is a secure DCS scheme.

Proof. (Sketch). In this proof, we say that the relation R(m,σ′, σ′′) equals 1 in
our scheme if σ′ = (σ∗,ψ, c), σ′′ = (σ∗′,ψ′, c′), and (ψ, c) = (ψ′, c′); otherwise,
it equals 0. Also, below, a second algorithm (say, B) will construct the necessary
zero knowledge proofs in response to to A’s O queries by using a (possibly
rewinding) simulator. For example, assuming we use the CDM protocol [13] for
our ZK proofs, B proceeds as follows: upon receivingA’s commitment to its value
e together with a proof of knowledge of e, B extracts e by using the knowledge
extractor E together with A. Then B can complete Part 2 of the CDM protocol
by using its knowledge of e. As Cramer et al. argue, B’s proof in Part 2 is witness
indistinguishable; so, B’s simulation is sound.

Now, suppose the theorem is false. Then there exists a probabilistic polyno-
mial time adversary A that can break the security of the DCS scheme. Specifi-
cally, at least one of AdvimpS(A),AdvimpC(A), AdvfoolV(A), or Advtrans(A) is not
negligible in the security parameter. We consider the resulting cases.

The AdvimpS(A) Case. If AdvimpS(A) is not negligible, then the adversary has
a non-negligible probability of successfully outputting a DCS (m,σ′) for which
Verify(m,Extract(m,σ′, SkC ,VFkS),VFkS) = Accept and σ′ /∈ Lsig. From A, we
can construct an algorithm B that either constructs an existential forgery of the
underlying signature scheme, or violates the binding property of the commitment
scheme as follows.

The algorithm B generates (SkC ,PkC) and gives (π, SkC) to A. Then B re-
sponds to A’s ConfirmedSign query on a message m′ by choosing a random r′,
setting ψ = C(m′, r′), generating an appropriate ciphertext c that encrypts r′,
and then using its oracle access to Sign to obtain a signature on (ψ, c). For
Confirm, Extract and Disavowal queries, B uses SkC . Suppose that A outputs a
pair (m,σ′) with σ′ = (σ∗,ψ, )̧ with (m,σ′) /∈ Lsig. B uses SkC to perform Extract
on σ′, thereby obtaining σ = (σ∗, r, c). If (m′, σ′) ∈ Lsig for some m′, then B
must have responded to A’s ConfirmedSign query on m′ by generating a random
r′ for which ψ = C(m′, r′) = C(m, r); since m′ �= m, this violates the binding
property of the commitment scheme. Otherwise, if there is no message m′ for
which (m′, σ′) ∈ Lsig, B outputs σ as an existential forgery of the signature
scheme (on the message (ψ, c,VFkS)).

The AdvimpC(A) Case. Suppose that AdvimpC(A) is not negligible. Then, from
A, we can construct an algorithm B that breaks the chosen-ciphertext security
of the underlying encryption scheme.

The algorithm B runs as follows. It picks two random messages r0 and r1
for the “find” stage of the encryption game, and receives a challenge ciphertext
Enc(rb) for a random b. Then B runsA as a subroutine. B responds to A’s Extract
queries by using its access to the decryption oracle of the encryption scheme.



676 C. Gentry, D. Molnar, and Z. Ramzan

Then B responds to one of A’s q ConfirmedSign queries by flipping a coin b′,
setting ψ = C(m, rb′ ) and c = Enc(rb), querying the Sign oracle for a signature
σ∗ on (ψ, c,VFkS), and setting σ′ = (σ∗,ψ, c). To construct a (potentially false)
“proof” that the rb′ embedded in ψ is identical to the rb embedded in c, B uses
the simulator SA for the ZK proof of knowledge of rb, treating the adversary as a
cheating verifier. Because the ZK proof of knowledge is complete and because the
transcripts output by the simulator are identically distributed to the interaction
between the real prover and the adversary, the adversary will accept the “proof.”

For other ConfirmedSign queries byA, B acts as follows: B generates a random
r as in the actual scheme, sets ψ = C(m, r) and c = Enc(r), and queries the
Sign oracle for a signature σ∗ on (ψ, c,VFkS); it responds with (σ∗,ψ, c) and the
appropriate proofs of knowledge.
B responds to a Confirm or Disavowal query on (σ∗,ψ, c,VFkS ,m) by deter-

mining whether σ∗ is a valid signature on (ψ, c,VFkS).
If so, and if B has not queried (ψ, c,VFkS) to the Sign oracle, B aborts. If

(ψ, c,VFkS) has already been signed, then B recovers its log of the action it per-
formed in the ConfirmedSign query corresponding to (ψ, c,VFkS); in particular,
it recovers the values of (r′,m′) that it used to generate ψ. Then, if m = m′ (and
Confirm is therefore appropriate), it proves (using a “false” proof via the simula-
tor, if necessary) that this value of r′ is encrypted in c. Analogously, if m �= m′

(and Disavowal is therefore appropriate), B can provide a proof of knowledge of
an r′ such that r′ is encrypted in c and C(m, r′) �= ψ.

Eventually, with non-negligible probability, A outputs some (m,σ′) ∈ Lsig \
Lext. Let σ′ = (σ∗,ψ, c). If A performs a successful Confirm, Disavowal or
ConfirmedSign using (m,σ′), B uses A together with the knowledge extractor
E to extract the value r encrypted in c. Now there are two cases. In the first
case, c = Enc(rb) – i.e., the challenge ciphertext for B – with probability neg-
ligibly close to 1/q. Notice that because the zero-knowledge proof is perfect
zero-knowledge, the use of the simulator to construct proofs does not affect
this probability. If c = Encrb, then B outputs b as its guess; otherwise, B se-
lects b uniformly at random. In the second case, c �= Enc(rb). In this case, we
can violate the soundness of the underlying ZKPoK: the execution of Confirm
or ConfirmedSign on c constitutes an interaction that violates soundness of the
proof of knowledge.

The Advtrans Case. We construct A′1 by using A1 as a subroutine; later, we
show that if A2 can distinguish which output came from A1, this violates the
IND-CCA2 security of the encryption scheme.

We construct A′1 as follows. To generate τ , A′1 runs A1 on input (m1, s, σ
′).

A′1 responds to A1’s permitted O queries by using its access to O. For Confirm
queries on (m1, σ

′) (or on (m1, σ
′
1) for which R(m1, σ

′, σ′1) = 1)and disavowal
queries on (m0, σ

′) (or equivalent DCS’s), A′1 uses the rewinding technique to
construct the needed (false) ZK proofs. Eventually, A1 outputs a string τ ′; A′1
outputs τ = τ ′ and terminates. Let 1/2 + ε0 be the probability that A2 outputs
b when A′1 generates its output in this manner.
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Now, consider the following modified experiment ModExp, whose only dif-
ference from the experiment in Figure 2 is that we replace A1 with A′′1 . We
construct A′′1 as follows. To generate τ , A′′1 runs A1 on input (m0, s, σ

′). A′′1
responds to A1’s permitted O queries by using its access to O. For Confirm
queries on (m0, σ

′) (or equivalent DCS’s) and disavowal queries on (m1, σ
′) (or

equivalent DCS’s), A′′1 uses the simulator to construct the needed ZK proofs.
Eventually, A1 outputs a string τ ′; A′′1 outputs τ = τ ′ and terminates. Let
1/2 + ε1 be the probability that A2 outputs b when A′′1 generates its output in
this manner.

The only difference between the two experiments is A1’s view; in ModExp,
A1 obtains simulated proofs of true statements in response to its Confirm query
on (m0, σ

′) and disavowal query on (m1, σ
′). Thus, if |ε0 − ε1| is non-negligible,

then A2 distinguishes interactions with the simulator from interactions with the
true prover, contradicting the zero-knolwedge property of the ZK proofs.

The only difference between the algorithms A′1 and A′′1 in ModExp is that
the former simulates a (false) Confirm on (m1, σ

′), while the latter simulates a
true Confirm (and similarly for Disavowal queries). Thus, if |ε1| is non-negligible,
an adversary B can use (A0,A1,A′1,A′′1) to break the IND-CCA2 security of
the encryption scheme. Specifically, B runs (A0,A1,A′1,A′′1 ) and obtains the
messages m0 and m1. Then B selects m0 and m1 in the find stage of the IND-
CCA2 encryption game. Finally, B guesses the bit b. We see that if |ε1| is non-
negligible, then B wins the encryption game with non-negligible probability.

The AdvfoolV(A) Case. Finally, if AdvfoolV(A) is not negligible, then the adver-
sary can generate fake valid zero-knowledge proofs with non-negligible probabil-
ity, violating soundness.

5 Evaluation

Our Efficient Instantiation. For our efficient instantiation, Confirm requires
proving equality of discrete logarithms, specifically proving knowledge of an r
such that e

ux1
2 = γ. This can be accomplished using protocols of Chaum and

Pedersen in four exponentiations. To achieve general-verifier ZK, the techniques
of Cramer et al. result in a 4-round protocol with 10 total exponentiations [8,13].

The Disavow protocol requires proving inequality of discrete logarithms,
which we do by using the techniques of Camenisch and Shoup [6]. From the
Preliminaries, the resulting proof consists of five clauses, four of which prove
statements about discrete logarithms and the final clause shows that a commit-
ted value r is in a specified range. Because we work over a group with public
prime order and the range is just the order of the group, the range test reduces
to a simple group membership test costing one exponentiation. For the other
four clauses, we can apply the optimized protocol of Cramer et al. to obtain
general-verifier ZK at the cost of 4 rounds and 10 exponentiations per clause;
with sequential composition this gives us 16 total rounds and 41 total exponen-
tiations. We remark that a more efficient protocol appears possible by using the



678 C. Gentry, D. Molnar, and Z. Ramzan

results of Cramer et al. on monotone composition of SHVZK protocols, but this
result is already better than a generic zero-knowledge proof [13].

Comparison to Goldwasser-Waisbard. Both our approach and Goldwasser-
Waisbard use a weakened definition of designated confirmer signatures which
requires non-verifiability of unconfirmed signatures. Goldwasser-Waisbard use
this weakening to explore strong witness hiding proofs of knowledge (WHPOKs)
for Confirm protocols, and we use this weakening to explore a different way of
creating designated confirmer signatures [17].

While the strong WHPOKs constructed by Goldwasser and Waisbard are
more efficient than generic zero-knowledge proofs, they still require substantial
practical overhead. For example, the strong WHPOK described for the case of
Cramer-Shoup signatures uses a zero-knowledge proof of knowledge (ZKPOK) of
an ith root as a subroutine. Each such proof of an ith root requires an exponen-
tiation; with the suggested parameters this uses a 161-bit exponent. Two proofs
are needed for the WHPOK, which then must be repeated λ times to reduce
the soundness error. As a result, Confirm requires 2λ exponentiations. Further,
Disavow still requires a generic ZKPOK; Goldwasser and Waisbard note that
there appears to be no easy way to extend their approach to obtain an effi-
cient Disavow, since it is not clear what witness is supposed to be “hidden.”
The efficiency requirements for the strong WHPOK exhibited for the GMR and
Gennaro-Halevi-Rabin signatures are similar. While Goldwasser and Waisbard
do exhibit a more efficient WHPOK for the case of RSA signatures, the resulting
DCS signatures are existentially forgeable.

Our Confirm, in contrast, requires 10 exponentiations. Further, our Disavow
protocol is more efficient than the generic ZKPOK used by Goldwasser-Waisbard,
although less efficient than Confirm. Finally, our protocols are zero-knowledge in-
stead of witness-hiding.

The main advantage of Goldwasser-Waisbard is that they have exhibited ef-
ficient strong WHPOK using the same assumptions as the underlying signature
scheme. Our approach, in contrast, requires the “extra” composite residuosity
assumption for the Paillier scheme. We note, however, that for each new sig-
nature scheme, new effort must be exerted to find efficient strong WHPOK
without adding new assumptions. Conversely, one could look for protocols in
our framework that require different assumptions for Confirm and Disavow. For
example, if one were willing to live with an inefficient Disavow , we could replace
the Camenisch-Shoup encryption with an arbitrary IND-CCA2 scheme and con-
struct an efficient Confirm assuming only hardness of discrete logarithms.

Comparison to Camenisch-Michels. Camenisch and Michels give a generic
scheme for constructing designated confirmer signatures. They propose a specific
instantiation with RSA signatures and Cramer-Shoup encryption [4]. Security
for the underlying RSA signature is achieved by using full-domain hash, so the
resulting scheme has a proof of security only in the Random Oracle model. Their
Confirm protocol requires proving 12 statements regarding equalities and proofs
that committed numbers are in a specific interval, while their Disavow protocol
has 20 such statements. They note in their Remark 4 that because these proofs
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involve double discrete logarithms the verifier uses only binary challenges. As a
result, the proof must be repeated λ times for soundness [4]. We optimistically
estimate that each clause takes 3 exponentiations, leading to a total of 36λ
exponentiations for Confirm and 60λ for Disavow.

Comparison to Camenisch-Shoup. In their paper on verifiable encryption,
Camenisch and Shoup observe that, following Asokan et al., a designated con-
firmer Schnorr signature can be created where Confirm requires proving only a
single equality of discrete logarithms [6,1]. The details are due to appear in a
forthcoming paper. Because this paper is not yet available, we speculate on the
details to make a reasonable comparison to our work. Let (γ, γx) be a public
key for a Schnorr signature, where γ is a generator of a group G and x is the
secret key. Then a Schnorr signature on m is the triple (β, c, s), where β = γr

for a random r, c = H(β,m), and s = r + xc mod ρ, for ρ the order of G. The
DCS Schnorr output is then the 4-tuple (β, c, δ,ψ), where δ = γs and ψ is an
encryption of s with the confirmer’s public key. Anyone can check that δ = βγc

to verify the consistency of the signature. Then the confirmer need only prove
or disprove that ψ = E(logγ δ) to Confirm or Disavow.

In this special case, the Camenisch-Shoup approach is as efficient as our
scheme for Confirm and Disavow; indeed, we use their protocols for proving in-
equality of discrete logarithms. Unfortunately, the Schnorr scheme requires ran-
dom oracles, so as sketched the approach does not produce a scheme with a proof
in the standard model.

If we review the Cramer-Shoup, Goldwasser-Micali-Rivest, and Gennaro-
Halevi-Rabin signature schemes with proofs of security in the standard model,
then we see that these schemes do not appear to have the same reduction as
Schnorr from validity to equality of discrete logarithms. For example, Cramer-
Shoup requires proving knowledge of an i’th root, which does not translate
straightforwardly to a statement about equality of discrete logarithms. In con-
trast, our use of a commitment adds a “layer of indirection” that allows us to
achieve efficiency for every signature scheme. As a result, we can use any of these
signature schemes to obtain an efficient designated confirmer signature with a
proof in the standard model.

Finally, we note that the Camenisch-Shoup approach requires, as we do, a
Paillier-type encryption and the associated composite residuosity assumption for
efficient implementation. Therefore both their approach and ours require pos-
sibly introducing extra assumptions beyond those of the underlying signature
scheme.

6 Conclusion

We have shown that weakening the definition of designated confirmer signa-
tures, as suggested by Goldwasser and Waisbard, can yield a big payoff in the
efficiency of generic designated confirmer signature schemes. By using a com-
mitment scheme to add a “layer of indirection,” we used the techniques of
Camenisch and Shoup to exhibit efficient Confirm and Disavow protocols for
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any underlying signature scheme. Going further, we could look for commitment
schemes and efficient protocols based on different assumptions. For example, can
we adapt the techniques of Camenisch and Lysyanskaya [5] to obtain an even
more efficient instantiation based on bilinear mappings? We could also investi-
gate the strong witness hiding proofs of knowledge approach of Goldwasser and
Waisbard with an eye towards weakening the assumptions required for efficient
instantiation.
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Abstract. Many variants of Chaum and van Antwerpen’s undeniable
signatures have been proposed to achieve specific properties desired in
real-world applications of cryptography. Among them, directed signatures
were introduced by Lim and Lee in 1993. Directed signatures differ from
the well-known confirmer signatures in that the signer has the simultane-
ous abilities to confirm, deny and individually convert a signature. The
universal conversion of these signatures has remained an open problem
since their introduction in 1993. This paper provides a positive answer
to this quest by showing a very efficient design for universally convertible
directed signatures (UCDS) both in terms of computational complexity
and signature size. Our construction relies on the so-called xyz-trick ap-
plicable to bilinear map groups. We define proper security notions for
UCDS schemes and show that our construction is secure in the random
oracle model, under computational assumptions close to the CDH and
DDH assumptions. Finally, we introduce and realize traceable universally
convertible directed signatures where a master tracing key allows to link
signatures to their direction.

1 Introduction

Digital signatures were introduced to identify the source of digital data. In par-
ticular they are non-repudiable and universally verifiable. For centuries, seals
and handwritten signatures were attached to documents to indicate the issuer’s
identity. To determinate the authenticity of this identity, the original scripts
have to be validated in some sense. In the electronic world, however, the ease
of recopy and thereby distribution of digital signatures associated to the self-
authenticating property may pose a serious threat to the signer’s privacy. The
concept of undeniable signature was first addressed at Crypto’89 by Chaum and
van Antwerpen [12]. These signatures have the appealing property that a pur-
ported signature cannot be checked without the cooperation of the signer and
cannot be denied if the latter has indeed generated the signature. They have

B. Roy (Ed.): ASIACRYPT 2005, LNCS 3788, pp. 682–701, 2005.
c© International Association for Cryptologic Research 2005
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found numerous applications in applied cryptography, but the obvious prob-
lem with this idea is that in any setting where the signer becomes unavailable,
nothing can be determined. Hence, Boyar, Chaum, Damg̊ard and Pedersen [7]
proposed convertible undeniable signatures which provide the additional feature
of converting (individually or universally) the undeniable signatures to ordinary
signatures. Another approach has produced various flavors of undeniable signa-
tures which may also be verified by interacting with an entity which has been
designated by the signer. Directed signatures introduced in 1993 by Lim and
Lee [21], (designated) confirmer signatures [11], or limited verifier signatures [1]
are among the best known examples. All of them, which we gather under the
generic name of delegated undeniable signatures, guarantee to the recipient of a
signature the ability to verify it, even when the signer cannot (or refuses to) do
so. Directed signatures find a prominent application in the realization of com-
plete peer-to-peer secure messaging systems and are a powerful tool to devise
protocols for contract signing [2] or verifiable signature sharing [15]. They pro-
pose an individual conversion operation, but up to now none of them provides
a mechanism for universal conversion1.

From a formal point of view, directed signatures and confirmer signatures
are quite similar, the only notable difference, apart from the signer’s ability to
convert signatures, being the real-world applications the authors had in mind.
In brief, a universally convertible directed signature scheme enjoys the following
properties. Assuming a signer A and a confirmer B, seen as registered users of
the system, A produces signatures that only B (and A her/himself) can verify.
Signatures of that type are called (A,B)-directed signatures. Now both A and
B have the ability to

– prove in a non-transferable way the validity or invalidity of an (A,B)-directed
signature to any other party.

– convert a given (A,B)-directed signature into a regular, universally verifiable
signature. This operation does not affect other (A,B)-directed signatures
and is carried out independently of the signed message.

– publish a universal trapdoor T by the means of which all (A,B)-directed
signatures become universally verifiable. The trapdoor has no impact what-
soever on (A′,B′)-directed signatures for (A′,B′) �= (A,B).

These operations are independent and performed concurrently, meaning that A
and B do not have to interact with each other to achieve either one of these
operations.

The literature on confirmer signatures is inconsistent on whether the signer is
able to confirmand/or deny signatures. In the recent formalization of confirmer sig-
natures [9,17], in order to protect the signer from a coercer, this ability is delegated
only to the designated confirmer. However, the signer’s ability to confirm, deny and
sometimes convert signatures is requested or strongly desirable in many contexts,
1 The limited verifier signature scheme, introduced in 1999 by Araki et al [1], provides

the universal conversion operation. However, this protocol was broken by Zhang and
Kim [23].
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and this is supported by a number of schemes (e.g. [11,12,21]) including directed
signatures. Again, none of these supports universal conversion of signatures.

Contributions of the Paper. The main contribution of this paper is an effi-
cient and secure directed signature scheme featuring for the first time the uni-
versal conversion property. Our design relies on a simple observation known as
the xyz-trick [20] which applies to bilinear map groups and allows to realize new
cryptographic protocols achieving tradeoffs between authenticity and privacy.

We propose a security model for universally convertible directed signatures
that captures and extends the strongest notions of unforgeability and signa-
ture invisibility. We prove that our signatures are existentially unforgeable, in
the random oracle model, under chosen-message attacks with respect to a new
computational assumption closely related to the Diffie-Hellman assumption.

We also show that our signatures are invisible, in the random oracle model, in
a weak sense assuming the Decisional Tripartite Diffie-Hellman (DTDH) prob-
lem is intractable, and in a strong sense under a non-standard yet well-defined
assumption. The scheme supports many variations, and it is easy to achieve
invisibility under the DTDH assumption.

In addition to that, we introduce traceable universally convertible directed
signatures by which a (master) tracing key enables a Tracing Authority (TA)
to link signatures to their direction i.e. their issuer and confirmer (we also use
the term receiver). We realize the concept using an efficient variation of our
basic scheme. We show that the obtained signature scheme inherits the security
properties of the basic scheme and that the power conferred to the TA by the
tracing key is computationally limited to the tracing procedure.

2 Preliminaries

2.1 Bilinear Group Systems

Recently, bilinear maps have allowed the opening of a new territory in cryptogra-
phy, making possible the realization of protocols that were previously unknown
or impractical. We now recall the definition of bilinear group systems. In the
sequel, we make use of a bilinear group pair (G1,G2) for which there is an effi-
ciently computable isomorphism ρ from G2 to G1.

Definition 1 (Bilinear group system). A bilinear group system is a tu-
ple (q, P1, P2, gt,G1,G2,Gt, 〈·, ·〉, ρ) where q is a prime number, G1,G2,Gt are
groups of order q with efficiently computable inner laws, 〈P1〉 = G1, 〈P2〉 = G2,
〈gt〉 = Gt, 〈·, ·〉 : G1 × G2 → Gt is an efficiently computable map such that for
all (x, y) ∈ Z2, 〈xP1, yP2〉 = 〈P1, P2〉xy holds and 〈P1, P2〉 �= 1 and ρ : G2 → G1

is an efficiently computable isomorphism with ρ(P2) = P1.

Definition 2 (Bilinear group system generator). A bilinear group system
generator is a probabilistic algorithm Setup that takes as input a security param-
eter k and outputs a bilinear group system (q, P1, P2, gt,G1,G2,Gt, 〈·, ·〉, ρ) $←−
Setup(k) such that q is a k-bit prime number.
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2.2 Computational Problems in Bilinear Group Systems

Depending on its practical embodiment, a bilinear group system may or may not
provide an efficiently computable isomorphism from G1 to G2. In particular, ρ
may not be efficiently invertible. In this case, there is a computational separation
between problems defined over G1 and G2. For instance, the Decisional Diffie-
Hellman problem DDH [G2] on G2 is trivial since 〈ρ(xP2), yP2〉 = 〈P1, xyP2〉 for
any x, y ∈ Z∗q , but the same problem defined over G1 may remain somewhat
intractable. Several new computational problems of various flavors have recently
been defined over bilinear groups. We now give the definition of the complexity
assumptions we will be using in this paper.
Tripartite Diffie-Hellman (TDH): Let (q, P1, P2, gt,G1,G2,Gt, 〈·, ·〉, ρ) be a bilin-
ear group system. Given group elements (xP1, yP1, zP2)

$←− G2
1 × G2, compute

xyzP1 ∈ G1.
This computational problem is at least as difficult as the computational bilin-

ear Diffie-Hellman problem [6]. Similarly, Decisional Tripartite Diffie-Hellman is
defined as the problem of distinguishing the distribution of (co-)Diffie-Hellman
tuples {(xP1, yP1, zP2, uP1) | x, y, z $←− Z∗q} from the uniform distribution over
G2

1 ×G2 ×G1:
Decisional Tripartite Diffie-Hellman (DTDH): Let (q, P1, P2, gt,G1,G2,Gt, 〈·, ·〉, ρ)
be a bilinear group system. Given group elements (xP1, yP1, zP2, uP1) ∈ G2

1 ×
G2 ×G1, decide whether u ≡ xyz (mod q).

The security of our signatures also relies on the following new computational
problem:
Flexible Square Diffie-Hellman (FSDH): Let (q, P1, P2, gt,G1,G2,Gt, 〈·, ·〉, ρ) be a
bilinear group system. Given xP2 ∈ G2, output a tuple (Q, xQ, x2Q) ∈ G3

1 for
some freely chosen Q ∈ G1.

Remark 1. Even though not really considered as classical, the KEA1 assump-
tion2 was introduced in 1991 by Damg̊ard [14]. Roughly speaking, KEA1 cap-
tures the intuition that any algorithm which, given a pair (P, xP) ∈ G2, computes
a pair (Q, xQ) ∈ G2 must “know” logP2

Q. It is easily seen that under KEA1,
the FSDH assumption is equivalent to a co-Diffie-Hellman assumption defined
over G1 and G2.

2.3 Designated-Verifier Proofs of Equality of Two Discrete
Logarithms

To make our security reductions complete, the executions of the confirm-
ing/denying protocols have to be simulated in the random oracle model. There-
fore we rely in the design of our scheme on a procedure allowing to prove in a
non-transferable way the equality (or the inequality) of two discrete logarithms

2 This assumption and some variants are formally analyzed in [3] and have been used
to prove that 3-round protocols were zero-knowledge.
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without revealing information on their value. We make use of non-interactive
designated-verifier zero-knowledge proofs [18] of equality of discrete logarithms
logα β = logg y. The notation is dvpk [x : β = αx ∧ y = gx], where α and g are
two elements of same prime order in their respective groups. We use the notation
dvpk [x : β �= αx ∧ y = gx] for the dual proof of inequality. Designated-verifier
proofs form the basis of denying and confirmation protocols in many undeniable
and confirmer signature schemes in the literature. We refer the reader to [18] for
further details.

3 Universally Convertible Directed Signatures

3.1 Definition

Given an integer k, a universally convertible directed signature scheme DS with
security parameter k is formally defined by the following:

– generation of public parameters: DS.Setup is a probabilistic algorithm which
takes as input k and outputs public parameters (which include a description
of the signature space);

– key generation for signer A and confirmer B: DS.Signer.KeyGen is a proba-
bilistic algorithm which takes as input the public parameters and outputs a
signing key pair (pkA, skA). DS.Confirmer.KeyGen is a probabilistic algorithm
which takes as input the public parameters and outputs a confirmer key pair
(pkB, skB);

– key-registration: DS.Register is a protocol between a user and a “Key Regis-
tration Authority” which takes as input the public parameters and the user’s
public key pk, and outputs a pair (pk, notif) where notif ∈ {accept, reject}
is the registration authorization decision. The fact that a given public key
has been properly registered with the authority, is guaranteed by a signature
of it by the authority.

– signature generation: DS.Sign is a probabilistic algorithm which takes as
input a bitstring m ∈ {0, 1}�, the signer’s private key skA, the confirmer’s
public key pkB and the public parameters. The output bitstring σ is called
an (A,B)-directed signature on m;

– signature verification by confirmer B (resp. signer A): DS.Confirmer.Verify

(resp. DS.Signer.Verify) is a deterministic algorithm which takes as input two
bitstrings m and σ, the signer’s public key pkA, the confirmer’s private key
skB (resp. the signer’s private key skA, the confirmer’s public key pkB)
and the public parameters and checks whether σ is a valid (A,B)-directed
signature on m;

– confirming/denying protocols with confirmer B (resp. signer A):
DS.Confirmer.{Confirm,Deny} (resp. DS.Signer.{Confirm,Deny}) are protocols
between a confirmer (resp. a signer) and a third party which takes as input
two bitstrings m and σ, the signer’s public key pkA, the confirmer’s private
key skB (resp. the signer’s private key skA, the confirmer’s public key pkB)
and the public parameters. The output is a non-transferable proof that σ is
a valid or an invalid (A,B)-directed signature on m;
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– individual conversion by confirmer B (resp. signer A): DS.Confirmer.Convert

(resp. DS.Signer.Convert) is a deterministic algorithm which takes as input a
bitstring σ, the signer’s public key pkA, the confirmer’s private key skB (resp.
the signer’s private key skA, the confirmer’s public key pkB) and the public
parameters, and outputs a bitstring σ̃B called a B-converted signature (resp.
σ̃A called an A-converted signature);

– verification of a B-(resp. A-)converted signature: DS.User.VerifyConfirmer

(resp. DS.User.VerifySigner) is a deterministic algorithm which takes as input
two bitstrings m and σ̃B (resp. σ̃A), the signer’s public key pkA, the con-
firmer’s public key pkB and the public parameters and checks whether σ̃B
(resp. σ̃A) is a valid B-converted (resp. A-converted) signature on m;

– generation of a universal trapdoor by confirmer B (resp. signer A):
DS.Confirmer.Trapdoor (resp. DS.Signer.Trapdoor) is a deterministic algorithm
which takes as input the signer’s public key pkA, the confirmer’s private key
skB (resp. the signer’s private key skA, the confirmer’s public key pkB), the
public parameters and outputs a universal trapdoor TA,B which makes it
possible to universally verify all (A,B)-directed signatures;

– universal signature verification: DS.User.Verify. is a deterministic algorithm
which takes as input three bitstrings m, σ and T , the signer’s public key
pkA, the confirmer’s public key pkB and the public parameters, and tells
whether σ is a valid (A,B)-directed signature on m.

Moreover, a universally convertible directed signature scheme must satisfy the
following (informally defined, precisely detailed in the next section) properties:

1. correctness: properly formed (A,B)-directed, A-converted and B-converted
signatures must be accepted by the verification algorithms;

2. unforgeability: it is computationally infeasible, without the knowledge of the
signer’s private key, to produce a directed signature that is accepted by the
verification algorithms or by the confirming protocols;

3. completeness and soundness: the verification protocols are complete and
sound, where completeness means that valid (invalid) signatures can always
be proven valid (invalid) and soundness means that no valid (invalid) signa-
ture can be proven invalid (valid).

4. invisibility: given a message m and a purported (A,B)-directed signature σ
on m, it is computationally infeasible, without the knowledge of the con-
firmer’s or the signer’s private key, to ascertain that σ is a valid (A,B)-
directed signature of m.

5. non-transferability: a user participating in an execution of the confirm-
ing/denying protocols does not obtain information that could be used to
convince a third party about the validity/invalidity of a signature.

3.2 Security Notions for Universally Convertible Directed
Signatures

Unforgeability against adaptive chosen message attacks. The de facto
standard notion of security for digital signatures was formalized by Goldwasser,
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Micali and Rivest [16] as existential unforgeability under adaptive chosen
message attacks (EF-CMA). For universally convertible directed signatures,
the unforgeability security is defined along the same lines, with the notable
difference that the adversary can be any of the confirmers chosen by the signer.
Therefore, in the attack scenario, the forger A is allowed to request signatures
directed to any registered user of her choice (whose secret key might be known
to her). Besides, signer individual/universal conversion algorithms might also
leak information to the adversary. We therefore suppose that the adversary
knows the confirmers’ private keys, the associated signer-generated universal
trapdoors, and we allow her to request the individual conversion of any signature
of her choice. As usual, the forger has the natural restriction that the returned
forgery (including a message, a directed signature and a confirmer’s identity)
has not been returned by the signing oracle during the game.

Invisibility of signatures. The strongest security notion for undeniable and
confirmer signatures is the one of invisibility introduced by Chaum, van Heijst
and Pfitzmann in [13]. We precisely define the notion of signature invisibility
under adaptive chosen message attacks in our context, introducing two flavors
of invisibility, weak-Inv-CMA and Inv-CMA.

We consider an adversary A that runs in two stages: in the find stage, A
takes as input the public keys pkA and pk�B, and outputs a message m� together
with some state information I�. In the guess stage, A gets as input I� and a
challenge signature σ� either formed by signing the message m� or chosen at
random in the signature space. Then A returns her guess as to whether σ� is a
valid (A,B)-directed signature on m� or not.

In the weak-Inv-CMA-model, the adversary has access in both stages to the
signing oracle Sign and to the confirming/denying oracle Confirm and Deny. In
the Inv-CMA-model, A is also given access to the individual conversion oracle
Convert, and to the universal trapdoor generation oracle Trapdoor. In both
cases, she is allowed to invoke these oracles on any message and any confirmer
of her choice with the restriction of not sending (m�, σ�, pk�B) to the oracles
Confirm, Deny and Convert in the second stage and not sending pk�B to the
oracle Trapdoor at any stage.

Let t ∈ NN, q = (qSign, qConfirm, qDeny, qConv, qTrap, qReg) ∈ [NN]6 and ε ∈
[0, 1]N. An algorithm A is a (k, t, q, ε)-forger (resp. a (k, t, q, ε)-distinguisher)
against DS if for all integer k, it runs in time at most t(k), makes at most
qSign(k), qConfirm(k), qDeny(k), qConv(k), qTrap(k), qReg(k) queries to the given or-
acles, and has forgery success (resp. distinguishing advantage) ≥ ε(k) against
DS with security parameter k.

4 Efficient Universally Convertible Directed Signatures

We now describe our first universally convertible directed signature scheme which
for readability is denoted again by DS.
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Generation of public parameters
DS.Setup: Given a security parameter k, the public parameters are
(q, P1, P2, gt,G1,G2,Gt, 〈·, ·〉, ρ) $←− Setup(k) as well as a hash function H map-
ping arbitrary bit strings to Z∗q .

Key generation
DS.Signer.KeyGen: Signer A picks random x1, x2

$←− Z∗q and computes X1 = x1P1

and X2 = x2P2. A’s public key is (X1,X2) ∈ G1×G2. A’s private key is (x1, x2).

DS.Confirmer.KeyGen: Confirmer B picks a random y
$←− Z∗q and computes Y =

yP1. B’s public key is Y ∈ G1. B’s private key is y.
DS.{Signer,Confirmer}.Register: A confirmer public key pkB = Y = yP1 is reg-
istered by letting B prove (possibly non interactively) the knowledge of y to
the registration authority by engaging in dvpk [y : Y = yP1]. Similarly, a user
registers his signing public key pkA = (X1,X2) = (x1P1, x2P2) by proving in
zero-knowledge her/his knowledge of x1 and x2. The fact that a given public key
has been properly registered with the authority, is guaranteed by a signature of
the it by the authority.

Signature generation
DS.Sign: Given a message m ∈ {0, 1}∗ and the public key Y of a confirmer,
A picks a random r

$←− Z∗q , and computes U = rP2 and V = (rx1)(x2 +
H(m,U,Y ))−1Y . In case x2 + H(m,U,Y ) ≡ 0 (mod q), A restarts the sign-
ing procedure with a new value for r. The signature is σ = (U, V ).

Verification by confirmer/signer
DS.Confirmer.Verify: Given a message m ∈ {0, 1}∗ and a signature σ = (U, V ), B
checks whether σ ∈ G2 ×G1 and 〈V,X2 +H(m,U,Y )P2〉 = 〈X1, U〉y.
DS.Signer.Verify: Given a message m ∈ {0, 1}∗ and a signature σ = (U, V ), A
checks whether σ ∈ G2 ×G1 and 〈V,X2 +H(m,U,Y )P2〉 = 〈Y, U〉x1 .

Confirmation and disavowal protocols
DS.Signer.{Confirm,Deny}: Given a message m ∈ {0, 1}∗ and a signature σ =
(U, V ), A proves to any third party that

dvpk [x1 : 〈V,X2 +H(m,U,Y )P2〉 = 〈Y, U〉x1 ∧X1 = x1P1]

or dvpk [x1 : 〈V,X2 +H(m,U,Y )P2〉 �= 〈Y, U〉x1 ∧X1 = x1P1] .

DS.Confirmer.{Confirm,Deny}: Given a message m ∈ {0, 1}∗ and a signature σ =
(U, V ), B proves to any third party that

dvpk [y : 〈V,X2 +H(m,U,Y )P2〉 = 〈X1, U〉y ∧ Y = yP1]

or dvpk [y : 〈V,X2 +H(m,U,Y )P2〉 �= 〈X1, U〉y ∧ Y = yP1] .
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Individual conversion and verification algorithms
DS.Signer.Convert: Given a purported (A,B)-directed signature σ = (U, V ), A
computes W = x1U ∈ G2 and outputs σ̃A = (U, V,W ) ∈ G2 × G1 × G2 as an
A-converted signature on m.
DS.User.VerifySigner: Given a message m ∈ {0, 1}∗ and a converted signa-
ture σ̃A = (U, V,W ), any user checks whether 〈X1, U〉 = 〈P1,W 〉 and
〈V,X2 +H(m,U,Y )P2〉 = 〈Y,W 〉.
DS.Confirmer.Convert: Given a purported (A,B)-directed signature σ = (U, V ),
B computes W = yU ∈ G2 and outputs σ̃B = (U, V,W ) ∈ G2 × G1 × G2 as a
B-converted signature on m.
DS.User.VerifyConfirmer: Given a message m ∈ {0, 1}∗ and a converted sig-
nature σ̃B = (U, V,W ), any user checks whether 〈Y, U〉 = 〈P1,W 〉 and
〈V,X2 +H(m,U,Y )P2〉 = 〈X1,W 〉.

Universal trapdoor generation and verification algorithms
DS.{Signer,Confirmer}.Trapdoor: A or B computes T = yX1 = x1Y = x1yP1 and
makes T public.
DS.User.Verify: Given a message m ∈ {0, 1}∗ and a signature σ = (U, V ), any
user uses the trapdoor T to check whether 〈V,X2 +H(m,U,Y )P2〉 = 〈T , U〉.

The correctness of DS is obvious, and the completeness and soundness of all
protocols are classical results [10]. We now discuss a few facts about our scheme.

Efficiency. An (A,B)-directed signature σ is a pair of elements in G2 × G1,
being in that comparable to Boneh and Boyen’s recent signature scheme [5].
Signature generation requires an inversion modulo q followed by one exponen-
tiation in G1 and one exponentiation in G2. Therefore no pairing is required.
Signature verification by the confirmer is a bit more demanding as a couple of
pairings have to be computed. We note that conversion procedures, as well as
the generation of a universal trapdoor require a single exponentiation in G1 or
G2 and are therefore pairing-free.

Verifiability Properties. We note that our scheme is fully verifiable in the
sense that all private operations are independently verifiable by third parties.
These properties are desirable even though not requested in our definitions. If
our system serves as a basic primitive in a cryptographic protocol typically, full
verifiability may allow early detection of cheating behaviors and localization of
malicious parties.

Security. We note first that the property of non-transferability is fulfilled by
our scheme as a direct consequence of the use of designated-verifier proofs in
confirmation/disavowal protocols. Further, we state that our scheme resists exis-
tential forgeries and that signatures are invisible. Both security reductions stand
in the random oracle model.

Theorem 1 (Unforgeability of DS). Let t, qH ∈ NN, q =
(qSign, qConfirm, qDeny, qConv, qTrap, qReg) ∈ [NN]6 and ε ∈ [0, 1]N. Assume
there exists a (k, t, q, ε)-forger A against DS, in the random oracle model.
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Further assume that A is limited to qH executions of H. Then there is an
algorithm that solves the FSDH problem in the bilinear group system generator
Setup with probability ε′(k) ≥ 1− 1/2k within time

t′ ≤ t · (qH + qConfirm + qDeny + qConvert + 2)
ε

+ (‖q‖+ qH) · p1,

where p1 is a explicit polynomial and ‖q‖ = qSign + qConfirm + qDeny + qConv +
qTrap + qReg.

Proof. The proof relies on the Forking Lemma [22] and is in spirit rather simi-
lar to the security proof of known discrete-log-based signature schemes such as
Schnorr. Assume A is a forger that (k, t, q, ε)-breaks DS. Here, qH stands for the
number of queries submitted byA to H sinceH is viewed as a random oracle. We
construct a reduction algorithm B that, by interacting with A, solves the FSDH
problem with time bound and success probability as claimed in Theorem 1.
Algorithm B is given bilinear map parameters (q, P1, P2, gt,G1,G2,Gt, 〈·, ·〉, ρ)
generated by Setup(k) and an instance xP2 of the FSDH problem. B’s goal is
to produce a tuple (Q, xQ, x2Q) for some Q ∈ G1. B does so by interacting with
the forger A as follows. First, B picks a random x1

$←− Z∗q and sets X1 = x1P1

and X2 = xP2. The knowledge of x1 in the simulation will be used intensively
in the simulation of DS.Signer.Confirm and DS.Signer.Deny}
Find Stage. We define a probabilistic subroutine B0(�) of B. Given
an arbitrary input �, B0(�) runs A with random tape �, transmits
(q, P1, P2, gt,G1,G2,Gt, 〈·, ·〉, ρ) as public parameters to A, as well as the public
key pkA = (X1,X2). Then B0(�) simulates the scheme’s oracles H , DS.Sign,
DS.Signer.{Confirm,Deny}, DS.Signer.Convert and DS.Signer.Trapdoor as follows.
Simulation of H. Given m ∈ {0, 1}∗ and (U,Y ) ∈ G2 × G1, if H(m,U,Y ) is
defined, output its value. Otherwise, pick a random h

$←− Z∗q , defineH(m,U,Y ) =
h and output h.
Simulation of DS.Sign. Given m ∈ {0, 1}∗ and a confirmer’s public key pkB =
Y , pick a random r, h

$←− Z∗q . Set V = rx1Y and U = rX2 + rhP2. If H(m,U,Y )
is defined and is �= h, B0(�) aborts. Otherwise B0(�) defines H(m,U,Y ) = h
and outputs σ = (U, V ).
Simulation of DS.Signer.{Confirm,Deny}. Since B0(�) knows
x1, B0(�) is able to verify any given directed signature and
consequently, to engage successfully in one of the two proto-
cols dvpk [x1 : 〈V,X2 +H(m,U,Y )P2〉 = 〈Y, U〉x1 ∧X1 = x1P1] or
dvpk [x1 : 〈V,X2 +H(m,U,Y )P2〉 �= 〈Y, U〉x1 ∧X1 = x1P1] for any given
m ∈ {0, 1}∗, σ = (U, V ) ∈ G2 ×G1 and Y ∈ G1. Note that a simulation of H is
required in either case.
Simulation of DS.Signer.Convert. Given σ = (U, V ), output σ̃A = (U, V, x1U).
Simulation of DS.Signer.Trapdoor. Given Y ∈ G1, output T = x1Y .

If A returns a forgery (Y,m, σ = (U, V )), B0(�) simulates H once again to
get h = H(m,U,Y ) and checks whether 〈V,X2 +H(m,U,Y )P2〉 = 〈Y, U〉x1 . If
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the equality holds, and if σ does not appear in the transcript of DS.Sign, B0(�)
is said to succeed.

Algorithm B restarts B0(�) for random values of � $←− {0, 1}∗ until B0(�)
succeeds. Let (Y,m, σ = (U, V )) be the last output of A. Then B memorizes �,
the index j of (m,U,Y ) �→ h in H ’s transcript (sorted in chronological order),
and the first j outputs of H noted h1, . . . , hj. If 
 denotes the index in the
transcript of DS.Sign of the last signature output before H returns hj , B also
memorizes 
, σ1, . . . , σ�.

Replay Stage. As is classical with forking-based reductions, we define a second
probabilistic subroutine B1(�) of B which role is essentially to replay the last
and successful execution of B0(�) until the moment when H is about to output
hj , and then simulate all oracles with fresh random values from that moment
on. The tape � being given by the find stage, B1(�) runs A with random tape
�, transmits the same public parameters (q, P1, P2, gt,G1,G2,Gt, 〈·, ·〉, ρ) to A,
as well as pkA = (X1,X2). Then B1(�) simulates the oracles as follows, using
its own random tape π.
Simulation of H. If the query index is i < j, output hi. Otherwise, simulate
as in the find stage with fresh random values.
Simulation of DS.Sign. If the query index is i′ ≤ 
, output σi′ . Otherwise,
simulate as in the find stage with fresh random values.

All other oracles are simulated exactly as in the find stage. If A returns a
forgery (Y ′,m′, σ′ = (U ′, V ′)), B1(�) queries its own simulation of H to verify
σ′ the same way B0(�) verified σ. If σ′ is invalid or was output by the simulation
of DS.Sign or if the index of (m′, U ′,Y ′) �→ h′ in the transcript of H is j′ �= j,
then B1(�) is said to fail.

Algorithm B restarts B1(�) with random values for π until B1(�) succeeds.
Let then (Y ′,m′, σ′ = (U ′, V ′)) be the last output of A.

Key Retrieval Stage. We perform a specific stage that allows B to retrieve
the confirmer private key y′ associated to the find-stage forgery (Y ′,m′, σ′), i.e.
such that Y ′ = y′P1. To this end, B replays B1 once with a slightly modified
random tape π′ ≈ π such that replaying the registration stage of Y ′ by A allows
to extract y′. As registration is performed via a non-interactive dvpk of a discrete
log, modifying the ’challenge’ value returned by the internal hash function of the
protocol yields y′ by knowledge extraction3. B then stops A and memorizes y′.

Final Outcome. B disposes of two valid forgeries (Y,m, σ = (U, V )) and
(Y ′,m′, σ′ = (U ′, V ′)). Since (m′, U ′,Y ′) �→ h′ and (m,U,Y ) �→ h have the same
index in the transcript of H , we must have (m′, U ′,Y ′) = (m,U,Y ) by a causal-
ity argument. In particular, B knows y = y′. B then computes Δ = x−1

1 y−1V
and Δ′ = x−1

1 y−1V ′. From the simulation, there exists r ∈ Z∗q−1 (unknown to
B) such that Δ = r(x + h)−1P1 and Δ′ = r(x + h′)−1P1. B poses R = rP1

and Q = (h′ − h)−1 (Δ−Δ′) = r[(x + h)(x+ h′)]−1P1 = [(x+ h)(x+ h′)]−1R,
or aborts if h′ − h ≡ 0 (mod q). Finally, one has Δ = (x+ h′)Q so that

3 This technique is classical and we therefore do not enter into more details here.
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Δ−h′Q = xQ. Since R = (x+h)(x+h′)Q, we get R− (h+h′)xQ−hh′Q = x2Q
and B outputs (Q, xQ, x2Q) to its own challenger.

Reduction cost. We start with a preliminary observation. The transcript of
H contains exactly qtot(k) hash definitions, where qtot = qH + qSign + qConfirm +
qDeny +1, since the simulation of H is invoked by the simulation of other oracles
(the constant term 1 comes from the verification of the forgery). Among these
hash values, exactly qSign(k) were defined by the simulation of DS.Sign and by
construction, the j-th hash definition H(m,U,Y ) cannot be one of these.

Let us denote by Hj the set of vectors (h1, . . . , hqtot(k)) leading to a forgery
of index j and εj = Pr

[
(h1, . . . , hqtot(k)) ∈ Hj

]
, the probability being taken over

all the values of h1, . . . , hqtot(k) over Z∗q . Note that the εi’s may depend on A and
w but in any case

∑
j εj = ε(k) must hold. Following our remark above, there

must be at least qSign(k) values of j for which εj = 0. We now invoke the

Lemma 1 (Splitting Lemma [22]). Noting Xj the set of vectors
(h1, . . . , hj−1) such that

Pr
[
(h1, . . . , hj−1, h

′
j, . . . , h

′
qtot(k)

) ∈ Hj
]
≥ εj

2
,

where the probability is taken over h′j, . . . , h
′
qtot(k)

$←− Z∗q , one has

Pr
[
(h1, . . . , hj−1) ∈ Xj | (h1, . . . , hqtot(k)) ∈ Hj

]
≥ 1

2
.

where the probability is taken over h1, . . . , hj−1
$←− Z∗q .

We expect the find and key retrieval stages to require at most ε(k)−1 + 1
executions of A. Suppose that the transcript of H when B0(�) succeeds is
(h1, . . . , hqtot(k)) ∈ Hj for some j. This event occurs with non-zero probabil-
ity εj/ε(k) as soon as εj �= 0. Further assume that (h1, . . . , hj−1) ∈ Xj ; the
probability that this occurs is at least 1/2. Then the expected number of exe-
cutions of B1(�) is 2/εj. Putting it all together, and taking into account the
abortion case h′ ≡ h (mod q), B succeeds with probability ≥ 1− 1/2−k after

1
ε(k)

+ 1 +
∑

1≤j≤qtot(k),εj �=0

εj
ε(k)

· 1
2
· 2
εj
≤ qtot(k)− qSign(k) + ε(k)

ε(k)

executions of A, i.e. in time at most [t ·(qH+qConfirm+qDeny+qConvert+2)/ε](k).
The term (‖q‖+ qH) p1 comes from the time needed to simulate all oracles. �

Remark 2. The simulation of the dvpks imposes the random oracle model and
we therefore must allow the adversary to query the internal oracles used to
compute proofs. The simulation cost induced by these queries are included into
qH .

We also state that DS is weakly invisible under the assumption that the
Decisional Tripartite Diffie-Hellman problem is intractable:



694 F. Laguillaumie, P. Paillier, and D. Vergnaud

Theorem 2 (Weak Invisibility of DS). Let t, qH ∈ NN, q =
(qSign, qConfirm, qDeny, 0, 0, qReg) ∈ [NN]6 and ε ∈ [0, 1]N. Assume there exists
a (k, t, q, ε)-distinguisher A against DS, in the random oracle model. Then
there exists an algorithm that solves the DTDH problem in the bilinear group
system generator Setup with probability ε′ = ε/2 − o(1) within time t′ ≤
qReg · t+ (‖q‖+ qH) · p2, where p2 is an explicit polynomial.

Proof. We show that, assuming the hardness of the Decisional Tripartite Diffie-
Hellman DTDH, DS is weakly invisible under an adaptive chosen-message attack.
Our reduction is in essence similar to previously known reductions in the stan-
dard model, and we therefore skip minor details. Note that H needs not be seen
as a random oracle. The fact that we require the random oracle model only stems
from the need to simulate zero-knowledge proofs.

Assume A is an attacker that (k, t, q, ε)-breaks the weak invisibility of DS
as defined earlier. We construct a reduction algorithm B that, by interacting
with A, solves a DTDH instance with time bound and advantage as claimed in
Theorem 2. The outline of the reduction is as follows. Algorithm B is given an
bilinear group system (q, P1, P2, gt,G1,G2,Gt, 〈·, ·〉, ρ) generated by Setup(k)
and an instance (αP1, βP1, γP2, δP1) ∈ G2

1 × G2 × G1. B’s goal is to decide
whether δ ≡ αβγ (mod q). B does so by interacting with the forger A as follows.
First, B picks a random x2

$←− Z∗q and sets X1 = αP1 and X2 = x2P2. Then B
sends the public parameters to A as well as the signer public key (X1,X2) and
the challenge confirmer public key Y � = βP1. B attempts to simulate all oracles
throughout the find stage, as shown later. A then returns a challenge message
m�. B then picks a random bit b ∈ {0, 1} and sets U = γP2. If b = 0, B sets
h� = H(m�, U,Y ) and V = (x2 + h�)−1 (δP1). If b = 1, B initializes V $←− G1.
Then B defines σ� = (U, V ) and σ� is returned to A as the signature challenge.
Throughout the guess stage, B simulates the oracles the same way it did in the
find stage. A finally outputs a guess b′ ∈ {0, 1} and B returns 1 to its own
challenger if b′ = b or 0 otherwise.

When δ ≡ αβγ (mod q), signature simulations will all be correct and the
advantage of A in guessing b is at least ε(k). In the case δ �≡ αβγ (mod q), the
signatures output by B are simply invalid and A may then behave arbitrarily.
Overall, B correctly guesses its own challenge with probability negligibly close
to ε(k)/2.

Key Retrieval for Y �= Y �. When Y �= Y �, A must have registered the public
key Y = yP1 prior to requesting any signature of type (m,Y ), so that B recovers
y via registration replay as in the proof of unforgeability. This requires to reboot
and replay A with the same random tape up to the point in executing the dvpk
when bringing fresh randomness in the ’challenge’ hash value allows to extract
the discrete log y. Knowing y, B continues the second execution of A until a
new confirmer key Y ′ is registered, and so forth. This strategy ensures that
B can actually recover all the confirmer private keys matching the public keys
registered by A. The price to pay is a factor qReg(k) in the number of times
A has to be executed. Note that, since we make use of non-interactive dvpk
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of a discrete logarithm, there is no concurrent interleving of registrations and
therefore the “reboot and replay” technique applies readily.
Simulation of Signatures for Y �= Y �. Signatures are simulated in the fol-
lowing way. Given (m,Y ), B first recovers y = logP Y in its transcript. Then
B picks a random r

$←− Z∗q and sets U = rP2 and V = ry(x2 + h)−1 (αP1),
where h = H(m,U,Y ). B memorizes (σ,m,Y, r) in its transcript and returns
σ = (U, V ).
Simulation of Other Operations Involving B �= B�. As y = logP Y is
known to B whenever Y �= Y �, B can individually convert any (A,B)-directed
signature σ = (U, V ) given by B to A by simply computing W = rX1 where
r is the randomness used to construct σ. Similarly, B can generate universal
trapdoors T = yX1.
Simulation of Confirmation/Denial Protocols. B simulates the dvpk of
x1 = logP1

X1 (that B does not know) or y = logP1
Y (that B knows from the

key retrieval stage). This requires to simulate the internal random oracle of dvpk
in the first case. The proof is then returned to (the user corrupted by) A.

Simulation of Signatures for Y = Y �. Given m, B picks a random r
$←− Z∗q ,

sets U = r (γP2) and V = r
x2+h

(δP1) where h = H(m,U,Y �). B returns σ =
(U, V ).

Reduction Cost. As discussed above, B’s own challenge is solved with proba-
bility ε′(k) ≥ ε(k)/2−Pr [dvpk fails] within time bound qReg(k) · t(k)+ ‖q‖(k) ·
p2(k) where p2 is an explicit polynomiaml and the second term comes from the
simulations of all oracles. This is as claimed in Theorem 2. �

Invisible Universally Convertible Directed Signatures. We refer the
reader to Appendix A for a proof that DS is invisible under a non-standard
complexity assumption referred to as the qs-Tripartite-DCAA problem.

Because of its simplicity, however, our scheme admits many variations. A
possible direction to reach invisibility under a weaker assumption consists in
replacing the individual conversion algorithms by standard non-interactive zero-
knowledge (nizk) proofs of knowledge of equality/inequality of discrete loga-
rithms. The nizk proof is then appended to the directed signature as a replace-
ment of the third signature part W . It is then possible to obtain invisibility
under the Decisional Tripartite Diffie-Hellman assumption. The proof is very
similar to the one of Theorem 2 except that signature conversions are provided
to the adversary by simulating the corresponding nizk proofs for signatures is-
sued by the reduction. The other cases are upper bounded in probability by the
unforgeability property of our scheme.

5 Universally Convertible Directed Signatures with
Traceability

Directed signatures find a prominent application in the realization of complete
peer-to-peer secure messaging systems. In such a system, users have a unique key
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pair {pk = (X1,X2), sk = (x1, x2)} where X1 = x1P1,X2 = x2P2 and x1 plays
simultaneously the role of a signing and of a confirming key. By misuse of language,
we sometimes call x1 the anonymity key and x2 the signing key for reasons that will
appear clearly in what follows. We view a confirmer more like a regular receiver of
a signed message and preferably adopt this term in the sequel. In authenticated
messaging systems, putting a restriction on the ability to verify signatures is of a
certain interest towards the users’ privacy. The property of invisibility guarantees
this privacy until one of the two parties wishes to end it.

There are real-life contexts, however, in which conferring this ability to a
trusted authority acting in extreme circumstances is desirable. One may think
of private contract signing for instance, where criminals make use of the system
to sign illegal contracts that are not publicly verifiable. What is really desired is a
traceability mechanism4 enabling a tracing authority (TA) to link upon request
directed signatures to their direction i.e. the identities of their signer and receiver.
We now introduce an extension of our scheme that supports signature tracing.

5.1 Description of the Scheme DST

Setup and Key generation
The generation of public parameters and keys in the system is essentially the

same as above, except that we include Z = zP2 ∈ G2 into the system public
parameters. The tracing key is z ∈ Z∗q . Moreover, we require users to (securely)
submit their anonymity keys x1 to the Key Registration Authority (KRA). A
receipt is returned to the registering user after that, under the form of a nizk
proof ψ(X1) that the KRA knows x1.

Signature generation
Now, given a messagem ∈ {0, 1}∗ and the public key Y of the receiver, signer

A picks random r, s
$←− Z∗q , and computes U = rP2, W = rZ + sP2, T = s−1Y ,

and V = rx1(x2 +H(m,U,W,T ,Y ))−1Y . Again, when x2 +H(m,U,W,T ,Y ) ≡
0 (mod q), A restarts the signing procedure with new values for r, s. Next, signer
A computes a nizk proof of consistency π = nizk[(r, s, h,X1,X2,Y ) : ψ(X1) ∧
ψ(Y )∧ 〈P1,W 〉〈ψ(Z), U〉−1 = gst ∧ Y = sT ∧ 〈ψ(V ),X2 + hP2〉 = 〈ψ(X1),T 〉rs].
The signature is σ = (U,W,T , V,π).

Other operations
The verification procedure and the confirming/denying protocols are un-

changed, except that the non-interactive proof π is verified. Signature conver-
sions are done the same way i.e. by appending x1U or yU , or a nizk proof of
knowledge of x1 or y to the signature. The generation of trapdoors is unchanged.
Universal verification requires the additional check that π is correct.

4 In [19], Kiayias, Tsiounis and Yung propose a similar traceability mechanism in the
context of group signatures.
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Signature Tracing
A prerequisite for signature tracing is the recovery of the anonymity key x1 of

the suspected user. This is done by the Key Registration Authority upon judicial
request. Now the TA is given a signature σ = (U,W,T , V,π) of some message
m and is asked to decide whether σ was issued by the given user and if so, to
whom the signature was directed. The TA first ascertains that π is correct and
searches in the public key database a key Y for which 〈T ,W−zU〉 = 〈Y, P2〉. The
search is always successful, because a proof that Y lies in the set of registered
keys is included in π and is known to be correct. Now given Y and x1, the TA
checks whether 〈V,X2+H(m,U,W,T ,Y )P2〉 = 〈Y, U〉x1 . We note that in case of
mismatch, the TA is left with anonymous material meaning that if the signature
was issued by some user A′ then the identity of A′ is preserved. This property
is in fact computationally guaranteed, as stated later.

5.2 Security Analysis

We state that (A,B)-directed signatures are existentially unforgeable and in-
visible under adaptive chosen-message attack for any user �= A,B,TA. We rely
again on the FSDH and the DTDH assumptions in the random oracle model.

Theorem 3 (Unforgeability and Weak Invisibility). Let t, qH ∈ NN, q =
(qSign, qConfirm, qDeny, qConv, qTrap, qReg) ∈ [NN]6 and ε ∈ [0, 1]N.

1. Assume there exists a (k, t, q, ε)-forger A against DST, in the random oracle
model. Further assume that A is limited to qH executions of H. Then there
is an algorithm that solves the FSDH problem in the bilinear group system
generator Setup with probability ε′(k) ≥ 1− 1/2k within time

t′ ≤ t · (qH + qConfirm + qDeny + qConvert + 2)
ε

+ (‖q‖+ qH) · p3,

where p3 is a explicit polynomial.
2. Assume there exists a (k, t, (qSign, qConfirm, qDeny, 0, 0, qReg), ε)-distinguisher
A against DST, in the random oracle model. Then there exists an algorithm
that solves the DTDH problem in the bilinear group system generator Setup
with probability ε′ = ε/2 − o(1) within time t′ ≤ qReg · t + (‖q‖+ qH) · p4,
where p4 is an explicit polynomial.

Proof. The proof is similar to those of the security of the scheme DS and will be
given in the full version of the paper. �

We also state two important properties fulfilled by the tracing mechanism.
They tell us in essence that beyond traceability, the Tracing Authority has no
’hidden powers’ over standard users of the system.

Theorem 4 (Abuse-free Traceability). Signatures issued by user A remain
invisible to the tracing authority itself as long as the anonymity key x1 of user
A is undisclosed to the TA.
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Theorem 5 (Tracing-Proof Unforgeability). After x1 is disclosed to the
TA to enable tracing, the tracing authority is still unable to existentially forge
signatures on behalf of A.

We argue that these properties come from the computational separation between
the anonymity key x1 and the signing key x2. In fact, after the x1-part of the
secret key of a traced user has been revoked, signatures from that user remain
unforgeable because x2 has not been compromised. The revoked user could even
be rehabilitated and a new anonymity key generated to replace the revoked one.
This allows a clear separation of powers invested in users and authorities of the
system. Due to lack of space, the complete proofs will be given in the full version
of the paper.

5.3 Technical Considerations

Implementation of the nizk proof π. The nizk proof π is implemented as
a Fiat-Shamir-transformed conjunction of interactive proofs of the predicates
forming π. We rely on prior art [8] to provide an efficient procedure to generate
π in practice.
Performances. Signature generation requires 2 exponentiations over group G1

and 2 over group G2, and no pairing. Here too, off-line/online signature gener-
ation trade-offs are possible by appending a third key part X3 = x3P2 in the
user key. Signature conversions and the generation of trapdoors require a single
exponentiation over G2 or G1 respectively. All verification algorithms require at
least two evaluations of the bilinear map. We note that the tracing procedure
requires O(N) bilinear map evaluations where N is the number of registered
(non-revoked) users. We leave as an open problem to find similar schemes ad-
mitting a tracing procedure in polylog complexity in all parameters.
Extensions. Invisibility under the Decisional Tripartite Diffie-Hellman assump-
tion is obtained by replacing the individual conversion procedures by standard
nizk proofs. All operations within the scheme (signature conversion, trapdoor
generation) are easily adapted to be verifiable. Among other possible extensions,
we cite multi-receiver directed signatures.

6 Conclusion

We properly defined security notions for directed signatures that support the
additional property of universal conversion. Using the xyz-trick, we realized the
first scheme featuring both individual and universal conversion of signatures,
thereby addressing a problem left open since 1993. The new scheme offers at-
tractive practical advantages in terms of signature length and performances. In
comparison with previous works, the computational costs for the signer in the
signature generation, the confirmation/disavowal protocols and the conversion
algorithms, are among the smallest of all delegated undeniable signature schemes.
We have proved the security of our scheme in the random oracle model under
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computational assumptions closely related to the Diffie-Hellman and Decision
Diffie-Hellman assumptions on bilinear map groups.

Finally, we introduced traceable directed signatures as a powerful extension
to allow a Tracing Authority within the system to link signatures to their di-
rection i.e. issuer and receiver. We believe that our signature schemes are simul-
taneously efficient and customizable, and we expect to see new cryptographic
applications of our work in the future. The xyz-trick will certainly have other
applications in future works as well. For example, our scheme is easily extended
to achieve the time-selective conversion property as in [20].

References

1. S. Araki, S. Uehara, K. Imamura: The Limited Verifier Signature and Its Applica-
tion. IEICE Trans. Fundamentals, Vol. E82-A (1), 63–68 (1999)

2. N. Asokan, V. Shoup, M. Waidner: Optimistic Fair Exchange of Digital Signatures.
Proc. of Eurocrypt’98, Springer LNCS Vol. 1403, 591–606 (1998)

3. M. Bellare, A. Palacio: The knowledge-of-exponent assumptions and 3-round zero-
knowledge protocols. Proc. of Crypto’04, Springer LNCS Vol. 3152, 273–289 (2004)

4. M. Bellare, P. Rogaway: Random Oracles are Practical: a Paradigm for Designing
Efficient Protocols. Proc. of 1st ACM Conference on Computer and Communica-
tions Security. 62–73 (1993)

5. D. Boneh, X. Boyen: Short Signatures Without Random Oracles. Proc. of Euro-
crypt’04, Springer LNCS Vol. 3027, 56–73 (2004)

6. D. Boneh, M. Franklin: Identity-based Encryption from the Weil Pairing. SIAM J.
Computing, 32 (3), 586–615 (2003)

7. J. Boyar, D. Chaum, I. B. Damg̊ard, T.P. Pedersen: Convertible Undeniable Sig-
natures. Proc. of Crypto’90, Springer Vol. LNCS 537, 189–205 (1991)

8. E. Bresson, J. Stern: Proofs of Knowledge for Non-Monotone Discrete-Log Formu-
lae and Applications. Proc. of ISC’02, Springer LNCS Vol. 2433, 272–288 (2002)

9. J. Camenisch, M. Michels: Confirmer Signature Schemes Secure against Adaptive
Adversaries. Proc. of Eurocrypt’00, Springer LNCS Vol. 1807, 243–258 (2000)

10. J. Camenisch, M. Stadler: Efficient Group Signature Schemes for Large Groups.
Proc. of Crypto’97, Springer LNCS Vol. 1296, 410–424 (1997)

11. D. Chaum: Designated Confirmer Signatures. Proc. of Eurocrypt’94, Springer
LNCS Vol. 950, 86–91 (1995)

12. D. Chaum, H. van Antwerpen: Undeniable Signatures. Proc. of Crypto’89, Springer
LNCS Vol. 435, 212–216 (1989)

13. D. Chaum, E. van Heijst, B. Pfitzmann: Cryptographically Strong Undeniable
Signatures Unconditionally Secure for the Signer. Proc. of Crypto’91, Springer
LNCS Vol. 576, 470–484 (1992)

14. I. Damg̊ard: Towards Practical Public Key Systems Secure Against Chosen Ci-
phertext Attacks. Proc. of Crypto’91, Springer LNCS Vol. 576, 445–456 (1991)

15. M. K. Franklin, M. K. Reiter: Verifiable Signature Sharing. Proc. of Eurocrypt’95,
Springer LNCS Vol. 921, 50–63 (1995)

16. S. Goldwasser, S. Micali, R. Rivest: A Digital Signature Scheme Secure against
Adaptive Chosen-Message Attacks. SIAM J. Computing, 17 (2), 281–308 (1988)

17. S. Goldwasser, E. Waisbard: Transformation of Digital Signature Schemes into
Designated Confirmer Signature Schemes. Proc. of TCC’04, Springer LNCS Vol.
2951, 77–100 (2004)



700 F. Laguillaumie, P. Paillier, and D. Vergnaud

18. M. Jakobsson, K. Sako, R. Impagliazzo: Designated Verifier Proofs and their Ap-
plications. Proc.of Eurocrypt’96, Springer LNCS Vol. 1070, 142–154 (1996)

19. Aggelos Kiayias, Yiannis Tsiounis, Moti Yung: Traceable Signatures. Proc. of Eu-
rocrypt’04, Springer LNCS Vol. 3027, 571–589 (2004)

20. F. Laguillaumie, D. Vergnaud: Time-Selective Convertible Undeniable Signatures.
Proc. of CT-RSA’05, Springer LNCS Vol. 3376, 154-171 (2005)

21. C. H. Lim and P. J. Lee: Modified Maurer-Yacobi’s Scheme and its Applications.
Proc. of Auscrypt’92, Springer LNCS Vol. 718, 308–323 (1993)

22. D. Pointcheval, J. Stern: Security Arguments for Digital Signatures and Blind
Signatures. J. Cryptology, Vol. 13 (3), 361–396 (2000)

23. F. Zhang, K. Kim: A Universal Forgery on Araki et al.’s Convertible Limited
Verifier Signature Scheme. IEICE Trans. Fundamentals, Vol. E86-A (2), 515–516
(2003)

A Invisibility of DS

The invisibility of DS relies on the difficulty of solving the following 
-Tripartite-
DCAA Problem in connection to the xyz-trick. It is similar to a class of problems
recently introduced by Laguillaumie and Vergnaud [20]:

-Tripartite-DCAA Problem: Let (q, P1, P2, gt,G1,G2,Gt, 〈·, ·〉, ρ) be a bilinear
group system. Given (x1P1, x2P2, yP1, zP2,Q, h)

$←− (G1 ×G2)
2 × G1 × Z∗q and

for some 
 ≥ 0,(
hi, x1(x2 + hi)−1P1, x1y(x2 + hi)−1P1

)
i∈[[1,�]]

∈
(
Z∗q ×G2

1

)�
with h /∈ {h1, . . . , h�}, decide whether Q = x1yz(x2 + h)−1P1.

We state that, assuming the hardness of the 
-Tripartite-DCAA problem and
that of the Flexible Square Diffie-Hellman problem, the schemes DS and DST
are invisible under chosen-message attack in the random oracle model.

Theorem 6 (Invisibility of DS and DST). Let t, qH ∈ NN, q =
(qSign, qConfirm, qDeny, qConv, qTrap, qReg) ∈ [NN]6 and ε ∈ [0, 1]N. Assume there
exists a (k, t, q, ε)-distinguisher A, in the random oracle model, against DS (or
DST). Then there exists an algorithm B that solves the qs-Tripartite-DCAA prob-
lem in the bilinear group generator Setup with advantage ε′ and a (k, t′′, q, ε′′)-
forger C against DS such that

ε′ + (qConfirm + qDeny + qConvert) · ε′′ ≥ ε

where B runs in time at most t′ = (qReg +1) · t and C runs in time t′′ = t+O(1).

Proof. Assume A is an Inv-CMA-adversary that (k, t, q, ε)-distinguishes the sig-
natures of DS. As in the unforgeability proof, qH represents the number of queries
submitted by A to H since H is again viewed as a random oracle. We construct
two reduction algorithms B and C that interact with A and respectively solve
the qs-Tripartite-DCAA problem and produce an existential forgery with time
and success probability as claimed in Theorem 6.
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Algorithm B: Algorithm B is given public parameters
(q, P1, P2, gt,G1,G2,Gt, 〈·, ·〉, ρ) generated by Setup(k) and an instance(

(x1P1, x2P2, yP1, zP2,Q, h) ,
(
hi,Ri =

x1

x2 + hi
P1, Si =

x1y

x2 + hi
P1

)
i∈[[1,qs]]

)
in (G1 ×G2)

2×G1×Z∗q ×
(
Z∗q ×G2

1

)qs of the qs-Tripartite-DCAA problem. B’s
goal is to decide whether Q = x1yz(x2 + h)−1P1 and B proceeds to use forger
A to do so. B sets X1 = x1P1, X2 = x2P2, Y � = yP1, initializes a counter i = 1
and simulates A’s environment as follows:
Simulation of H. Same simulation as in the unforgeability proof.
Simulation of DS.Register. Each time the adversary registers a new public
key Y = y′P1, the reduction rewinds A from the beginning without changing
anything but the challenge in the proof-of-knowledge of the discrete logarithm
y′ of Y in base P2 (see the proof of unforgeability). Therefore, we can suppose
wlog that the reduction knows the secret key of all the users registered by A, at
the expense of running A at most qReg(k) times.
Simulation of DS.Signer.{Confirm,Deny}. If the signature has been produced
by B in the simulation then use the same simulation as in the unforgeability
proof. Otherwise, simulate a designated-verifier proof of invalidity.
Simulation of DS.Sign. Given m ∈ {0, 1}∗ and a confirmer’s public key Y ,
pick a random r

$←− Z∗q . If Y = Y � set U = rP2 and V = rSi. Otherwise
Y = y′P1 �= Y �, and B sets U = rP2 and V = ry′Ri. Now if H(m,U,Y ) is
defined and is �= hi, the reduction restarts with a new value for r. Otherwise the
reduction defines H(m,U,Y ) = hi, outputs σ = (U, V ) and increments i.
Simulation of DS.Convert.{Signer,Confirmer}. Given Y ∈ G, m ∈ {0, 1}∗ and
σ = (U, V ) ∈ G2, invoke the simulation ofH on (m,U,Y ). If σ has been obtained
by the simulation of DS.Sign then retrieve the randomness r such that U = rP2

and output σ̃A = (U, V, rX1) or σ̃B = (U, V, rY ). Otherwise, output Invalid.
Simulation of DS.Signer.Trapdoor. Given Y ∈ G \ {Y �}, output T = y′X1

where Y � = y′P2.
In this simulation B simulates perfectly A’s environment unless at some point

in time A queries a valid signature (U, V ) not produced by B to the oracles
DS.Signer.{Confirm,Deny} or DS.Convert.{Signer,Confirmer}. Let us denote Bad this
event. We have |ε′(k)− ε(k)| ≤ Pr(Bad) and the running time of B is at most
t′(k) = (qReg(k) + 1) · t(k) +O(1).

Algorithm C: We claim that there exists an EF-CMA-adversary C which
(k, t′′, q, ε′′)-breaks DS, where t′′ = t + O(1) and ε′′ ≥ (qConfirm + qDeny +
qConvert)−1 Pr[Bad]. Basically, C runs A and outputs as a forgery one of the sig-
natures (selected at random) queried by A during the Inv-CMA game, to one of
the oracles DS.Signer.{Confirm,Deny} or DS.Convert.{Signer,Confirmer} which was
not obtained by the oracle DS.Sign.

This directly leads to the above claims for the scheme DS and the proof
extends readily to the invisibility of the scheme DST. �
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Lískiewicz, Maciej 121
Liskov, Moses 174
Liu, Mulan 156
Lucks, Stefan 474

Mantin, I. 395
Maximov, Alexander 313
McCullagh, Noel 515
Miller, Stephen D. 21
Mishra, Pradeep Kumar 59
Mitra, Joydip 412
Molnar, David 662
Muller, Frédéric 373, 425, 462

Nakanishi, Toru 533
Nguy˜̂en, Phong Q. 41
Nielsen, Jesper Buus 79

Paillier, Pascal 1, 682
Paterson, Kenneth G. 549
Peralta, René 253
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